82 research outputs found

    Excited state localisation cascades in inorganic semiconductor nanoparticles

    Get PDF
    Excited state relaxation in zinc sulfide (ZnS) nanoparticles is studied as a model for the fate of the excited state in inorganic nanoparticles in general. A series of time-dependent density functional theory optimisations on the S1 and T1 excited states predict the existence of not merely isolated minima, as found before, but rather a connected cascade of excited state minima ending up in a conical intersection between the excited state energy surface and the ground state. The localisation of the excited state in the different minima increases down the cascade, while the barriers separating these minima, studied here for the first time for nanoparticles, are predicted to be in some cases electronic (strongly avoided crossing) in origin. The cartoon picture of excited state relaxation in inorganic nanoparticles that involves relaxation to the bottom of only one approximately harmonic well followed by photoluminescence appears for the ZnS nanoparticles studied here to be at best rather simplistic. The localisation cascade is finally found to strongly affect the excited state properties of nanoparticles and predicted to lead to the formation of defected nanoparticles after de-excitation in selected cases

    Optical excitation of MgO nanoparticles:a computational perspective

    Get PDF
    The optical absorption spectra of magnesium oxide (MgO) nanoparticles, along with the atomic centres responsible, are studied using a combination of time-dependent density functional theory (TD-DFT) and coupled-cluster methods. We demonstrate that TD-DFT calculations on MgO nanoparticles require the use of range-separated exchangeā€“correlation (XC-) functionals or hybrid XC-functionals with a high percentage of Hartreeā€“Fock like exchange to circumvent problems related to the description of charge-transfer excitations. Furthermore, we show that the vertical excitations responsible for the experimentally studied range of the spectra of the MgO nanoparticles typically involve both 3-coordinated corner sites and 4-coordinated edge sites. We argue therefore that to label peaks in these absorption spectra exclusively as either corner or edge features does not provide insight into the full physical picture

    Coupled cluster calculations on TiO2 nanoclusters

    Get PDF
    The excitation energies of the four lowest-lying singlet excited states of the TiO2, Ti2O4, and Ti3O6 clusters are calculated by a variety of different Equation-of-Motion Coupled Cluster (EOM-CC) approaches in order to obtain benchmark values for the optical excitations of titanium dioxide clusters. More specifically we investigate what the effect is of the inclusion of triple excitations ā€œtriplesā€ in the (EOM-)CC scheme on the calculated excited states of the clusters. While for the monomer and dimer the inclusion of triples is found to only cause a rigid shift in the excitation energies, in the case of the trimer the crossing of the excited states is observed. Coupled cluster approaches where triples are treated perturbatively were found to offer no advantage over EOM-CCSD, whereas the active-space methods (EOM-CCSDt(II/I)) were demonstrated to yield results very close to full EOM-CCSDT, but at a much reduced computational cost

    Shining a Light on s-Triazine-Based Polymers

    Get PDF
    The strong interplay between the structure and optical properties of conjugated s-triazine-based framework (CTF) materials is explored in a combined experimental and computational study. The experimental absorption and fluorescence spectra of the CTF-1 material, a polymer obtained through the trimerization of 1,4-dicyanobenzene, are compared with the results of time-dependent density functional theory and approximate coupled cluster theory (CC2) calculations on cluster models of the polymer. To help explain the polymer data, we compare its optical properties with those measured and predicted for the 2,4,6-triphenyl-1,3,5-triazine model compound. Our analysis shows that CTFs, in line with experimental diffraction data, are likely to be layered materials based around flat hexagonal-like sheets and suggests that the long-wavelength part of the CTF-1 absorption spectrum displays a pronounced effect of stacking. Red-shifted peaks in the absorption spectrum appear that are absent for an isolated sheet. We also show that the experimentally observed strong fluorescence of CTF-1 and other CTF materials is further evidence of the presence of rings in the layers, as structures without rings are predicted to have extremely long excited state lifetimes and hence would display negligible fluorescence intensities. Finally, subtle differences between the experimental absorption spectra of CTF-1 samples prepared using different synthesis routes are shown to potentially arise from different relative arrangements of stacked layers

    Investigating the diastereoselective synthesis of a macrocycle under Curtinā€“Hammett control ā€ 

    Get PDF
    This work sheds new light on the stereoselective synthesis of chiral macrocycles containing twisted aromatic units, valuable Ļ€-conjugated materials for recognition, sensing, and optoelectronics. For the first time, we use the Curtinā€“Hammett principle to investigate a chiral macrocyclisation reaction, revealing the potential for supramolecular Ļ€ā€“Ļ€ interactions to direct the outcome of a dynamic kinetic resolution, favouring the opposite macrocyclic product to that expected under reversible, thermodynamically controlled conditions. Specifically, a dynamic, racemic perylene diimide dye (1 : 1 P : M) is strapped with an enantiopure (S)-1,1ā€²-bi-2-naphthol group (P-BINOL) to form two diastereomeric macrocyclic products, the homochiral macrocycle (PP) and the heterochiral species (PM). We find there is notable selectivity for the PM macrocycle (dr = 4 : 1), which is rationalised by kinetic templation from intramolecular aromatic non-covalent interactions between the P-BINOL Ļ€-donor and the M-PDI Ļ€-acceptor during the macrocyclisation reaction

