2,246 research outputs found

    Routine characterization and interpretation of complex alkali feldspar intergrowths

    Get PDF
    Almost all alkali feldspar crystals contain a rich inventory of exsolution, twin, and domain microtextures that form subsequent to crystal growth and provide a record of the thermal history of the crystal and often of its involvement in replacement reactions, sometimes multiple. Microtextures strongly influence the subsequent behavior of feldspars at low temperatures during diagenesis and weathering. They are central to the retention or exchange of trace elements and of radiogenic and stable isotopes. This review is aimed at petrologists and geochemists who wish to use alkali feldspar microtextures to solve geological problems or who need to understand how microtextures influence a particular process. We suggest a systematic approach that employs methods available in most well founded laboratories. The crystallographic relationships of complex feldspar intergrowths were established by the 1970s, mainly using single-crystal X-ray diffraction, but such methods give limited information on the spatial relationships of the different elements of the microtexture, or of the mode and chronology of their formation, which require the use of microscopy. We suggest a combination of techniques with a range of spatial resolution and strongly recommend the use of orientated sections. Sections cut parallel to the perfect (001) and (010) cleavages are the easiest to locate and most informative. Techniques described are light microscopy; scanning electron microscopy using both backscattered and secondary electrons, including the use of surfaces etched in the laboratory; electron-probe microanalysis and analysis by energy-dispersive spectrometry in a scanning electron microscope; transmission electron microscopy. We discuss the use of cathodoluminescence as an auxiliary technique, but do not recommend electron-backscattered diffraction for feldspar work. We review recent publications that provide examples of the need for great care and attention to pre-existing work in microtextural studies, and suggest several topics for future work

    Triton's global heat budget

    Get PDF
    Internal heat flow from radioactive decay in Triton's interior along with absorbed thermal energy from Neptune total 5 to 20 percent of the insolation absorbed by Triton, thus comprising a significant fraction of Triton's surface energy balance. These additional energy inputs can raise Triton's surface temperature between approx. 0.5 to 1.5 K above that possible with absorbed sunlight alone, resulting in a factor of approx. 1.5 to 2.5 increase in Triton's basal atmospheric pressure. If Triton's internal heatflow is concentrated in some areas, as is likely, local effects such as enhanced sublimation with subsequent modification of albedo could be quite large. Furthermore, indications of recent albedo change on Triton suggest that Triton's surface temperature and pressure may not now be in steady state, further suggesting that atmospheric pressure on Triton was as much as 10 times higher in the recent past

    IV. Fossil Fishes From The Miocene Ellensburg Formation, South Central Washington

    Full text link
    The Ellensburg Formation was named for sediments deposited in the Kittitas Valley along the Yakima River near Ellensburg, Washington (Russell, 1893, 1900). Similar beds are present to the south along the leeward front of the emerging central Cascade Mountains; including the Nile, Selah, Yakima, and Toppenish basins. Further south along the Columbia River, portions of the Dalles Group, Rhododendron Formation, and Sandy River Mudstone are likely temporal equivalents; the latter two of which are found on the windward side of the uplifting Cascade Range (Farooqui, et al., 1981; Evarts et al., 2009).Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146545/1/MP 204vol4.pdfDescription of MP 204vol4.pdf : Main Articl

    Suppression of the quantum-confined Stark effect in polar nitride heterostructures

    Get PDF
    Recently, we suggested an unconventional approach (the so-called Internal-Field-Guarded-Active-Region Design “IFGARD”) for the elimination of the quantum-confined Stark effect in polar semiconductor heterostructures. The IFGARD-based suppression of the Stark redshift on the order of electronvolt and spatial charge carrier separation is independent of the specific polar semiconductor material or the related growth procedures. In this work, we demonstrate by means of micro-photoluminescence techniques the successful tuning as well as the elimination of the quantum-confined Stark effect in strongly polar [000-1] wurtzite GaN/AlN nanodiscs as evidenced by a reduction of the exciton lifetimes by up to four orders of magnitude. Furthermore, the tapered geometry of the utilized nanowires (which embed the investigated IFGARD nanodiscs) facilitates the experimental differentiation between quantum confinement and Stark emission energy shifts. Due to the IFGARD, both effects become independently adaptable.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement

    Heteroclinic and Homoclinic Connections Between the Sun-Earth Triangular Points and Quasi-Satellite Orbits for Solar Observations

    Get PDF
    Investigation of new orbit geometries exhibits a very attractive behavior for a spacecraft to monitor space weather coming from the Sun. Several orbit transfer mechanisms are analyzed as potential alternatives to monitor solar activity such as a sub-solar orbit or quasi-satellite orbit and short and long heteroclinic and homoclinic connections between the triangular points L4 and L5 and the collinear point L3 of the CRTBP (circular restricted three-body problem) in the Sun-Earth system. These trajectories could serve as channels through where material can be transported from L5 to L3 by performing small maneuvers at the departure of the Trojan orbit. The size of these maneuvers at L5 is between 299 m/s and 730 m/s depending on the transfer time of the trajectory and does not need any deterministic maneuvers at L3. Our results suggest that material may also be transported from the Trojan orbits to quasi-satellite orbits or even displaced quasi-satellite orbits

    FiberGLAST: a scintillating fiber approach to the GLAST mission

    Get PDF
    FiberGLAST is a scintillating fiber gamma-ray detector designed for the GLAST mission. The system described below provides superior effective area and field of view for modest cost and risk. An overview of the FiberGLAST instrument is presented, as well as a more detailed description of the principle elements of the primary detector volume. The triggering and readout electronics are described, and Monte Carlo Simulations of the instrument performance are presented

