185 research outputs found

    Relationship of phasic and static strength and endurance

    Get PDF

    Optimization of extracranial stereotactic radiation therapy of small lung lesions using accurate dose calculation algorithms

    Get PDF
    BACKGROUND: The aim of this study was to compare and to validate different dose calculation algorithms for the use in radiation therapy of small lung lesions and to optimize the treatment planning using accurate dose calculation algorithms. METHODS: A 9-field conformal treatment plan was generated on an inhomogeneous phantom with lung mimics and a soft tissue equivalent insert, mimicking a lung tumor. The dose distribution was calculated with the Pencil Beam and Collapsed Cone algorithms implemented in Masterplan (Nucletron) and the Monte Carlo system XVMC and validated using Gafchromic EBT films. Differences in dose distribution were evaluated. The plans were then optimized by adding segments to the outer shell of the target in order to increase the dose near the interface to the lung. RESULTS: The Pencil Beam algorithm overestimated the dose by up to 15% compared to the measurements. Collapsed Cone and Monte Carlo predicted the dose more accurately with a maximum difference of -8% and -3% respectively compared to the film. Plan optimization by adding small segments to the peripheral parts of the target, creating a 2-step fluence modulation, allowed to increase target coverage and homogeneity as compared to the uncorrected 9 field plan. CONCLUSION: The use of forward 2-step fluence modulation in radiotherapy of small lung lesions allows the improvement of tumor coverage and dose homogeneity as compared to non-modulated treatment plans and may thus help to increase the local tumor control probability. While the Collapsed Cone algorithm is closer to measurements than the Pencil Beam algorithm, both algorithms are limited at tissue/lung interfaces, leaving Monte-Carlo the most accurate algorithm for dose prediction

    A mouse model of high trait anxiety shows reduced heart rate variability that can be reversed by anxiolytic drug treatment

    Get PDF
    Increasing evidence suggests that specific physiological measures may serve as biomarkers for successful treatment to alleviate symptoms of pathological anxiety. Studies of autonomic function investigating parameters such as heart rate (HR), HR variability and blood pressure (BP) indicated that HR variability is consistently reduced in anxious patients, whereas HR and BP data show inconsistent results. Therefore, HR and HR variability were measured under various emotionally challenging conditions in a mouse model of high innate anxiety (high anxiety behaviour; HAB) vs. control normal anxiety-like behaviour (NAB) mice. Baseline HR, HR variability and activity did not differ between mouse lines. However, after cued Pavlovian fear conditioning, both elevated tachycardia and increased fear responses were observed in HAB mice compared to NAB mice upon re-exposure to the conditioning stimulus serving as the emotional stressor. When retention of conditioned fear was tested in the home cage, HAB mice again displayed higher fear responses than NAB mice, while the HR responses were similar. Conversely, in both experimental settings HAB mice consistently exhibited reduced HR variability. Repeated administration of the anxiolytic NK1 receptor antagonist L-822429 lowered the conditioned fear response and shifted HR dynamics in HAB mice to a more regular pattern, similar to that in NAB mice. Additional receiver-operating characteristic (ROC) analysis demonstrated the high specificity and sensitivity of HR variability to distinguish between normal and high anxiety trait. These findings indicate that assessment of autonomic response in addition to freezing might be a useful indicator of the efficacy of novel anxiolytic treatments

    Allowance for Shareholder Equity - Implementing a Neutral Corporate Income Tax in the European Union

    Full text link
    This paper proposes the introduction of a consumption-based corporate income tax in the European Union. Our proposal would guarantee neutrality regarding investment decisions and at the same time increase cost-efficiency. The proposal is based on the S-base cash flow tax, where transactions within the corporate sector are not at all taxable and only transactions be-tween shareholders and corporations are subject to tax. In contrast to existing S-base cash flow tax systems, tax deductibility of investments is deferred. Rather, the acquisition costs and capital endowments are compounded at the capital market rate and are set off against fu-ture capital gains. Dividends and withdrawals are fully taxable at the shareholder level. Be-cause of the similarities to the Allowance for Corporate Equity (ACE) tax our proposal is called Allowance for Shareholder Equity (ASE tax). The ASE tax exhibits the same neutrality properties as the traditional cash flow tax. More-over, the compounded inter-temporal credit method ensures that it is neutral with respect to the decision between domestic and foreign investment. To increase acceptance of the ASE tax, current taxpayers' documentation requirements will be reduced rather than extended. Our proposal is shaped in a way that it could be realized in a single EU country or in all member states of the EU

    Conditional Immortalization of Human B Cells by CD40 Ligation

    Get PDF
    It is generally assumed that human differentiated cells have a limited life-span and proliferation capacity in vivo, and that genetic modifications are a prerequisite for their immortalization in vitro. Here we readdress this issue, studying the long-term proliferation potential of human B cells. It was shown earlier that human B cells from peripheral blood of healthy donors can be efficiently induced to proliferate for up to ten weeks in vitro by stimulating their receptor CD40 in the presence of interleukin-4. When we applied the same stimuli under conditions of modified cell number and culture size, we were surprised to find that our treatment induced B cells to proliferate throughout an observation period of presently up to 1650 days, representing more than 370 population doublings, which suggested that these B cells were immortalized in vitro. Long-term CD40-stimulated B cell cultures could be established from most healthy adult human donors. These B cells had a constant phenotype, were free from Epstein-Barr virus, and remained dependent on CD40 ligation. They had constitutive telomerase activity and stabilized telomere length. Moreover, they were susceptible to activation by Toll-like receptor 9 ligands, and could be used to expand antigen-specific cytotoxic T cells in vitro. Our results indicate that human somatic cells can evade senescence and be conditionally immortalized by external stimulation only, without a requirement for genetic manipulation or oncoviral infection. Conditionally immortalized human B cells are a new tool for immunotherapy and studies of B cell oncogenesis, activation, and function
    corecore