52 research outputs found

    Comparative genomics analysis of triatomines reveals common first line and inducible immunity-related genes and the absence of Imd canonical components among hemimetabolous arthropods

    Get PDF
    Background: Insects operate complex humoral and cellular immune strategies to fend against invading microorganisms. The majority of these have been characterized in Drosophila and other dipterans. Information on hemipterans, including Triatominae vectors of Chagas disease remains incomplete and fractionated. Results: We identified putative immune-related homologs of three Triatominae vectors of Chagas disease, Triatoma pallidipennis, T. dimidiata and T. infestans (TTTs), using comparative transcriptomics based on established immune response gene references, in conjunction with the predicted proteomes of Rhodnius prolixus, Cimex lecticularis and Acyrthosiphon pisum hemimetabolous. We present a compressive description of the humoral and cellular innate immune components of these TTTs and extend the immune information of other related hemipterans. Key homologs of the constitutive and induced immunity genes were identified in all the studied hemipterans. Conclusions: Our results in the TTTs extend previous observations in other hemipterans lacking several components of the Imd signaling pathway. Comparison with other hexapods, using published data, revealed that the absence of various Imd canonical components is common in several hemimetabolous species.Centro Regional de Estudios Genómico

    Adaptations in energy metabolism and gene family expansions revealed by comparative transcriptomics of three Chagas disease triatomine vectors

    Get PDF
    Background: Chagas disease is a parasitic infection caused by Trypanosoma cruzi. It is an important public health problem affecting around seven to eight million people in the Americas. A large number of hematophagous triatomine insect species, occupying diverse natural and human-modified ecological niches transmit this disease. Triatomines are long-living hemipterans that have evolved to explode different habitats to associate with their vertebrate hosts. Understanding the molecular basis of the extreme physiological conditions including starvation tolerance and longevity could provide insights for developing novel control strategies. We describe the normalized cDNA, full body transcriptome analysis of three main vectors in North, Central and South America, Triatoma pallidipennis, T. dimidiata and T. infestans. Results: Two-thirds of the de novo assembled transcriptomes map to the Rhodnius prolixus genome and proteome. A Triatoma expansion of the calycin family and two types of protease inhibitors, pacifastins and cystatins were identified. A high number of transcriptionally active class I transposable elements was documented in T. infestans, compared with T. dimidiata and T. pallidipennis. Sequence identity in Triatoma-R. prolixus 1:1 orthologs revealed high sequence divergence in four enzymes participating in gluconeogenesis, glycogen synthesis and the pentose phosphate pathway, indicating high evolutionary rates of these genes. Also, molecular evidence suggesting positive selection was found for several genes of the oxidative phosphorylation I, III and V complexes. Conclusions: Protease inhibitors and calycin-coding gene expansions provide insights into rapidly evolving processes of protease regulation and haematophagy. Higher evolutionary rates in enzymes that exert metabolic flux control towards anabolism and evidence for positive selection in oxidative phosphorylation complexes might represent genetic adaptations, possibly related to prolonged starvation, oxidative stress tolerance, longevity, and hematophagy and flight reduction. Overall, this work generated novel hypothesis related to biological adaptations to extreme physiological conditions and diverse ecological niches that sustain Chagas disease transmission.Centro Regional de Estudios Genómico

    Differential expression of IgM and IgD discriminates two subpopulations of human circulating IgM+IgD+CD27+ B cells that differ phenotypically, functionally, and genetically

