10 research outputs found

    Synthesis and in vitro antifungal evaluation of 2-thioalkylaryl-benzimidazoles derivatives against Candida albicans

    Get PDF
    The aim of this study is to find potent biomolecules against infectious germs. Based on the reactivity of some key positions of the benzimidazole core, the first part of this work consisted of the synthesis of a series of substituted 2-thioalkylaryl-benzimidazoles 3a-d. Then, another series of N-alkyl-2-thioalkylarylbenzimidazoles 5a-d, 7a-c and 9b-c was also prepared from 2-thioalkylaryl-benzimidazoles by substitution on position-1 of benzimidazole core using the corresponding functionalized ethyl. The chemical structures of these compounds are determined by NMR (1H, 13C) and mass spectrometry. The second part concerned the in vitro antifungal activity evaluation of some of the synthesized compounds on Candida albicans. According to the results of evaluation, four compounds (3b, 3c, 3d and 9c) of the substituted 2-thioalkylaryl-benzimidazoles prove to be potent antifungal agent. Introduction of nitro group (NO2) increased significantly the antifungal activity so that their IMQ is ranging between 0.03 and 0.008 Ī¼g (or 333 to 1250 times more efficient than the ketoconazoleā€™s).Keywords: synthesis of 2-thioalkylaryl-benzimidazole, antifungal activity, candida albicans

    The Unusual Monomer Recognition of Guanine-Containing Mixed Sequence DNA by a Dithiophene Heterocyclic Diamidine

    Get PDF
    DB1255 is a symmetrical diamidinophenyl-dithiophene that exhibits cellular activity by binding to DNA and inhibiting binding of ERG, an ETS family transcription factor that is commonly overexpressed or translocated in leukemia and prostate cancer [Nhili, R., Peixoto, P., Depauw, S., Flajollet, S., Dezitter, X., Munde, M. M., Ismail, M. A., Kumar, A., Farahat, A. A., Stephens, C. E., Duterque-Coquillaud, M., Wilson, W. D., Boykin, D. W., and David-Cordonnier, M. H. (2013) Nucleic Acids Res. 41, 125āˆ’138]. Because transcription factor inhibition is complex but is an attractive area for anticancer and antiparasitic drug development, we have evaluated the DNA interactions of additional derivatives of DB1255 to gain an improved understanding of the biophysical chemistry of complex function and inhibition. DNase I footprinting, biosensor surface plasmon resonance, and circular dichroism experiments show that DB1255 has an unusual and strong monomer binding mode in minor groove sites that contain a single GC base pair flanked by AT base pairs, for example, 5ā€²-ATGAT-3ā€². Closely related derivatives, such as compounds with the thiophene replaced with furan or selenophane, bind very weakly to GC-containing sequences and do not have biological activity. DB1255 is selective for the ATGAT site; however, a similar sequence, 5ā€²-ATGAC-3ā€², binds DB1255 more weakly and does not produce a footprint. Molecular docking studies show that the two thiophene sulfur atoms form strong, bifurcated hydrogen bond-type interactions with the G-N-H sequence that extends into the minor groove while the amidines form hydrogen bonds to the flanking AT base pairs. The central dithiophene unit of DB1255 thus forms an excellent, but unexpected, single-GC base pair recognition module in a monomer minor groove complex

    Minor Groove Binding Compounds That Jump a GC Base Pair and Bind to Adjacent AT Base Pair Sites ā€ 

    Get PDF
    Most A/T specific heterocyclic diamidine derivatives need at least four A/T base pairs for tight binding to the DNA minor groove. Addition of a GC base pair to A/T sequences typically causes a large decrease in binding constant. The ability to target biologically important sequences of DNA could be significantly increased if compounds that could recognize A/T sites with an intervening GC base pair could be designed. The kinetoplast DNA sequence of parasitic microorganisms, for example, contains numerous three A/T binding sites that are separated by a single G. A series of compounds were prepared to target the AAAGTTT sequence as a model system for discovery of ā€œG-jumpersā€. The new synthetic compounds have two aromatic-amidine groups for A/T recognition, and these are connected through an oxy-methylene linker to cross the GC. CD experiments indicated a minor groove binding mode, as expected, for these compounds. Tmax, surface plasmon resonance, and isothermal titration calorimetry experiments revealed 1:1 binding to the AAAGTTT sequence with an affinity that depends on compound structure. Benzimidazole derivatives gave the strongest binding and had generally good solution properties. The binding affinities to the classical AATT sequence were similar to that for AAAGTTT for these extended compounds, but binding was weaker to the AAAGCTTT sequence with two intervening GC base pairs. Binding to both AAAGTTT and AATT was enthalpy driven for strong binding benzimidazole derivatives

    Induced topological changes in DNA complexes: influence of DNA sequences and small molecule structures

    Get PDF
    Heterocyclic diamidines are compounds with antiparasitic properties that target the minor groove of kinetoplast DNA. The mechanism of action of these compounds is unknown, but topological changes to DNA structures are likely to be involved. In this study, we have developed a polyacrylamide gel electrophoresis-based screening method to determine topological effects of heterocyclic diamidines on four minor groove target sequences: AAAAA, TTTAA, AAATT and ATATA. The AAAAA and AAATT sequences have the largest intrinsic bend, whereas the TTTAA and ATATA sequences are relatively straight. The changes caused by binding of the compounds are sequence dependent, but generally the topological effects on AAAAA and AAATT are similar as are the effects on TTTAA and ATATA. A total of 13 compounds with a variety of structural differences were evaluated for topological changes to DNA. All compounds decrease the mobility of the ATATA sequence that is consistent with decreased minor groove width and bending of the relatively straight DNA into the minor groove. Similar, but generally smaller, effects are seen with TTTAA. The intrinsically bent AAAAA and AAATT sequences, which have more narrow minor grooves, have smaller mobility changes on binding that are consistent with increased or decreased bending depending on compound structure
    corecore