13 research outputs found

    Caracterización del perfil neuropsicológico de la SCA36 y adaptación al español de una herramienta de cribado del síndrome cognitivo-afectivo cerebeloso

    Get PDF
    La SCA36 es una ataxia espinocerebelosa de inicio tardío que afecta a familias da Costa da Morte (Galicia). Los objetivos de esta tesis fueron caracterizar el perfil neuropsicológico de pacientes con SCA36 y validar una escala para el cribado de síntomas cognitivo-afectivos en trastornos cerebelosos. El deterioro en la fluidez verbal fonológica, la depresión y la ansiedad ya están presentes en la etapa preatáxica de SCA36. La cognición social, específicamente el procesamiento emocional de rostros humanos con valencia negativa, también parece alterarse incluso antes de la etapa atáxica. Estos síntomas se agravan en la etapa atáxica, cuando también se produce un deterioro de la fluidez semántica y la función ejecutiva. Nuestros resultados son consistentes con la presencia del síndrome cognitivo-afectivo cerebeloso (CCAS) en SCA36. La versión en español de la escala del CCAS cumple con los criterios de viabilidad y fiabilidad, sin embargo, su validez diagnóstica necesita estudios adicionales

    How executive functions are related to intelligence in Williams syndrome

    Get PDF
    Williams syndrome is characterized by impairments in executive functions (EFs). However, it remains unknown how distinct types of EFs relate to intelligence in this syndrome. The present study analyzed performance on working memory, inhibiting and shifting, and its links to IQ in a sample of 17 individuals with WS, and compared them with a group of 17 typically developing individuals matched on chronological age and gender. In conclusion, our results suggest that working memory, inhibiting, and shifting relate differently to intelligence in WS as well as in typical development, with working memory being the EF most closely related to intelligence in both groups. Notably, the magnitude of the associations between the three EFs and IQ was substantially higher in the WS group than in the TD group, bringing further confirmation to the notion that frontal lobe impairments may produce a general compromise of several EFsPortuguese Foundation for Science and Technology (FCT) (grantPTDC/PSI-PCL/115316/ 2009) and by Fundación Alicia Koplowitz(5thCall for Grants for Research in Childhood and Adolescent Psychiatry Early Neurodegenerative Diseases

    Exploring the biological role of postzygotic and germinal de novo mutations in ASD

    Get PDF
    De novo mutations (DNMs), including germinal and postzygotic mutations (PZMs), are a strong source of causality for Autism Spectrum Disorder (ASD). However, the biological processes involved behind them remain unexplored. Our aim was to detect DNMs (germinal and PZMs) in a Spanish ASD cohort (360 trios) and to explore their role across different biological hierarchies (gene, biological pathway, cell and brain areas) using bioinformatic approaches. For the majority of the analysis, a combined ASD cohort (N = 2171 trios) was created using previously published data by the Autism Sequencing Consortium (ASC). New plausible candidate genes for ASD such as FMR1 and NFIA were found. In addition, genes harboring PZMs were significantly enriched for miR-137 targets in comparison with germinal DNMs that were enriched in GO terms related to synaptic transmission. The expression pattern of genes with PZMs was restricted to early mid-fetal cortex. In contrast, the analysis of genes with germinal DNMs revealed a spatio-temporal window from early to mid-fetal development stages, with expression in the amygdala, cerebellum, cortex and striatum. These results provide evidence of the pathogenic role of PZMs and suggest the existence of distinct mechanisms between PZMs and germinal DNMs that are influencing ASD riskAA-G was supported by Fundación María José Jove. CR-F was supported by a contract from the FEDER. Instituto de Salud Carlos III/PI1900809/Cofinanciado FEDER supported this studyS

    Neuroblastoma RAS viral oncogene homolog (N-RAS) deficiency aggravates liver injury and fibrosis.

