202 research outputs found

    Síntesis de nuevos tamices moleculares con diámetro de poro variable y aplicaciones catalíticas

    Full text link
    [EN] Zeolites and related zeotypes are microporous materials formed by interconnected TO4 tetrahedra (T= Si, Al, P..), creating pores and cavities of molecular dimensions. The ability of controlling the chemical composition and pore topology of zeolites allows their use in different industrial applications, such as separation/gas adsorption, ion exchange and catalysis. This thesis focuses on the synthesis of different microporous crystalline materials (zeolites, zeotypes) with the appropriate framework topologies and chemical compositions, for their application as catalysts in different industriallyrelevant chemical processes. The first two parts of the present thesis deal with the synthesis of small pore zeolite materials containing large cavities in their structure, with controlled physicochemical properties for their use in particular industrial applications. To achieve this purpose, it has been first proposed the combined use of metal complexes with specific organic structure directing agents (OSDAs). This methodology would allow the "one-pot" preparation of small pore zeolite materials containing selective metallic active sites, which may show adequate catalytic properties for the selective catalytic reduction (SCR) of NOx. On the other hand, it has been proposed the use of bulky and rigid aromatic molecules as OSDAs, to favor the crystallization of small pore zeotypes with large cavities. These aromatic molecules would be able to form bulky soluble self-assembled dimers in the synthesis gel through pi-pi interactions, allowing the crystallization of small pore zeolites with controlled acidic properties for their application in catalysis. The last part of the thesis describes the synthesis of zeolites presenting extra-large pores. These materials with high pore accessibility would allow their use in catalytic processes involving bulky molecules, reducing the diffusion pathways of reactants and products. In order to synthesize this type of microporous materials, it has been proposed the use of bulky aromatic proton sponges as OSDAs for the first time. This synthesis methodology has allowed the synthesis of the ITQ-51 zeotype.[ES] Las zeolitas o zeotipos, son materiales microporosos formados por tetraedros TO4 (T= Si, Al, P...), conectados entre sí por átomos de oxígeno compartidos, formando un sistema de poros y cavidades de dimensiones moleculares. Las aplicaciones más importantes de los materiales zeolíticos dependen del tamaño de poro y de la uniformidad de éstos, así como de su composición química. En función de estos factores, las zeolitas se pueden emplear en diversas aplicaciones tales como separación/adsorción de gases, intercambio iónico y, fundamentalmente, catálisis. La presente tesis doctoral se centra en la síntesis de distintos materiales microporosos cristalinos (zeolitas, zeotipos) con topologías de red y composiciones químicas adecuadas, para su posterior aplicación como catalizadores en procesos químicos de interés industrial y medioambiental. La primera y segunda parte de la tesis doctoral se ha centrado en la síntesis de materiales zeolíticos de poro pequeño con grandes cavidades en su estructura, y con unas propiedades físico-químicas adecuadas para su uso en determinadas aplicaciones industriales. Por un lado, se ha empleado la combinación de complejos metálicos junto con agentes directores de estructura orgánicos (ADEOs) específicos, permitiendo la preparación directa en una sola etapa de materiales zeolíticos de poro pequeño con centros activos metálicos en su interior, con excelentes propiedades como catalizadores para la reducción catalítica selectiva de NOx. Por otro lado, se han empleado cationes aromáticos voluminosos y rígidos para dirigir la cristalización de zeotipos de poro pequeño con grandes cavidades, mediante la formación de dímeros solubles auto-ensamblados a través de interacciones pi-pi, permitiendo el control de las propiedades ácidas de los zeotipos sintetizados para su aplicación en catálisis. La última parte de la tesis doctoral se ha centrado en la síntesis de materiales zeolíticos de tamaño de poro extra-grande. Este tipo de materiales son muy importantes porque permiten la reactividad de moléculas voluminosas, disminuyendo los problemas de difusión de reactivos y productos. Con el objetivo de sintetizar este tipo de materiales microporosos, se han empleado por primera vez esponjas de protones voluminosas como ADEOs, obteniéndose el zeotipo ITQ-51.[CA] Les zeolites o zeotipus, són materials microporosos formats per tetraedres TO4 (T= Si, Al, P...) connectats entre sí per àtoms d'oxigen, formant un sistema de porus i cavitats de dimensions moleculars. Les aplicacions més importants dels materials zeolítics depenen tan del tamany dels porus com de la seua composició química. En funció d'estos factors, les zeolites es poden emprar en diverses aplicacions de gran interès industrial, com separació/adsorció de gasos, intercanvi iònic i, fonamentalment, catàlisi. La present tesi doctoral es centra en la síntesi de diferents materials microporosos cristal·lins (zeolites, zeotipus), amb topologies de xarxa i composicions químiques adequades per a la seua aplicació com a catalitzadors en processos químics d'interès industrial i mig ambiental. La primera i segona part de la tesi doctoral s'ha centrat en la síntesi de materials zeolítics de porus menuts amb grans cavitats en la seua estructura, i amb unes propietats fisico-químiques adequades per a la seua aplicació en determinades aplicacions catalítiques. Per a aconseguir este propòsit, s'ha empleat per un costat la combinació de complexos metàl·lics junt amb agents directors d'estructura orgànics (ADEOs) específics, el que permet la preparació directa en una sola etapa de materials zeolítics de porus menut amb centres metàl·lics adequats per a la seua aplicació com catalitzadors en la reacció de reducció catalítica selectiva (RCS) de NOx. Per un altre costat, s'han empleat cations aromàtics voluminosos i rígids per a dirigir la cristal·lització de zeotipus de porus menut amb grans cavitats, per mitjà de la formació de dímers auto-acoplats a través d'interaccions pi-pi. Este procediment permet el control de les propietats àcides dels zeotipus sintetitzats per a la seua aplicació en processos catalítics. L'última part de la tesi doctoral s'ha centrat en la síntesi de materials zeolítics de porus extra-gran. Este tipus de materials són interesants perquè permeten la reactivitat de molècules voluminoses, disminuint els problemes de difusió dels reactius i productes. Amb l'objectiu de sintetitzar este tipus de materials microporosos, s'han empleat per primera vegada esponges de protons voluminoses com ADEOs, permetent la síntesi del material ITQ-51.Martínez Franco, R. (2016). Síntesis de nuevos tamices moleculares con diámetro de poro variable y aplicaciones catalíticas [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/61450Premios Extraordinarios de tesis doctorale