    Get PDF
    Q1Q1Artículo original1-19The origin and function of blood IgM+IgD+CD27+ B cells is controversial, and they are considered a heterogeneous population. Previous staining of circulating B cells of healthy donors with rotavirus fluorescent virus-like particles allowed us to differentiate two subsets of IgM+IgD+CD27+: IgMhi and IgMlo B cells. Here, we confirmed this finding and compared the phenotype, transcriptome, in vitro function, and Ig gene repertoire of these two subsets. Eleven markers phenotypically discriminated both subsets (CD1c, CD69, IL21R, CD27, MTG, CD45RB, CD5, CD184, CD23, BAFFR, and CD38) with the IgMhi phenotypically resembling previously reported marginal zone B cells and the IgMlo resembling both naïve and memory B cells. Transcriptomic analysis showed that both subpopulations clustered close to germinal center-experienced IgM only B cells with a Principal Component Analysis, but differed in expression of 78 genes. Moreover, IgMhi B cells expressed genes characteristic of previously reported marginal zone B cells. After stimulation with CpG and cytokines, significantly (p < 0.05) higher frequencies (62.5%) of IgMhi B cells proliferated, compared with IgMlo B cells (35.37%), and differentiated to antibody secreting cells (14.22% for IgMhi and 7.19% for IgMlo). IgMhi B cells had significantly (p < 0.0007) higher frequencies of mutations in IGHV and IGKV regions, IgMlo B cells had higher usage of IGHJ6 genes (p < 0.0001), and both subsets differed in their HCDR3 properties. IgMhi B cells shared most of their shared IGH clonotypes with IgM only memory B cells, and IgMlo B cells with IgMhi B cells. These results support the notion that differential expression of IgM and IgD discriminates two subpopulations of human circulating IgM+IgD+CD27+ B cells, with the IgMhi B cells having similarities with previously described marginal zone B cells that passed through germinal centers, and the IgMlo B cells being the least differentiated amongst the IgM+CD27+ subsets

    Adaptations in energy metabolism and gene family expansions revealed by comparative transcriptomics of three Chagas disease triatomine vectors

    Get PDF
    Background: Chagas disease is a parasitic infection caused by Trypanosoma cruzi. It is an important public health problem affecting around seven to eight million people in the Americas. A large number of hematophagous triatomine insect species, occupying diverse natural and human-modified ecological niches transmit this disease. Triatomines are long-living hemipterans that have evolved to explode different habitats to associate with their vertebrate hosts. Understanding the molecular basis of the extreme physiological conditions including starvation tolerance and longevity could provide insights for developing novel control strategies. We describe the normalized cDNA, full body transcriptome analysis of three main vectors in North, Central and South America, Triatoma pallidipennis, T. dimidiata and T. infestans. Results: Two-thirds of the de novo assembled transcriptomes map to the Rhodnius prolixus genome and proteome. A Triatoma expansion of the calycin family and two types of protease inhibitors, pacifastins and cystatins were identified. A high number of transcriptionally active class I transposable elements was documented in T. infestans, compared with T. dimidiata and T. pallidipennis. Sequence identity in Triatoma-R. prolixus 1:1 orthologs revealed high sequence divergence in four enzymes participating in gluconeogenesis, glycogen synthesis and the pentose phosphate pathway, indicating high evolutionary rates of these genes. Also, molecular evidence suggesting positive selection was found for several genes of the oxidative phosphorylation I, III and V complexes. Conclusions: Protease inhibitors and calycin-coding gene expansions provide insights into rapidly evolving processes of protease regulation and haematophagy. Higher evolutionary rates in enzymes that exert metabolic flux control towards anabolism and evidence for positive selection in oxidative phosphorylation complexes might represent genetic adaptations, possibly related to prolonged starvation, oxidative stress tolerance, longevity, and hematophagy and flight reduction. Overall, this work generated novel hypothesis related to biological adaptations to extreme physiological conditions and diverse ecological niches that sustain Chagas disease transmission.Centro Regional de Estudios Genómico

    Non-coding Class Switch Recombination-Related Transcription in Human Normal and Pathological Immune Responses

