9 research outputs found
Genetic elimination of field-cage populations of Mediterranean fruit flies
The Mediterranean fruit fly (medfly, Ceratitis capitata Wiedemann) is a pest of over 300 fruits, vegetables and nuts. The sterile insect technique (SIT) is a control measure used to reduce the reproductive potential of populations through the mass release of sterilized male insects that mate with wild females. However, SIT flies can display poor field performance, due to the effects of mass-rearing and of the irradiation process used for sterilization. The development of female-lethal RIDL (release of insects carrying a dominant lethal) strains for medfly can overcome many of the problems of SIT associated with irradiation. Here, we present life-history characterizations for two medfly RIDL strains, OX3864A and OX3647Q. Our results show (i) full functionality of RIDL, (ii) equivalency of RIDL and wild-type strains for life-history characteristics, and (iii) a high level of sexual competitiveness against both wild-type and wild-derived males. We also present the first proof-of-principle experiment on the use of RIDL to eliminate medfly populations. Weekly releases of OX3864A males into stable populations of wild-type medfly caused a successive decline in numbers, leading to eradication. The results show that genetic control can provide an effective alternative to SIT for the control of pest insects
Genetic improvements to the sterile insect technique for agricultural pests
The sterile insect technique (SIT) relies on area-wide mass-releases of sterile male pest insects, which mate with their wild counterparts and thereby cause a drop in the wild population. In order to improve SIT efficacy or to avoid potential negative effects of such releases, strains of insects have been developed by genetic means. Methods of strain improvement fall into two categories: those generated by classical genetics and those through transgenesis. Here, we describe development and successes of agriculturally important pest insect strains developed through the former, and how transgenic technology is offering a broad spectrum of potential improvements to SIT in a wider range of insects. Also discussed are future prospects and non-technical challenges faced by transgenic technology. The need for environment-friendly pest control methods in agriculture has never been more pressing. SIT and related technologies offer a solution with proven effectiveness
Evaluation of Rearing Parameters of a Self-Limiting Strain of the Mediterranean Fruit Fly, Ceratitis capitata (Diptera: Tephritidae)
The Mediterranean fruit fly (medfly), Ceratitis capitata, is a significant pest of stone and pome fruit that causes considerable economic losses worldwide. Current control is primarily based on insecticides, which are often mixed with protein baits. Oxitec has developed a self-limiting medfly strain (OX3864A) that demonstrates conditional female-specific mortality in the early life stages. Sustained release of OX3864A males offers medfly control, which should lead to substantial economic benefits in area-wide programmes. In the current study, the optimum quantities of mature and immature stages of the strain are assessed under semi-mass production. Moreover, the rearing and quality control limitations related to the production of this strain are provided. The data here demonstrate that the egg hatch rate can reach >85% under optimum rearing conditions. However, this depends on the number of pupae loaded in a cage and their ages. The suggested pupal density ranges between 14,000 and 18,000 pupae per cage to provide optimum egg production. In parallel, the embryo densities of 1.25–1.5 mL/kg larval Tet+ diet are recommended for strain propagation, while embryo densities of 1.25–2.0 mL/kg larval Tet− diet are suggested for male-only pupal production
Control of the olive fruit fly using genetics-enhanced sterile insect technique
Abstract Background The olive fruit fly, Bactrocera oleae, is the major arthropod pest of commercial olive production, causing extensive damage to olive crops worldwide. Current control techniques rely on spraying of chemical insecticides. The sterile insect technique (SIT) presents an alternative, environmentally friendly and species-specific method of population control. Although SIT has been very successful against other tephritid pests, previous SIT trials on olive fly have produced disappointing results. Key problems included altered diurnal mating rhythms of the laboratory-reared insects, resulting in asynchronous mating activity between the wild and released sterile populations, and low competitiveness of the radiation-sterilised mass-reared flies. Consequently, the production of competitive, male-only release cohorts is considered an essential prerequisite for successful olive fly SIT. Results We developed a set of conditional female-lethal strains of olive fly (named