31 research outputs found

    DNMT3A mutations mediate the epigenetic reactivation of the leukemogenic factor MEIS1 in acute myeloid leukemia

    Get PDF
    Close to half of de novo acute myeloid leukemia (AML) cases do not exhibit any cytogenetic aberrations. In this regard, distortion of the DNA methylation setting and the presence of mutations in epigenetic modifier genes can also be molecular drivers of the disease. In recent years, somatic missense mutations of the DNA methyltransferase 3A (DNMT3A) have been reported in ~20% of AML patients; however, no obvious critical downstream gene has been identified that could explain the role of DNMT3A in the natural history of AML. Herein, using whole-genome bisulfite sequencing and DNA methylation microarrays, we have identified a key gene undergoing promoter hypomethylation-associated transcriptional reactivation in DNMT3 mutant patients, the leukemogenic HOX cofactor MEIS1. Our results indicate that, in the absence of mixed lineage leukemia fusions, an alternative pathway for engaging an oncogenic MEIS1-dependent transcriptional program can be mediated by DNMT3A mutations

    Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumorigenesis

    Get PDF
    The introduction of new therapies against particular genetic mutations in non-small-cell lung cancer is a promising avenue for improving patient survival, but the target population is small. There is a need to discover new potential actionable genetic lesions, to which end, non-conventional cancer pathways, such as RNA editing, are worth exploring. Herein we show that the adenosine-toinosine editing enzyme ADAR1 undergoes gene amplification in non-small cancer cell lines and primary tumors in association with higher levels of the corresponding mRNA and protein. From a growth and invasion standpoint, the depletion of ADAR1 expression in amplified cells reduces their tumorigenic potential in cell culture and mouse models, whereas its overexpression has the opposite effects. From a functional perspective, ADAR1 overexpression enhances the editing frequencies of target transcripts such as NEIL1 and miR-381. In the clinical setting, patients with early-stage lung cancer, but harboring ADAR1 gene amplification, have poor outcomes. Overall, our results indicate a role for ADAR1 as a lung cancer oncogene undergoing gene amplification-associated activation that affects downstream RNA editing patterns and patient prognosis.This work was supported by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 268626—EPINORC project, the Grant agreement number HEALTH-F2-2010-258677—CURELUNG project, the Spanish Ministry of Economy and Competitiveness (MINECO Projects no. SAF2011-22803, PI13-01339 and SAF2014-55000- R), the Institute of Health Carlos III (ISCIII)—PI10/02992, Ministerio de Educación, Ciencia e Innovación Grant SAF2010-14935, the Cellex Foundation, the National Cancer Center Research and Development Fund (NCC Biobank: 23 A-1) and the Health and Science Departments of the Catalan Government (Generalitat de Catalunya) AGAUR—project no. 2009SGR1315 and 2014SGR633.Peer Reviewe

    Epigenetic inactivation of the splicing RNA-binding protein CELF2 in human breast cancer

    Get PDF
    Altres ajuts: This work was co-finaced by the European Development Regional Fund, "A way to achieve Europe" ERDF; the Cellex Foundation; and "la Caixa" Banking Foundation (LCF/PR/PR15/ 11100003).Human tumors show altered patterns of protein isoforms that can be related to the dysregulation of messenger RNA alternative splicing also observed in transformed cells. Although somatic mutations in core spliceosome components and their associated factors have been described in some cases, almost nothing is known about the contribution of distorted epigenetic patterns to aberrant splicing. Herein, we show that the splicing RNA-binding protein CELF2 is targeted by promoter hypermethylation-associated transcriptional silencing in human cancer. Focusing on the context of breast cancer, we also demonstrate that CELF2 restoration has growth-inhibitory effects and that its epigenetic loss induces an aberrant downstream pattern of alternative splicing, affecting key genes in breast cancer biology such as the autophagy factor ULK1 and the apoptotic protein CARD10. Furthermore, the presence of CELF2 hypermethylation in the clinical setting is associated with shorter overall survival of the breast cancer patients carrying this epigenetic lesion

    Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program

    Get PDF
    Altres ajuts: This work was supported by the Obra Social "La Caixa" (to M. Esteller).Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease

    UGT1A and TYMS genetic variants predict toxicity and response of colorectal cancer patients treated with first-line irinotecan and fluorouracil combination therapy

    Get PDF
    BACKGROUND: The impact of thymidylate synthase (TYMS) and UDP-glucoronosyltransferase 1A (UGT1A) germline polymorphisms on the outcome of colorectal cancer (CRC) patients treated with irinotecan plus 5-fluorouracil (irinotecan/5FU) is still controversial. Our objective was to define a genetic-based algorithm to select patients to be treated with irinotecan/5FU. METHODS: Genotyping of TYMS (5'TRP and 3'UTR), UGT1A1*28, UGT1A9*22 and UGT1A7*3 was performed in 149 metastatic CRC patients treated with irinotecan/5FU as first-line chemotherapy enrolled in a randomised phase 3 study. Their association with response, toxicity and survival was investigated by univariate and multivariate statistical analysis. RESULTS: TYMS 3TRP/3TRP genotype was the only independent predictor of tumour response (OR=5.87, 95% confidence interval (CI)=1.68-20.45; P=0.005). UGT1A1*28/*28 was predictive for haematologic toxicity (OR=6.27, 95% CI=1.09-36.12; P=0.04), specifically for neutropenia alone (OR=6.40, 95% CI=1.11-37.03; P=0.038) or together with diarrhoea (OR=18.87, 95% CI=2.14-166.67; P=0.008). UGT1A9*1/*1 was associated with non-haematologic toxicity (OR=2.70, 95% CI=1.07-6.82; P=0.035). Haplotype VII (all non-favourable alleles) was associated with non-haematologic toxicity (OR=2.11, 95% CI-1.12-3.98; P-0.02). CONCLUSION: TYMS and UGT1A polymorphisms influence on tumour response and toxicities derived from irinotecan/5FU treatment in CRC patients. A genetic-based algorithm to optimise treatment individualisation is proposed. British Journal of Cancer (2010) 103, 581-589. doi:10.1038/sj.bjc.6605776 www.bjcancer.com Published online 13 July 2010 (C) 2010 Cancer Research U

    Epigenetic inactivation of the splicing RNA-binding protein CELF2 in human breast cancer.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadHuman tumors show altered patterns of protein isoforms that can be related to the dysregulation of messenger RNA alternative splicing also observed in transformed cells. Although somatic mutations in core spliceosome components and their associated factors have been described in some cases, almost nothing is known about the contribution of distorted epigenetic patterns to aberrant splicing. Herein, we show that the splicing RNA-binding protein CELF2 is targeted by promoter hypermethylation-associated transcriptional silencing in human cancer. Focusing on the context of breast cancer, we also demonstrate that CELF2 restoration has growth-inhibitory effects and that its epigenetic loss induces an aberrant downstream pattern of alternative splicing, affecting key genes in breast cancer biology such as the autophagy factor ULK1 and the apoptotic protein CARD10. Furthermore, the presence of CELF2 hypermethylation in the clinical setting is associated with shorter overall survival of the breast cancer patients carrying this epigenetic lesion.Health Department PERIS-project of the Catalan Government (Generalitat de Catalunya) AGAUR of the Catalan Government (Generalitat de Catalunya) Instituto de Salud Carlos III Ministerio de Economia y Competitividad (MINECO) European Union (EU) Foundation CELLEX La Caixa Foundatio
    corecore