    Peptide Sequence and Conformation Strongly Influence Tryptophan Fluorescence

    Get PDF
    AbstractThis article probes the denatured state ensemble of ribonuclease Sa (RNase Sa) using fluorescence. To interpret the results obtained with RNase Sa, it is essential that we gain a better understanding of the fluorescence properties of tryptophan (Trp) in peptides. We describe studies of N-acetyl-L-tryptophanamide (NATA), a tripeptide: AWA, and six pentapeptides: AAWAA, WVSGT, GYWHE, HEWTV, EAWQE, and DYWTG. The latter five peptides have the same sequence as those surrounding the Trp residues studied in RNase Sa. The fluorescence emission spectra, the fluorescence lifetimes, and the fluorescence quenching by acrylamide and iodide were measured in concentrated solutions of urea and guanidine hydrochloride. Excited-state electron transfer from the indole ring of Trp to the carbonyl groups of peptide bonds is thought to be the most important mechanism for intramolecular quenching of Trp fluorescence. We find the maximum fluorescence intensities vary from 49,000 for NATA with two carbonyls, to 24,400 for AWA with four carbonyls, to 28,500 for AAWAA with six carbonyls. This suggests that the four carbonyls of AWA are better able to quench Trp fluorescence than the six carbonyls of AAWAA, and this must reflect a difference in the conformations of the peptides. For the pentapeptides, EAWQE has a fluorescence intensity that is more than 50% greater than DYWTG, showing that the amino acid sequence influences the fluorescence intensity either directly through side-chain quenching and/or indirectly through an influence on the conformational ensemble of the peptides. Our results show that peptides are generally better models for the Trp residues in proteins than NATA. Finally, our results emphasize that we have much to learn about Trp fluorescence even in simple compounds

    Evaluation of Human Skin Reconstituted from Composite Grafts of Cultured Keratinocytes and Human Acellular Dermis Transplanted to Athymic Mice

    Get PDF
    This study evaluates the use of composite grafts of cultured human keratinocytes and de-epidermalized, acellular human dermis to close full-thickness wounds in athymic mice. Grafts were transplanted onto athymic mice and studied up to 8 wk. Graft take was excellent, with no instances of infection or graft loss. By 1 wk, the human keratinocytes had formed a stratified epidermis that was fused with mouse epithelium, and by 8 wk the grafts resembled human skin and could be freely moved over the mouse dorsum. Immunostaining for keratins 10 and 16 and for involucrin revealed an initial pattern of epithelial immaturity, which by 8 wk had normalized to that of mature unwounded epithelium. Mouse fibroblasts began to infiltrate the acellular dermis as early as 1 wk. By 8 wk fibroblasts had completely repopulated the dermis, and blood vessels were evident in the most superficial papillary projections, Dermal elements, such as rete ridges and elastin fibers, which were present in the starting dermis, persisted for the duration of the experiment. Grafts using keratinocytes from dark-skinned donors as opposed to light-skin donors had foci of pigmentation as early as 1 wk that progressed to homogenous pigmentation of the graft by 6 wk. These results indicate that melanocytes that persist in vitro are able to resume normal function in vivo. Our study demonstrates that composite grafts of cultured keratinocytes combined with acellular dermis are a useful approach for the closure of full-thickness wounds

    Development and testing of a fiber/multianode photomultiplier system for use on FiberGLAST

    Get PDF
    A scintillating fiber detector is currently being studied for the NASA Gamma-Ray Large Area Space Telescope (GLAST) mission. This detector utilizes modules composed of a thin converter sheet followed by an x, y plane of scintillating fibers to examine the shower of particles created by high energy gamma-rays interacting in the converter material. The detector is composed of a tracker with 90 such modular planes and a calorimeter with 36 planes. The two major component of this detector are the scintillating fibers and their associated photodetectors. Here we present current status of development and test result of both of these. The Hamamatsu R5900-00-M64 multianode photomultiplier tube (MAPMT) is the baseline readout device. A characterization of this device has been performed including noise, cross- talk, gain variation, vibration, and thermal/vacuum test. A prototype fiber/MAPMT system has been tested at the Center for Advanced Microstructures and Devices at Louisiana State University with a photon beam and preliminary results are presented

    Calibration of the GLAST Burst Monitor detectors

    Get PDF
    The GLAST Burst Monitor (GBM) will augment the capabilities of GLAST for the detection of cosmic gamma-ray bursts by extending the energy range (20 MeV to > 300 GeV) of the Large Area Telescope (LAT) towards lower energies by 2 BGO-detectors (150 keV to 30 MeV) and 12 NaI(Tl) detectors (10 keV to 1 MeV). The physical detector response of the GBM instrument for GRBs is determined with the help of Monte Carlo simulations, which are supported and verified by on-ground calibration measurements, performed extensively with the individual detectors at the MPE in 2005. All flight and spare detectors were irradiated with calibrated radioactive sources in the laboratory (from 14 keV to 4.43 MeV). The energy/channel-relations, the dependences of energy resolution and effective areas on the energy and the angular responses were measured. Due to the low number of emission lines of radioactive sources below 100 keV, calibration measurements in the energy range from 10 keV to 60 keV were performed with the X-ray radiometry working group of the Physikalisch-Technische Bundesanstalt (PTB) at the BESSY synchrotron radiation facility, Berlin.Comment: 2 pages, 1 figure; to appear in the Proc. of the First Int. GLAST Symp. (Stanford, Feb. 5-8, 2007), eds. S.Ritz, P.F.Michelson, and C.Meegan, AIP Conf. Pro
    corecore