    Estudio de la topología de zeolitas en procesos de isomerización y desproporcionación de la fracción BTX

    Full text link
    Se han estudiado zeolitas con diferente tamaño de poro (medio, grande y multiporo) y se han valorado sus capacidades catalíticas en procesos reactivos de la fracción BTX, tales como la isomerización/desproporcionación de meta-xileno y desproporcionación de tolueno y etilbenceno.Martínez Franco, R. (2011). Estudio de la topología de zeolitas en procesos de isomerización y desproporcionación de la fracción BTX. http://hdl.handle.net/10251/15715Archivo delegad

    Síntesis de la zeolita ITQ-51, procedimiento de obtención y uso

    Get PDF
    La presente invención se refiere a un material cristalino que se ha denominado ITQ-51 y que tiene una composición molar en su estado calcinado y anhidro que viene dado por la ecuación: donde: - M es un elemento, o mezcla de elementos, diferentes a Si, Al y P. - El valor de x está comprendido entre 0 y 1.5, preferentemente entre 0 y 0.8. - El valor de y está comprendido entre 0.3 y 1.6, preferentemente entre 0.6 y 1.3. - El valor de z está comprendido entre 0 y 1.5, preferentemente entre 0 y 0.8.Peer reviewedConsejo Superior de Investigaciones Científicas, Universidad Politécnica de ValénciaB1 Patente sin examen previ

    Direct synthesis of the aluminosilicate form of the small pore CDO zeolite with novel OSDAs and the expanded polymorphs

