86 research outputs found

    Hypoxia‐induced vascular endothelial growth factor expression causes vascular leakage in the brain

    Get PDF
    Formation of cerebral oedema caused by vascular leakage is a major problem in various injuries of the CNS, such as stroke, head injury and high‐altitude illness. A common feature of all these disorders is the fact that they are associated with tissue hypoxia. Hypoxia has therefore been suggested to be an important pathogenic factor for the induction of vascular leakage in the brain. Vascular endothelial growth factor (VEGF) is known as the major inducer of angiogenesis. Originally, however, it was described as a vascular permeability factor. As VEGF gene expression was shown to be upregulated by hypoxia, increased VEGF expression may link hypoxia and vascular leakage in the CNS in vivo. To delineate the role of VEGF in vascular leakage in the brain, we studied the effect of hypoxia on VEGF expression and vascular permeability in the brains of mice in vivo. Hypoxic exposure led to a significant increase in the levels of VEGF mRNA and protein in mouse brain that correlated with the severity of the hypoxic stimulus. Measurement of vascular permeability using the fluorescent marker sodium fluorescein revealed a two‐fold increase in fluorescence intensity in hypoxic brains, indicative of significant vascular leakage. Inhibition of VEGF activity by a neutralizing antibody completely blocked the hypoxia‐induced increase in vascular permeability. In conclusion, our data show that VEGF is responsible for hypoxia‐induced augmentation in vascular leakage following tissue hypoxia. Our findings might provide the basis for new therapeutic concepts for the treatment of cerebral oedem

    VEGF overexpression induces post-ischaemic neuroprotection, but facilitates haemodynamic steal phenomena

    Get PDF
    Therapeutic angiogenesis with vascular endothelial growth factor (VEGF) is a clinically promising strategy in ischaemic disease. The pathophysiological consequences of enhanced vessel formation, however, are poorly understood. We established mice overexpressing human VEGF165 under a neuron-specific promoter, which exhibited an increased density of brain vessels under physiological conditions and enhanced angiogenesis after brain ischaemia. Following transient intraluminal middle cerebral artery (MCA) occlusions, VEGF overexpression significantly alleviated neurological deficits and infarct volume, and reduced disseminated neuronal injury and caspase-3 activity, confirming earlier observations that VEGF has neuroprotective properties. Brain swelling was not influenced in VEGF-overexpressing animals, while sodium fluorescein extravasation was moderately increased, suggesting that VEGF induces a mild blood-brain barrier leakage. To elucidate whether enhanced angiogenesis improves regional cerebral blood flow in the ischaemic brain, [14C]iodoantipyrine autoradiography was performed. Autoradiographies revealed that VEGF induces haemodynamic steal phenomena with reduced blood flow in ischaemic areas and increased flow values only outside the MCA territory. Our data demonstrate that VEGF protects neurons from ischaemic cell death by a direct action rather than by promoting angiogenesis, and suggest that strategies aiming at increasing vascular density in the whole brain, e.g. by VEGF overexpression, may worsen rather than improve cerebral haemodynamics after strok

    Hadronic high-energy gamma-ray emission from the microquasar LS I +61303+61 303

    Full text link
    We present a hadronic model for gamma-ray production in the microquasar LS I +61303+61 303. The system is formed by a neutron star that accretes matter from the dense and slow equatorial wind of the Be primary star. We calculate the gamma-ray emission originated in pppp interactions between relativistic protons in the jet and cold protons from the wind. After taking into account opacity effects on the gamma-rays introduced by the different photons fields, we present high-energy spectral predictions that can be tested with the new generation Cherenkov telescope MAGIC.Comment: 18 pages,5 figures. Accepted for publication in Astrophysical Journa

    Dysregulation of Hypoxia-Inducible Factor by Presenilin/ Gamma-Secretase Loss-of-Function Mutations

    Full text link
    Presenilin (PSEN) 1 and 2 are the catalytic components of the Gamma-secretase complex, which cleaves a variety of proteins, including the amyloid precursor protein (APP). Proteolysis of APP leads to the formation of the APP intracellular domain (AICD) and amyloid Beta that is crucially involved in the pathogenesis of Alzheimer’s disease. Prolyl-4-hydroxylase-domain (PHD) proteins regulate the hypoxia inducible factors (HIFs), the master regulators of the hypoxic response.Wepreviously identified the FK506 binding protein 38 (FKBP38)as a negative regulator of PHD2. Genetic ablation of PSEN1/2 has been shown to increase FKBP38 protein levels. Therefore, we investigated the role of PSEN1/2 in the oxygen sensing pathway using a variety of genetically modified cell and mouse lines. Increased FKBP38 protein levels and decreased PHD2 protein levels were found in PSEN1/2-deficient mouse embryonic fibroblasts and in the cortex of forebrain-specific PSEN1/2 conditional double knock-out mice. Hypoxic HIF-1alpha protein accumulation and transcriptional activity were decreased, despite reduced PHD2 protein levels. Proteolytic gamma-secretase function ofPSEN1/2wasneeded for proper HIF activation. Intriguingly, PSEN1/2 mutations identified in Alzheimer patients differentially affected the hypoxicresponse, involving the generation of AICD. Together,our results suggest a direct role for PSEN in the regulation of the oxygen sensing pathway via the APP/AICD cleavage cascade

    EphB2-dependent signaling promotes neuronal excitotoxicity and inflammation in the acute phase of ischemic stroke

