3 research outputs found

    Yukawa Unification, b --> s gamma and Bino-Stau Coannihilation

    Full text link
    The minimal supersymmetric standard model with universal boundary conditions and "asymptotic" Yukawa unification is considered. The full one-loop effective potential for radiative electroweak symmetry breaking as well as the one-loop corrections to the charged Higgs boson, b-quark and tau lepton masses are included. The CP-even Higgs boson masses are corrected to two-loops. The relic abundance of the lightest supersymmetric particle (bino) is calculated by including its coannihilations with the next-to-lightest supersymmetric particle (lightest stau) consistently with Yukawa unification. The branching ratio of b --> s gamma is evaluated by incorporating all the applicable next-to-leading order QCD corrections. The bino-stau coannihilations reduce the bino relic abundance below the upper bound from cold dark matter considerations in a sizable fraction of the parameter space allowed by b --> s gamma for mu>0. Thus, the mu>0 case, which also predicts an acceptable b-quark mass, is perfectly compatible with data.Comment: 16 pages including 3 figures, Revtex, major revisions are mad

    Cold Dark Matter and b --> s gamma in the Horava-Witten Theory

    Full text link
    The minimal supersymmetric standard model with complete, partial or no Yukawa unification and radiative electroweak breaking with boundary conditions from the Horava-Witten theory is considered. The parameters are restricted by constraining the lightest sparticle relic abundance by cold dark matter considerations and requiring the b-quark mass after supersymmetric corrections and the branching ratio of b --> s gamma to be compatible with data. Complete Yukawa unification can be excluded. Also, t-b Yukawa unification is strongly disfavored since it requires almost degenerate lightest and next-to-lightest sparticle masses. However, the b-tau or no Yukawa unification cases avoid this degeneracy. The latter with mu<0 is the most natural case. The lightest sparticle mass, in this case, can be as low as about 77 GeV.Comment: 16 pages including 4 figures, Revtex, version to appear in Phys. Lett.

    Cold Dark Matter detection in SUSY models at large tan(beta)

    Get PDF
    We study the direct detection rate for SUSY cold dark matter (CDM) predicted by the minimal supersymmetric standard model with universal boundary conditions and large values for tan(beta). The relic abundance of the lightest supersymmetric particle (LSP), assumed to be approximately a bino, is obtained by including its coannihilations with the next-to-lightest supersymmetric particle (NLSP), which is the lightest s-tau. The cosmological constraint on this quantity severely limits the allowed SUSY parameter space, especially in the case the CP-even Higgs has mass of around 114 GeV. We find that for large tan(beta) it is possible to find a subsection of the allowed parameter space, which yields detectable rates in the currently planned experiments.Comment: Changes in text and figure
    corecore