    Full text link
    [EN] A general procedure to synthesize the Al-containing layered CDO precursor (PreCDO) is presented, allowing its preparation under broad Si/Al molar ratios by using novel pyrrole-derived organic molecules as organic structure directing agents (OSDAs). The direct calcination of the PreCDO materials results in crystalline Al-containing small-pore CDO zeolites with controlled Al species in tetrahedral coordination. In contrast, mild acid treatments on the PreCDO materials allow achieving medium-pore interlayer expanded CDO zeolites (IEZ-CDO). These expanded zeolites show high crystallinity, high porosity and controlled Si/Al molar ratios. Finally, preliminary catalytic results indicate that the Al-containing CDO and IEZ-CDO samples show good activity and selectivity for the selective catalytic reduction (SCR) of NOx, and methanol-to-olefins (MTO) processes, respectively. (C) 2017 Elsevier Inc. All rights reserved.This work has been supported by the Spanish Government-MINECO through "Severo Ochoa" (SEV 2012-0267) and MAT2015-71261-R programs, and by the Fundacion Ramon Areces through a research project in "Life and Materials Sciences" program. The authors thank Isabel Millet for technical support.Martínez Franco, R.; Paris, C.; Martínez-Triguero, J.; Moliner Marin, M.; Corma Canós, A. (2017). Direct synthesis of the aluminosilicate form of the small pore CDO zeolite with novel OSDAs and the expanded polymorphs. Microporous and Mesoporous Materials. 246:147-157. https://doi.org/10.1016/j.micromeso.2017.03.014S14715724

    Improving the catalytic performance of SAPO-18 for the methanol-to-olefins (MTO) reaction by controlling the Si distribution and crystal size