    Get PDF
    Progressive hepatic damage and fibrosis are major features of chronic liver diseases of different etiology, yet the underlying molecular mechanisms remain to be fully defined. N-RAS, a member of the RAS family of small guanine nucleotide-binding proteins also encompassing the highly homologous H-RAS and K-RAS isoforms, was previously reported to modulate cell death and renal fibrosis; however, its role in liver damage and fibrogenesis remains unknown. Here, we approached this question by using N-RAS deficient (N-RAS-/-) mice and two experimental models of liver injury and fibrosis, namely carbon tetrachloride (CCl4) intoxication and bile duct ligation (BDL). In wild-type (N-RAS+/+) mice both hepatotoxic procedures augmented N-RAS expression in the liver. Compared to N-RAS+/+ counterparts, N-RAS-/- mice subjected to either CCl4 or BDL showed exacerbated liver injury and fibrosis, which was associated with enhanced hepatic stellate cell (HSC) activation and leukocyte infiltration in the damaged liver. At the molecular level, after CCl4 or BDL, N-RAS-/- livers exhibited augmented expression of necroptotic death markers along with JNK1/2 hyperactivation. In line with this, N-RAS ablation in a human hepatocytic cell line resulted in enhanced activation of JNK and necroptosis mediators in response to cell death stimuli. Of note, loss of hepatic N-RAS expression was characteristic of chronic liver disease patients with fibrosis. Collectively, our study unveils a novel role for N-RAS as a negative controller of the progression of liver injury and fibrogenesis, by critically downregulating signaling pathways leading to hepatocyte necroptosis. Furthermore, it suggests that N-RAS may be of potential clinical value as prognostic biomarker of progressive fibrotic liver damage, or as a novel therapeutic target for the treatment of chronic liver disease

    A Shortcut from Metabolic-Associated Fatty Liver Disease (MAFLD) to Hepatocellular Carcinoma (HCC): c-MYC a Promising Target for Preventative Strategies and Individualized Therapy

    Get PDF
    Background: Metabolic-associated fatty liver disease (MAFLD) has risen as one of the leading etiologies for hepatocellular carcinoma (HCC). Oncogenes have been suggested to be responsible for the high risk of MAFLD-related HCC. We analyzed the impact of the proto-oncogene c-MYC in the development of human and murine MAFLD and MAFLD-associated HCC. Methods: alb-myctg mice were studied at baseline conditions and after administration of Western diet (WD) in comparison to WT littermates. c-MYC expression was analyzed in biopsies of patients with MAFLD and MAFLD-associated HCC by immunohistochemistry. Results: Mild obesity, spontaneous hyperlipidaemia, glucose intolerance and insulin resistance were characteristic of 36-week-old alb-myctg mice. Middle-aged alb-myctg exhibited liver steatosis and increased triglyceride content. Liver injury and inflammation were associated with elevated ALT, an upregulation of ER-stress response and increased ROS production, collagen deposition and compensatory proliferation. At 52 weeks, 20% of transgenic mice developed HCC. WD feeding exacerbated metabolic abnormalities, steatohepatitis, fibrogenesis and tumor prevalence. Therapeutic use of metformin partly attenuated the spontaneous MAFLD phenotype of alb-myctg mice. Importantly, upregulation and nuclear localization of c-MYC were characteristic of patients with MAFLD and MAFLD-related HCC. Conclusions: A novel function of c-MYC in MAFLD progression was identified opening new avenues for preventative strategies

    A Shortcut from Metabolic-Associated Fatty Liver Disease (MAFLD) to Hepatocellular Carcinoma (HCC): c-MYC a Promising Target for Preventative Strategies and Individualized Therapy

    Get PDF
    Background: Metabolic-associated fatty liver disease (MAFLD) has risen as one of the leading etiologies for hepatocellular carcinoma (HCC). Oncogenes have been suggested to be responsible for the high risk of MAFLD-related HCC. We analyzed the impact of the proto-oncogene c-MYC in the development of human and murine MAFLD and MAFLD-associated HCC. Methods: alb-myctg mice were studied at baseline conditions and after administration of Western diet (WD) in comparison to WT littermates. c-MYC expression was analyzed in biopsies of patients with MAFLD and MAFLD-associated HCC by immunohistochemistry. Results: Mild obesity, spontaneous hyperlipidaemia, glucose intolerance and insulin resistance were characteristic of 36-week-old alb-myctg mice. Middle-aged alb-myctg exhibited liver steatosis and increased triglyceride content. Liver injury and inflammation were associated with elevated ALT, an upregulation of ER-stress response and increased ROS production, collagen deposition and compensatory proliferation. At 52 weeks, 20% of transgenic mice developed HCC. WD feeding exacerbated metabolic abnormalities, steatohepatitis, fibrogenesis and tumor prevalence. Therapeutic use of metformin partly attenuated the spontaneous MAFLD phenotype of alb-myctg mice. Importantly, upregulation and nuclear localization of c-MYC were characteristic of patients with MAFLD and MAFLD-related HCC. Conclusions: A novel function of c-MYC in MAFLD progression was identified opening new avenues for preventative strategies

    Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children

    Full text link
    We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-alpha 2 in 10 patients: IFN-alpha 2 only in three, IFN-alpha 2 plus IFN-omega in five, and IFN-alpha 2, IFN-omega plus IFN-beta in two; IFN-omega only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-alpha 2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-omega in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-alpha 2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-. only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-omega and/or IFN-alpha 2