    Mapping binary copolymer property space with neural networks

    Get PDF
    The extremely large number of unique polymer compositions that can be achieved through copolymerisation makes it an attractive strategy for tuning their optoelectronic properties. However, this same attribute also makes it challenging to explore the resulting property space and understand the range of properties that can be realised. In an effort to enable the rapid exploration of this space in the case of binary copolymers, we train a neural network using a tiered data generation strategy to accurately predict the optical and electronic properties of 350 000 binary copolymers that are, in principle, synthesizable from their dihalogen monomers via Yamamoto, or Suzuki-Miyaura and Stille coupling after one-step functionalisation. By extracting general features of this property space that would otherwise be obscured in smaller datasets, we identify simple models that effectively relate the properties of these copolymers to the homopolymers of their constituent monomers, and challenge common ideas behind copolymer design. We find that binary copolymerisation does not appear to allow access to regions of the optoelectronic property space that are not already sampled by the homopolymers, although it conceptually allows for more fine-grained property control. Using the large volume of data available, we test the hypothesis that copolymerisation of 'donor' and 'acceptor' monomers can result in copolymers with a lower optical gap than their related homopolymers. Overall, despite the prevalence of this concept in the literature, we observe that this phenomenon is relatively rare, and propose conditions that greatly enhance the likelihood of its experimental realisation. Finally, through a 'topographical' analysis of the co-polymer property space, we show how this large volume of data can be used to identify dominant monomers in specific regions of property space that may be amenable to a variety of applications, such as organic photovoltaics, light emitting diodes, and thermoelectrics

    Linear conjugated polymer photocatalysts with various linker units for photocatalytic hydrogen evolution from water

    Get PDF
    Polymer photocatalysts have shown potential for light-driven hydrogen evolution from water. Here we studied the relative importance of the linker type in two series of conjugated polymers based on dibenzo[b,d]thiophene sulfone and dimethyl-9H-fluorene. The alkenyl-linked polymers were found to be more active photocatalysts than their alkyl and alkyne-linked counterparts. The co-polymer of dibenzo[b,d]thiophene sulfone and 1,2-diphenylethene has a hydrogen evolution rate of 3334 Ī¼mol gāˆ’1 hāˆ’1 and an external quantum efficiency of 5.6% at 420 nm

    Reversible Photoreduction as a Trigger for Photoresponsive Gels

    Get PDF
    We present here a new type of photoresponsive, reversible low molecular weight gel. All previous examples rely on a photoisomerisation, ring-closing or dimerization. We show that photoreduction of a perylene bisimide gelator results in the formation of a stable radical anion. The formation of the radical anion results in a change in the packing of the perylene bisimides in the self-assembled aggregates, leading to a change in fibrous network and an increase in the rheological properties of the gels. An increase in the rheological properties is extremely rare for a photoresponsive gel; normally, irradiation results in a gel-to-sol transition, and the gel falling apart. As the radical anion decays, which takes several hours in air, the original gel properties are restored. This photoreduction can be cycled many times. Finally, we show that the mechanical properties are different between irradiated and nonirradiated sections in a patterned gel

    The potential scarcity, or not, of polymeric overall water splitting photocatalysts

    Get PDF
    We perform a high-throughput virtual screening of a set of 3240 conjugated alternating binary co-polymers and homo-polymers, in which we predict their ability to drive sacrificial hydrogen evolution and overall water splitting when illuminated with visible light. We use the outcome of this screening to analyse how common the ability to drive either reaction is for conjugated polymers loaded with suitable co-catalysts, and to suggest promising (co-)monomers for polymeric overall water splitting catalysts

    Controlling Visible Light-Driven Photoconductivity in Self-Assembled Perylene Bisimide Structures

    Get PDF
    Alanine-functionalized perylene bisimides (PBI-A) are promising photoconductive materials. PBI-A self-assembles at high concentrations (mM) into highly ordered wormlike structures that are suitable for charge transport. However, we previously reported that the photoconductive properties of dried films of PBI-A did not correlate with the electronic absorption spectra as activity was only observed under UV light. Using transient absorption spectroscopy, we now demonstrate that charge separation can occur within these PBI-A structures in water under visible light. The lack of charge separation in the films is shown by DFT calculations to be due to a large ion-pair energy in the dried samples which is due to both the low dielectric environment and the change in the site of hole-localization upon drying. However, visible light photoconductivity can be induced in dried PBI-A films through the addition of methanol vapor, a suitable electron donor. The extension of PBI-A film activity into the visible region demonstrates that this class of self-assembled PBI-A structures may be of use in a heterojunction system when coupled to a suitable electron donor
    • ā€¦
    corecore