    Full text link
    [EN] The physico-chemical properties of the small pore SAPO-18 zeotype have been controlled by properly selecting the organic molecules acting as organic structure directing agents (OSDAs). The two organic molecules selected to attempt the synthesis of the SAPO-18 materials were N,N-diisopropylethylamine (DIPEA) and N,N-dimethyl-3,5-dimethylpiperidinium (DMDMP). On the one hand, DIPEA allows small crystal sizes (0.1-0.3 mu m) to be attained with limited silicon distributions when the silicon content in the synthesis gel is high (Si/TO2 similar to 0.8). On the other hand, the use of DMDMP directs the formation of larger crystallites (0.9-1.0 mu m) with excellent silicon distributions, even when the silicon content in the synthesis media is high (Si/TO2 similar to 0.8). It is worth noting that this is the first description of the use of DMDMP as OSDA for the synthesis of the SAPO-18 material, revealing not only the excellent directing role of this OSDA in stabilizing the large cavities present in the SAPO-18 structure, but also its role in selectively placing the silicon atoms in isolated framework positions. The synthesized SAPO-18 materials have been characterized by different techniques, such as powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), N-2 adsorption, solid state NMR, and ammonia temperature programmed desorption (NH3-TPD). Finally, their catalytic activity has been evaluated for the methanol-to-olefin (MTO) process at different reaction temperatures (350 and 400 degrees C), revealing that the SAPO-18 catalysts with optimized silicon distributions and crystal sizes show excellent catalytic properties for the MTO reaction. These optimized SAPO-18 materials present improved catalyst lifetimes compared to standard SAPO-34 and SSZ-39 catalysts, even when tested at low reaction temperatures (i.e. 350 degrees C).Financial support by the Spanish Government-MINECO through “Severo Ochoa” (SEV 2012-0267), MAT2015-71261-R, and CTQ2015-68951-C3-1-R; by the European Union through ERC-AdG-2014-671093 (SynCatMatch); and by the Generalitat Valenciana through the Prometeo program (PROMETEOII/2013/011) is acknowledged.Martínez Franco, R.; Li, Z.; Martínez Triguero, LJ.; Moliner Marin, M.; Corma Canós, A. (2016). Improving the catalytic performance of SAPO-18 for the methanol-to-olefins (MTO) reaction by controlling the Si distribution and crystal size. Catalysis Science and Technology. 6(8):2796-2806. https://doi.org/10.1039/C5CY02298CS2796280668Chen, D., Moljord, K., & Holmen, A. (2012). A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts. Microporous and Mesoporous Materials, 164, 239-250. doi:10.1016/j.micromeso.2012.06.046Tian, P., Wei, Y., Ye, M., & Liu, Z. (2015). Methanol to Olefins (MTO): From Fundamentals to Commercialization. ACS Catalysis, 5(3), 1922-1938. doi:10.1021/acscatal.5b00007Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095Lok, B. M., Messina, C. A., Patton, R. L., Gajek, R. T., Cannan, T. R., & Flanigen, E. M. (1984). Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 106(20), 6092-6093. doi:10.1021/ja00332a063Chen, J. Q., Bozzano, A., Glover, B., Fuglerud, T., & Kvisle, S. (2005). Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catalysis Today, 106(1-4), 103-107. doi:10.1016/j.cattod.2005.07.178Stöcker, M. (1999). Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous and Mesoporous Materials, 29(1-2), 3-48. doi:10.1016/s1387-1811(98)00319-9M. Stöcker , Zeolites and Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, 2010, pp. 687–711Hereijgers, B. P. C., Bleken, F., Nilsen, M. H., Svelle, S., Lillerud, K.-P., Bjørgen, M., … Olsbye, U. (2009). Product shape selectivity dominates the Methanol-to-Olefins (MTO) reaction over H-SAPO-34 catalysts. Journal of Catalysis, 264(1), 77-87. doi:10.1016/j.jcat.2009.03.009Song, W., Haw, J. F., Nicholas, J. B., & Heneghan, C. S. (2000). Methylbenzenes Are the Organic Reaction Centers for Methanol-to-Olefin Catalysis on HSAPO-34. Journal of the American Chemical Society, 122(43), 10726-10727. doi:10.1021/ja002195gWilson, S., & Barger, P. (1999). The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Microporous and Mesoporous Materials, 29(1-2), 117-126. doi:10.1016/s1387-1811(98)00325-4Dai, W., Wang, X., Wu, G., Guan, N., Hunger, M., & Li, L. (2011). Methanol-to-Olefin Conversion on Silicoaluminophosphate Catalysts: Effect of Brønsted Acid Sites and Framework Structures. ACS Catalysis, 1(4), 292-299. doi:10.1021/cs200016uDeimund, M. A., Schmidt, J. E., & Davis, M. E. (2015). Effect of Pore and Cage Size on the Formation of Aromatic Intermediates During the Methanol-to-Olefins Reaction. Topics in Catalysis, 58(7-9), 416-423. doi:10.1007/s11244-015-0384-yWendelbo, R., Akporiaye, D., Andersen, A., Dahl, I. M., & Mostad, H. B. (1996). Synthesis, characterization and catalytic testing of SAPO-18, MgAPO-18, and ZnAPO-18 in the MTO reaction. Applied Catalysis A: General, 142(2), L197-L207. doi:10.1016/0926-860x(96)00118-4Gayubo, A. G., Aguayo, A. T., Alonso, A., & Bilbao, J. (2007). Kinetic Modeling of the Methanol-to-Olefins Process on a Silicoaluminophosphate (SAPO-18) Catalyst by Considering Deactivation and the Formation of Individual Olefins. Industrial & Engineering Chemistry Research, 46(7), 1981-1989. doi:10.1021/ie061278oChen, J., Li, J., Wei, Y., Yuan, C., Li, B., Xu, S., … Liu, Z. (2014). Spatial confinement effects of cage-type SAPO molecular sieves on product distribution and coke formation in methanol-to-olefin reaction. Catalysis Communications, 46, 36-40. doi:10.1016/j.catcom.2013.11.016Álvaro-Muñoz, T., Márquez-Álvarez, C., & Sastre, E. (2015). Mesopore-Modified SAPO-18 with Potential Use as Catalyst for the MTO Reaction. Topics in Catalysis, 59(2-4), 278-291. doi:10.1007/s11244-015-0447-0Chen, J., Wright, P. A., Thomas, J. M., Natarajan, S., Marchese, L., Bradley, S. M., … Gai-Boyes, P. L. (1994). SAPO-18 Catalysts and Their Broensted Acid Sites. The Journal of Physical Chemistry, 98(40), 10216-10224. doi:10.1021/j100091a042Bhawe, Y., Moliner-Marin, M., Lunn, J. D., Liu, Y., Malek, A., & Davis, M. (2012). Effect of Cage Size on the Selective Conversion of Methanol to Light Olefins. ACS Catalysis, 2(12), 2490-2495. doi:10.1021/cs300558xDusselier, M., Deimund, M. A., Schmidt, J. E., & Davis, M. E. (2015). Methanol-to-Olefins Catalysis with Hydrothermally Treated Zeolite SSZ-39. ACS Catalysis, 5(10), 6078-6085. doi:10.1021/acscatal.5b01577Martín, N., Li, Z., Martínez-Triguero, J., Yu, J., Moliner, M., & Corma, A. (2016). Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process. Chemical Communications, 52(36), 6072-6075. doi:10.1039/c5cc09719cChen, J., Thomas, J. M., Wright, P. A., & Townsend, R. P. (1994). Silicoaluminophosphate number eighteen (SAPO-18): a new microporous solid acid catalyst. Catalysis Letters, 28(2-4), 241-248. doi:10.1007/bf00806053Hunger, M., Seiler, M., & Buchholz, A. (2001). Catalysis Letters, 74(1/2), 61-68. doi:10.1023/a:1016687014695Fan, D., Tian, P., Xu, S., Xia, Q., Su, X., Zhang, L., … Liu, Z. (2012). A novel solvothermal approach to synthesize SAPO molecular sieves using organic amines as the solvent and template. Journal of Materials Chemistry, 22(14), 6568. doi:10.1039/c2jm15281aAbdollahi, S., Ghavipour, M., Nazari, M., Behbahani, R. M., & Moradi, G. R. (2015). Effects of static and stirring aging on physiochemical properties of SAPO-18 and its performance in MTO process. Journal of Natural Gas Science and Engineering, 22, 245-251. doi:10.1016/j.jngse.2014.11.036Yuen, L.-T., Zones, S. I., Harris, T. V., Gallegos, E. J., & Auroux, A. (1994). Product selectivity in methanol to hydrocarbon conversion for isostructural compositions of AFI and CHA molecular sieves. Microporous Materials, 2(2), 105-117. doi:10.1016/0927-6513(93)e0039-jBleken, F., Bjørgen, M., Palumbo, L., Bordiga, S., Svelle, S., Lillerud, K.-P., & Olsbye, U. (2009). The Effect of Acid Strength on the Conversion of Methanol to Olefins Over Acidic Microporous Catalysts with the CHA Topology. Topics in Catalysis, 52(3), 218-228. doi:10.1007/s11244-008-9158-0Wu, L., Degirmenci, V., Magusin, P. C. M. M., Lousberg, N. J. H. G. M., & Hensen, E. J. M. (2013). Mesoporous SSZ-13 zeolite prepared by a dual-template method with improved performance in the methanol-to-olefins reaction. Journal of Catalysis, 298, 27-40. doi:10.1016/j.jcat.2012.10.029Martínez-Franco, R., Moliner, M., & Corma, A. (2014). Direct synthesis design of Cu-SAPO-18, a very efficient catalyst for the SCR of NOx. Journal of Catalysis, 319, 36-43. doi:10.1016/j.jcat.2014.08.005Wagner, P., Nakagawa, Y., Lee, G. S., Davis, M. E., Elomari, S., Medrud, R. C., & Zones, S. I. (2000). Guest/Host Relationships in the Synthesis of the Novel Cage-Based Zeolites SSZ-35, SSZ-36, and SSZ-39. Journal of the American Chemical Society, 122(2), 263-273. doi:10.1021/ja990722uYu, T., Wang, J., Shen, M., & Li, W. (2013). NH3-SCR over Cu/SAPO-34 catalysts with various acid contents and low Cu loading. Catalysis Science & Technology, 3(12), 3234. doi:10.1039/c3cy00453hKatada, N., Nouno, K., Lee, J. K., Shin, J., Hong, S. B., & Niwa, M. (2011). Acidic Properties of Cage-Based, Small-Pore Zeolites with Different Framework Topologies and Their Silicoaluminophosphate Analogues. The Journal of Physical Chemistry C, 115(45), 22505-22513. doi:10.1021/jp207894nSmith, R. L., Svelle, S., del Campo, P., Fuglerud, T., Arstad, B., Lind, A., … Anderson, M. W. (2015). CHA/AEI intergrowth materials as catalysts for the Methanol-to-Olefins process. Applied Catalysis A: General, 505, 1-7. doi:10.1016/j.apcata.2015.06.027Martín, N., Boruntea, C. R., Moliner, M., & Corma, A. (2015). Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications. Chemical Communications, 51(55), 11030-11033. doi:10.1039/c5cc03200hOpanasenko, M. V., Roth, W. J., & Čejka, J. (2016). Two-dimensional zeolites in catalysis: current status and perspectives. Catalysis Science & Technology, 6(8), 2467-2484. doi:10.1039/c5cy02079dKim, W., & Ryoo, R. (2014). Probing the Catalytic Function of External Acid Sites Located on the MFI Nanosheet for Conversion of Methanol to Hydrocarbons. Catalysis Letters, 144(7), 1164-1169. doi:10.1007/s10562-014-1274-