    Get PDF
    Local cerebral hypoperfusion causes ischemic stroke while driving multiple cell-specific responses including inflammation, glutamate-induced neurotoxicity mediated via NMDAR, edema formation and angiogenesis. Despite the relevance of these pathophysiological mechanisms for disease progression and outcome, molecular determinants controlling the onset of these processes are only partially understood. In this context, our study intended to investigate the functional role of EphB2, a receptor tyrosine kinase that is crucial for synapse function and binds to membrane-associated ephrin-B ligands. Cerebral ischemia was induced in Ephb2−/− mice by transient middle cerebral artery occlusion followed by different times (6, 12, 24 and 48 h) of reperfusion. Histological, neurofunctional and transcriptome analyses indicated an increase in EphB2 phosphorylation under these conditions and attenuated progression of stroke in Ephb2−/− mice. Moreover, while infiltration of microglia/macrophages and astrocytes into the peri-infarct region was not altered, expression of the pro-inflammatory mediators MCP-1 and IL-6 was decreased in these mice. In vitro analyses indicated that binding of EphB2 to astrocytic ephrin-B ligands stimulates NF-κB-mediated cytokine expression via the MAPK pathway. Further magnetic resonance imaging of the Ephb2−/− ischemic brain revealed a lower level of cytotoxic edema formation within 6 h upon onset of reperfusion. On the mechanistic level, absence of neuronal EphB2 decreased the mitochondrial Ca2+ load upon specific activation of NMDAR but not during synaptic activity. Furthermore, neuron-specific loss of ephrin-B2 reduced the extent of cerebral tissue damage in the acute phase of ischemic stroke. Collectively, EphB2 may promote the immediate response to an ischemia-reperfusion event in the central nervous system by (i) pro-inflammatory activation of astrocytes via ephrin-B-dependent signaling and (ii) amplification of NMDA-evoked neuronal excitotoxicity

    A ring-like accretion structure in M87 connecting its black hole and jet

    Get PDF
    The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation^{1,2}. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole^3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of 8.4_{-1.1}^{+0.5} Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects in addition to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow.Comment: 50 pages, 18 figures, 3 tables, author's version of the paper published in Natur

    Anastrozole versus tamoxifen for the prevention of locoregional and contralateral breast cancer in postmenopausal women with locally excised ductal carcinoma in situ (IBIS-II DCIS): a double-blind, randomised controlled trial

    Get PDF
    Background Third-generation aromatase inhibitors are more effective than tamoxifen for preventing recurrence in postmenopausal women with hormone-receptor-positive invasive breast cancer. However, it is not known whether anastrozole is more effective than tamoxifen for women with hormone-receptor-positive ductal carcinoma in situ (DCIS). Here, we compare the efficacy of anastrozole with that of tamoxifen in postmenopausal women with hormone-receptor-positive DCIS. Methods In a double-blind, multicentre, randomised placebo-controlled trial, we recruited women who had been diagnosed with locally excised, hormone-receptor-positive DCIS. Eligible women were randomly assigned in a 1:1 ratio by central computer allocation to receive 1 mg oral anastrozole or 20 mg oral tamoxifen every day for 5 years. Randomisation was stratified by major centre or hub and was done in blocks (six, eight, or ten). All trial personnel, participants, and clinicians were masked to treatment allocation and only the trial statistician had access to treatment allocation. The primary endpoint was all recurrence, including recurrent DCIS and new contralateral tumours. All analyses were done on a modified intention-to-treat basis (in all women who were randomised and did not revoke consent for their data to be included) and proportional hazard models were used to compute hazard ratios and corresponding confidence intervals. This trial is registered at the ISRCTN registry, number ISRCTN37546358. Results Between March 3, 2003, and Feb 8, 2012, we enrolled 2980 postmenopausal women from 236 centres in 14 countries and randomly assigned them to receive anastrozole (1449 analysed) or tamoxifen (1489 analysed). Median follow-up was 7·2 years (IQR 5·6–8·9), and 144 breast cancer recurrences were recorded. We noted no statistically significant difference in overall recurrence (67 recurrences for anastrozole vs 77 for tamoxifen; HR 0·89 [95% CI 0·64–1·23]). The non-inferiority of anastrozole was established (upper 95% CI <1·25), but its superiority to tamoxifen was not (p=0·49). A total of 69 deaths were recorded (33 for anastrozole vs 36 for tamoxifen; HR 0·93 [95% CI 0·58–1·50], p=0·78), and no specific cause was more common in one group than the other. The number of women reporting any adverse event was similar between anastrozole (1323 women, 91%) and tamoxifen (1379 women, 93%); the side-effect profiles of the two drugs differed, with more fractures, musculoskeletal events, hypercholesterolaemia, and strokes with anastrozole and more muscle spasm, gynaecological cancers and symptoms, vasomotor symptoms, and deep vein thromboses with tamoxifen. Conclusions No clear efficacy differences were seen between the two treatments. Anastrozole offers another treatment option for postmenopausal women with hormone-receptor-positive DCIS, which may be be more appropriate for some women with contraindications for tamoxifen. Longer follow-up will be necessary to fully evaluate treatment differences

    A ring-like accretion structure in M87 connecting its black hole and jet

    Get PDF
    The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation1,2. Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole3. Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of [Formula: see text] Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects, in addition\ua0to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow

    Anastrozole versus tamoxifen for the prevention of locoregional and contralateral breast cancer in postmenopausal women with locally excised ductal carcinoma in situ (IBIS-II DCIS): A double-blind, randomised controlled trial

    Get PDF
    corecore