    Executive functioning: A mediator between sensory processing and behaviour in autism spectrum disorder

    No full text
    Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction, executive functioning, sensory-perceptual abilities and behaviour, such as anxious/depressed states, attention problems, aggression, or somatic complains. However, the dynamic relationship between these dimensions remains to be addressed. Therefore, we explored the link between executive functions, sensory processing and behaviour in 79 children and adolescents with ASD. Results showed significant associations between all dimensions-executive functions, sensory processing and behaviour. Furthermore, using structural equation modelling methods, we observed a mediation effect of executive functioning, specifically the domain pertaining to emotion regulation and control, and in the relationship between sensory processing abnormalities and behavioural problems. We discuss the importance of emotion regulation as a mediator between sensory processing and behavioural impairments and its impact in social competence in ASD.Foremost, we express our gratitude to all the children, adolescents and families who enrolled in this study. The article was adapted from Vânia Campos's master dissertation at the School of Psychology, University of Minho. We acknowledge Xunta de Galicia-GAIN for the Principia research grant. This work was supported by Fundación María José Jove. This work was partially supported by The Psychology for Positive Development Research Center (PSI/04375), Universidade Lusíada—Norte, Porto, supported by the Portuguese Foundation for Science and Technology through national funds (UID/PSI/04375/2019). This study was conducted at the Psychology Research Centre (PSI/01662), School of Psychology, University of Minho, supported by the Foundation for Science and Technology (FCT) through the Portuguese State Budget (Ref.: UIDB/PSI/01662/2020)

    Touch processing and social behavior in ASD

    No full text
    Abnormal patterns of touch processing have been linked to core symptoms in ASD. This study examined the relation between tactile processing patterns and social problems in 44 children and adolescents with ASD, aged 6-14 (M = 8.39 ± 2.35). Multiple linear regression indicated significant associations between touch processing and social problems. No such relationships were found for social problems and autism severity. Within touch processing, patterns of hyper-responsiveness and hypo-responsiveness best predicted social problems, whereas sensory-seeking did not. These results support that atypical touch processing in individuals with ASD might be contributing to the social problems they present. Moreover, it the need to explore more in depth the contribution of sensory features to the ASD phenotype.The study was supported by Fundacion Maria Jose Jove. H. Miguel is supported by an individual doctoral grant from Portugal Science Foundation SFRH/BD/86694/2012R. Martinez-Regueiro is supported by a public fellowship from ISCIII/FI14-00510/cofunded by FEDER. C. Gutierrez Lopez-Doriga is supported by a Grant of Young Employment Promotion Ref. PEJ-2014-P-01190 from Ministry of Economic Affairs

    Neuroblastoma RAS viral oncogene homolog (N-RAS) deficiency aggravates liver injury and fibrosis

    No full text
    Progressive hepatic damage and fibrosis are major features of chronic liver diseases of different etiology, yet the underlying molecular mechanisms remain to be fully defined. N-RAS, a member of the RAS family of small guanine nucleotide-binding proteins also encompassing the highly homologous H-RAS and K-RAS isoforms, was previously reported to modulate cell death and renal fibrosis; however, its role in liver damage and fibrogenesis remains unknown. Here, we approached this question by using N-RAS deficient (N-RAS-/-) mice and two experimental models of liver injury and fibrosis, namely carbon tetrachloride (CCl4) intoxication and bile duct ligation (BDL). In wild-type (N-RAS+/+) mice both hepatotoxic procedures augmented N-RAS expression in the liver. Compared to N-RAS+/+ counterparts, N-RAS-/- mice subjected to either CCl4 or BDL showed exacerbated liver injury and fibrosis, which was associated with enhanced hepatic stellate cell (HSC) activation and leukocyte infiltration in the damaged liver. At the molecular level, after CCl4 or BDL, N-RAS-/- livers exhibited augmented expression of necroptotic death markers along with JNK1/2 hyperactivation. In line with this, N-RAS ablation in a human hepatocytic cell line resulted in enhanced activation of JNK and necroptosis mediators in response to cell death stimuli. Of note, loss of hepatic N-RAS expression was characteristic of chronic liver disease patients with fibrosis. Collectively, our study unveils a novel role for N-RAS as a negative controller of the progression of liver injury and fibrogenesis, by critically downregulating signaling pathways leading to hepatocyte necroptosis. Furthermore, it suggests that N-RAS may be of potential clinical value as prognostic biomarker of progressive fibrotic liver damage, or as a novel therapeutic target for the treatment of chronic liver disease.Ministerio de Ciencia e InnovaciónUnión EuropeaComunidad de MadridDepto. de Inmunología, Oftalmología y ORLFac. de MedicinaTRUEpu
    corecore