    Synthesis of highly stable metal-containing extra-large-pore molecular sieves

    Full text link
    [EN] The isomorphic substitution of two different metals (Mg and Co) within the framework of the ITQ-51 zeotype (IFO structure) using bulky aromatic proton sponges as organic structure-directing agents (OSDAs) has allowed the synthesis of different stable metal-containing extra-large-pore zeotypes with high pore accessibility and acidity. These metal-containing extra-large-pore zeolites, named MgITQ-51 and CoITQ-51, have been characterized by different techniques, such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, UV-Vis spectroscopy, temperature programmed desorption of ammonia and Fourier transform infrared spectroscopy, to study their physico-chemical properties. The characterization confirms the preferential insertion of Mg and Co atoms within the crystalline structure of the ITQ-51 zeotype, providing high Bronsted acidity, and allowing their use as efficient heterogeneous acid catalysts in industrially relevant reactions involving bulky organic molecules.Financial support by the Spanish Government-MINECO through 'Severo Ochoa' (SEV 2012-0267), Consolider Ingenio 2010-Multicat and MAT2012-37160 is acknowledged. The European Union is also acknowledged by the SynCatMatch project (ERC-AdG-2014-671093).Martínez Franco, R.; Paris-Carrizo, CG.; Moliner Marin, M.; Corma Canós, A. (2016). Synthesis of highly stable metal-containing extra-large-pore molecular sieves. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences. 374(2061). https://doi.org/10.1098/rsta.2015.0075S3742061Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713Davis, M. E. (1997). The Quest For Extra-Large Pore, Crystalline Molecular Sieves. Chemistry - A European Journal, 3(11), 1745-1750. doi:10.1002/chem.19970031104Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417(6891), 813-821. doi:10.1038/nature00785Corma, A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216(1-2), 298-312. doi:10.1016/s0021-9517(02)00132-xCorma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238Davis, M. E., Saldarriaga, C., Montes, C., Garces, J., & Crowdert, C. (1988). A molecular sieve with eighteen-membered rings. Nature, 331(6158), 698-699. doi:10.1038/331698a0Corma, A., & Davis, M. E. (2004). Issues in the Synthesis of Crystalline Molecular Sieves: Towards the Crystallization of Low Framework-Density Structures. ChemPhysChem, 5(3), 304-313. doi:10.1002/cphc.200300997Martinez-Franco, R., Moliner, M., Yun, Y., Sun, J., Wan, W., Zou, X., & Corma, A. (2013). Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents. Proceedings of the National Academy of Sciences, 110(10), 3749-3754. doi:10.1073/pnas.1220733110Staab, H. A., & Saupe, T. (1988). ?Proton Sponges? and the Geometry of Hydrogen Bonds: Aromatic Nitrogen Bases with Exceptional Basicities. Angewandte Chemie International Edition in English, 27(7), 865-879. doi:10.1002/anie.198808653Corma, A., Diaz-Cabanas, M. J., Jiang, J., Afeworki, M., Dorset, D. L., Soled, S. L., & Strohmaier, K. G. (2010). Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four- and double three-rings. Proceedings of the National Academy of Sciences, 107(32), 13997-14002. doi:10.1073/pnas.1003009107(s. f.). doi:10.1021/jp027447Martínez-Franco, R., Sun, J., Sastre, G., Yun, Y., Zou, X., Moliner, M., & Corma, A. (2014). Supra-molecular assembly of aromatic proton sponges to direct the crystallization of extra-large-pore zeotypes. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2166), 20140107. doi:10.1098/rspa.2014.0107Man, P. P., Briend, M., Peltre, M. J., Lamy, A., Beaunier, P., & Barthomeuf, D. (1991). A topological model for the silicon incorporation in SAPO-37 molecular sieves: Correlations with acidity and catalysis. Zeolites, 11(6), 563-572. doi:10.1016/s0144-2449(05)80006-5Wilson ST Flanigen EM. 1986 Crystalline metal aluminophosphates . U.S. Patent 4 567 029.Corà, F., Saadoune, I., & Catlow, C. R. A. (2002). Lewis Acidity in Transition-Metal-Doped Microporous Aluminophosphates. Angewandte Chemie International Edition, 41(24), 4677-4680. doi:10.1002/anie.200290013Hartmann, M., & Kevan, L. (2002). Substitution of transition metal ions into aluminophosphates and silicoaluminophosphates: characterization and relation to catalysis. Research on Chemical Intermediates, 28(7-9), 625-695. doi:10.1163/15685670260469357Šponer, J., Čejka, J., Dědeček, J., & Wichterlová, B. (2000). Coordination and properties of cobalt in the molecular sieves CoAPO-5 and -11. Microporous and Mesoporous Materials, 37(1-2), 117-127. doi:10.1016/s1387-1811(99)00258-9Singh, P. S., Shaikh, R. A., Bandyopadhyay, R., & Rao, B. S. (1995). Synthesis of CoVPI-5 with bifunctional catalytic activity. Journal of the Chemical Society, Chemical Communications, (22), 2255. doi:10.1039/c39950002255Jhung, S. H., Jin, T., Kim, Y. H., & Chang, J.-S. (2008). Phase-selective crystallization of cobalt-incorporated aluminophosphate molecular sieves with large pore by microwave irradiation. Microporous and Mesoporous Materials, 109(1-3), 58-65. doi:10.1016/j.micromeso.2007.04.031Iton, L. E., Choi, I., Desjardins, J. A., & Maroni, V. A. (1989). Stabilization of Co (III) in aluminophosphate molecular sieve frameworks. Zeolites, 9(6), 535-538. doi:10.1016/0144-2449(89)90051-1Frache, A., Gianotti, E., & Marchese, L. (2003). Spectroscopic characterisation of microporous aluminophosphate materials with potential application in environmental catalysis. Catalysis Today, 77(4), 371-384. doi:10.1016/s0920-5861(02)00381-4Yu, T., Wang, J., Shen, M., & Li, W. (2013). NH3-SCR over Cu/SAPO-34 catalysts with various acid contents and low Cu loading. Catalysis Science & Technology, 3(12), 3234. doi:10.1039/c3cy00453hYang, X., Ma, H., Xu, Z., Xu, Y., Tian, Z., & Lin, L. (2007). Hydroisomerization of n-dodecane over Pt/MeAPO-11 (Me=Mg, Mn, Co or Zn) catalysts. Catalysis Communications, 8(8), 1232-1238. doi:10.1016/j.catcom.2006.11.00