    Get PDF
    Antibody class switch recombination (CSR) to IgG, IgA, or IgE is a hallmark of adaptive immunity, allowing antibody function diversification beyond IgM. CSR involves a deletion of the IgM/IgD constant region genes placing a new acceptor Constant gene, downstream of the VDJH exon. CSR depends on non-coding (CSRnc) transcription of donor Iμ and acceptor IH exons, located 5′ upstream of each CH coding gene. Although, our knowledge of the role of CSRnc transcription has advanced greatly, its extension and importance in healthy and diseased humans is scarce. We analyzed CSRnc transcription in 70,603 publicly available RNA-seq samples, including GTEx, TCGA, and the Sequence Read Archive using recount2, an online resource consisting of normalized RNA-seq gene and exon counts, as well as, coverage BigWig files that can be programmatically accessed through R. CSRnc transcription was validated with a qRT-PCR assay for Iμ, Iγ3, and Iγ1 in humans in response to vaccination. We mapped IH transcription for the human IGH locus, including the less understood IGHD gene. CSRnc transcription was restricted to B cells and is widely distributed in normal adult tissues, but predominant in blood, spleen, MALT-containing tissues, visceral adipose tissue and some so-called “immune privileged” tissues. However, significant Iγ4 expression was found even in non-lymphoid fetal tissues. CSRnc expression in cancer tissues mimicked the expression of their normal counterparts, with notable pattern changes in some common cancer subsets. CSRnc transcription in tumors appears to result from tumor infiltration by B cells, since CSRnc transcription was not detected in corresponding tumor-derived immortal cell lines. Additionally, significantly increased Iδ transcription in ileal mucosa in Crohn's disease with ulceration was found. In conclusion, CSRnc transcription occurs in multiple anatomical locations beyond classical secondary lymphoid organs, representing a potentially useful marker of effector B cell responses in normal and pathological immune responses. The pattern of IH exon expression may reveal clues of the local immune response (i.e., cytokine milieu) in health and disease. This is a great example of how the public recount2 data can be used to further our understanding of transcription, including regions outside the known transcriptome

    Polimorfismos reguladores y su participación en la patogenia de enfermedades complejas en la era posgenómica Polymorphisms in gene regulatory regions and their role in the physiopathology of complex disease in the post-genomic era

    No full text
    El estudio de la participación de la variación genética en la predisposición a las enfermedades complejas ha cobrado nuevas dimensiones en la era genómica. Los polimorfismos de un solo nucleótido (SNP) son el tipo de variación más común entre individuos y su vinculación con enfermedades es motivo de investigación intensa. En fecha reciente, el estudio de los SNP que afectan la expresión genética (rSNP) ha suscitado mayor interés, ya que las diferencias de la expresión genética entre un sujeto y otro pueden modificar el fenotipo. El descubrimiento y caracterización funcional de los rSNP y el estudio de su frecuencia alélica representan un nuevo campo en la búsqueda de determinantes genéticos de enfermedades multifactoriales.The genomic era is imparting a new impulse to the study of the role of genetic variation in susceptibility to disease. The most common type of genetic variation between individuals is single nucleotide polymorphisms (SNP). The association of SNPs with susceptibility to disease is the current focus of intense research. Recently, the study of SNPs that alter the regulatory mechanisms of gene expression (rSNP) has emerged as a promising field for understanding disease, since this type of variation can have a profound effect on human traits related to susceptibility to disease. The finding and functional characterization of biologically significant rSNPs is advancing our knowledge of genetic determinants for multifactorial disease

    Comparative genomics analysis of triatomines reveals common first line and inducible immunity-related genes and the absence of Imd canonical components among hemimetabolous arthropods

    Get PDF
    Abstract Background Insects operate complex humoral and cellular immune strategies to fend against invading microorganisms. The majority of these have been characterized in Drosophila and other dipterans. Information on hemipterans, including Triatominae vectors of Chagas disease remains incomplete and fractionated. Results We identified putative immune-related homologs of three Triatominae vectors of Chagas disease, Triatoma pallidipennis, T. dimidiata and T. infestans (TTTs), using comparative transcriptomics based on established immune response gene references, in conjunction with the predicted proteomes of Rhodnius prolixus, Cimex lecticularis and Acyrthosiphon pisum hemimetabolous. We present a compressive description of the humoral and cellular innate immune components of these TTTs and extend the immune information of other related hemipterans. Key homologs of the constitutive and induced immunity genes were identified in all the studied hemipterans. Conclusions Our results in the TTTs extend previous observations in other hemipterans lacking several components of the Imd signaling pathway. Comparison with other hexapods, using published data, revealed that the absence of various Imd canonical components is common in several hemimetabolous species
    corecore