Release of Insects carrying a Dominant Lethal; RIDL®), providing highly penetrant female-specific lethality, dominant fluorescent marking, and genetic sterility. We found that males of the lead strain, OX3097D-Bol, 1) are strongly sexually competitive with wild olive flies, 2) display synchronous mating activity with wild females, and 3) induce appropriate refractoriness to wild female re-mating. Furthermore, we showed, through a large proof-of-principle experiment, that weekly releases of OX3097D-Bol males into stable populations of caged wild-type olive fly could cause rapid population collapse and eventual eradication. Conclusions The observed mating characteristics strongly suggest that an approach based on the release of OX3097D-Bol males will overcome the key difficulties encountered in previous olive fly SIT attempts. Although field confirmation is required, the proof-of-principle suppression and elimination of caged wild-type olive fly populations through OX3097D-Bol male releases provides evidence for the female-specific RIDL approach as a viable method of olive fly control. We conclude that the promising characteristics of OX3097D-Bol may finally enable effective SIT-based control of the olive fly.</p
Control of the olive fruit fly using genetics-enhanced sterile insect technique
Background: The olive fruit fly, Bactrocera oleae, is the major arthropod pest of commercial olive production, causing extensive damage to olive crops worldwide. Current control techniques rely on spraying of chemical insecticides. The sterile insect technique (SIT) presents an alternative, environmentally friendly and species-specific method of population control. Although SIT has been very successful against other tephritid pests, previous SIT trials on olive fly have produced disappointing results. Key problems included altered diurnal mating rhythms of the laboratory-reared insects, resulting in asynchronous mating activity between the wild and released sterile populations, and low competitiveness of the radiation-sterilised mass-reared flies. Consequently, the production of competitive, male-only release cohorts is considered an essential prerequisite for successful olive fly SIT. Results: We developed a set of conditional female-lethal strains of olive fly (named Release of Insects carrying a Dominant Lethal; RIDL®), providing highly penetrant female-specific lethality, dominant fluorescent marking, and genetic sterility. We found that males of the lead strain, OX3097D-Bol, 1) are strongly sexually competitive with wild olive flies, 2) display synchronous mating activity with wild females, and 3) induce appropriate refractoriness to wild female re-mating. Furthermore, we showed, through a large proof-of-principle experiment, that weekly releases of OX3097D-Bol males into stable populations of caged wild-type olive fly could cause rapid population collapse and eventual eradication. Conclusions: The observed mating characteristics strongly suggest that an approach based on the release of OX3097D-Bol males will overcome the key difficulties encountered in previous olive fly SIT attempts. Although field confirmation is required, the proof-of-principle suppression and elimination of caged wild-type olive fly populations through OX3097D-Bol male releases provides evidence for the female-specific RIDL approach as a viable method of olive fly control. We conclude that the promising characteristics of OX3097D-Bol may finally enable effective SIT-based control of the olive fly.8 page(s
Data from: Genetic elimination of field-cage populations of Mediterranean fruit flies
The Mediterranean fruit fly (medfly, Ceratitis capitata Wiedemann) is a pest of over 300 fruits, vegetables and nuts. The sterile insect technique (SIT) is a control measure used to reduce the reproductive potential of populations through the mass release of sterilized male insects that mate with wild females. However, SIT flies can display poor field performance, due to the effects of mass-rearing and of the irradiation process used for sterilization. The development of female-lethal RIDL (release of insects carrying a dominant lethal) strains for medfly can overcome many of the problems of SIT associated with irradiation. Here, we present life-history characterizations for two medfly RIDL strains, OX3864A and OX3647Q. Our results show (i) full functionality of RIDL, (ii) equivalency of RIDL and wild-type strains for life-history characteristics, and (iii) a high level of sexual competitiveness against both wild-type and wild-derived males. We also present the first proof-of-principle experiment on the use of RIDL to eliminate medfly populations. Weekly releases of OX3864A males into stable populations of wild-type medfly caused a successive decline in numbers, leading to eradication. The results show that genetic control can provide an effective alternative to SIT for the control of pest insects