    Rational direct synthesis methodology of very active and hydrothermally stable Cu-SAPO-34 molecular sieves for the SCR of NOx

    Full text link
    A one-pot direct synthesis of Cu-SAPO-34 has been achieved that allows more than 90% yield in the material synthesis. By this method it is easy to control the Cu-loading in the Cu-SAPO-34. It is presented that a maximum in hydrothermal stability with very high activity for NOx SCR with NH3 is obtained for an optimum Cu loading.This work has been supported by Haldor-Topsoe, Consolider Ingenio 2010-Multicat, and UPV through PAID-06-11 (no. 1952). MM acknowledges to "Subprograma Ramon y Cajal" for the contract RYC-2011-08972.Martínez Franco, R.; Moliner Marin, M.; Franch Martí, C.; Kustov, A.; Corma Canós, A. (2012). Rational direct synthesis methodology of very active and hydrothermally stable Cu-SAPO-34 molecular sieves for the SCR of NOx. Applied Catalysis B: Environmental. 127:273-280. https://doi.org/10.1016/j.apcatb.2012.08.034S27328012

    Efficient Oligomerization of Pentene into Liquid Fuels on Nanocrystalline Beta Zeolites

    Full text link
    [EN] Light alkenes oligomerization, performed in the presence of heterogeneous acid catalysts, is an interesting alternative for the production of clean liquid fuels. The process, when catalyzed by zeolites, is flexible and can be directed to the formation of oligomers in the gasoline, jet fuel, or diesel range by adjusting the reaction conditions and the zeolite's structure. Herein we show how reducing the crystal size of large-pore Beta zeolites down to 10-15 nm and controlling the number and strength distribution of their Bronsted acid sites leads to highly active and stable catalysts, selective to true oligomers within the naphtha and, especially, the diesel range. The shorter diffusion path lengths in the smaller crystallites and the reduced Bronsted acid site density of the two nanosized beta zeolites (10-15 nm) synthesized with Si/Al = 15 lead to 1-pentene conversion above 80% during the 6 h time on stream (TOS) at a space time (W/F) of 2.8 g.h.mol(-1). This value is higher than the olefin conversion obtained for a commercial nanobeta (30 nm) at a 3-fold space time of 9.1 g.h.mol(-1).Financial support by the Spanish Government-MINECO through "Severn Ochoa" (SEV-2016-0683), MAT2015-71261-R and CTQ2015-70126-R, by the Fundacion Ramon Areces through a research project within the "Life and Materials Sciences" program, and by the European Union through ERC-AdG-2014-671093-Syn-CatMatch is acknowledged. M.R.D-R. acknowledges "La Caixa-Severo Ochoa" International PhD Fellowships (call 2015). The Electron Microscopy Service of the Universitat Politecnica de Valencia is acknowledged for their help in sample characterization.Díaz-Rey, MDR.; Paris-Carrizo, CG.; Martínez Franco, R.; Moliner Marin, M.; Martínez, C.; Corma Canós, A. (2017). Efficient Oligomerization of Pentene into Liquid Fuels on Nanocrystalline Beta Zeolites. ACS Catalysis. 7(9):6170-6178. https://doi.org/10.1021/acscatal.7b00817S617061787

    Direct synthesis design of Cu-SAPO-18, a very efficient catalyst for the SCR of NOx

    Full text link
    The combination of Cu(II) triethylenetetramine and N,N-dimethyl-3,5-dimethylpiperidinium as structure directing agents allowed the direct preparation of highly active and hydrothermally stable Cu-SAPO-18 for the selective catalytic reduction of NOx with NH3. The approach allows performing a one-pot synthesis avoiding intermediate calcination and ion exchange, while achieving complete framework Si isolation. Combination of physicochemical characterization techniques show that copper exists as extra-framework Cu2+, which have been identified as the specific active sites for the SCR of NOx. The selective presence of isolated Si species in the zeolitic framework introduces high hydrothermal stability.Financial support by the Spanish Government-MINECO through "Severo Ochoa" (SEV 2012-0267), Consolider Ingenio 2010-Multicat, MAT2012-37160 and, Intramural-2014801015 is acknowledged. The authors thank Isabel Millet for technical support.Martínez Franco, R.; Moliner Marin, M.; Corma Canós, A. (2014). Direct synthesis design of Cu-SAPO-18, a very efficient catalyst for the SCR of NOx. Journal of Catalysis. 319:36-43. https://doi.org/10.1016/j.jcat.2014.08.005S364331

    Synthesis, characterization and reactivity of high hydrothermally stable Cu-SAPO-34 materials prepared by one-pot processes

    Full text link
    This paper focuses on the design of an innovative air-conditioning system, namely a magnetocaloric air-conditioner for an electric minibus. An integrated design of the complete system is necessary, as the hot and cold side of the regenerator will work under dynamic conditions which depend on the instantaneous thermal load in the cabin. In order to assist the design of the system, a dynamic model has been developed for the cabin, the hydraulic loops and heat exchangers, and the magnetocaloric unit. This paper presents (i) a description of the dynamic models, (ii) an analysis of the operating conditions of the magnetocaloric unit and (iii) a discussion on the design of the magnetocaloric air-conditioner. The results show that the electric minibus requests 1.60 kW of cooling power over a span of 37 K in cooling mode, and 3.39 kW of heating power over a span of 40 K.This work has been supported by Haldor-Topsoe, the Spanish Government through Consolider Ingenio 2010-Multicat, the "Severo Ochoa Program", and MAT2012-37160. Manuel Moliner also acknowledges to "Subprograma Ramon y Cajal" for the contract RYC-2011-08972. The authors thank Isabel Millet for technical support.Martínez Franco, R.; Moliner Marin, M.; Concepción Heydorn, P.; Thogersen, JR.; Corma Canós, A. (2014). Synthesis, characterization and reactivity of high hydrothermally stable Cu-SAPO-34 materials prepared by one-pot processes. Journal of Catalysis. 314:73-82. https://doi.org/10.1016/j.jcat.2014.03.018S738231
    corecore