36 research outputs found

    Polarimetry enabled by nanophotonics

    Full text link
    Martínez Abietar, AJ. (2018). Polarimetry enabled by nanophotonics. Science. 362(6416):750-751. https://doi.org/10.1126/science.aau7494S7507513626416Azzam, R. M. A. (2016). Stokes-vector and Mueller-matrix polarimetry [Invited]. Journal of the Optical Society of America A, 33(7), 1396. doi:10.1364/josaa.33.001396Westbrook, P. S., Strasser, T. A., & Erdogan, T. (2000). In-line polarimeter using blazed fiber gratings. IEEE Photonics Technology Letters, 12(10), 1352-1354. doi:10.1109/68.883827Koenderink, A. F., Alu, A., & Polman, A. (2015). Nanophotonics: Shrinking light-based technology. Science, 348(6234), 516-521. doi:10.1126/science.1261243Pors, A., Nielsen, M. G., & Bozhevolnyi, S. I. (2015). Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica, 2(8), 716. doi:10.1364/optica.2.000716Balthasar Mueller, J. P., Leosson, K., & Capasso, F. (2016). Ultracompact metasurface in-line polarimeter. Optica, 3(1), 42. doi:10.1364/optica.3.000042Maguid, E., Yulevich, I., Veksler, D., Kleiner, V., Brongersma, M. L., & Hasman, E. (2016). Photonic spin-controlled multifunctional shared-aperture antenna array. Science, 352(6290), 1202-1206. doi:10.1126/science.aaf3417Wu, P. C., Chen, J.-W., Yin, C.-W., Lai, Y.-C., Chung, T. L., Liao, C. Y., … Tsai, D. P. (2017). Visible Metasurfaces for On-Chip Polarimetry. ACS Photonics, 5(7), 2568-2573. doi:10.1021/acsphotonics.7b01527Rubin, N. A., Zaidi, A., Juhl, M., Li, R. P., Mueller, J. P. B., Devlin, R. C., … Capasso, F. (2018). Polarization state generation and measurement with a single metasurface. Optics Express, 26(17), 21455. doi:10.1364/oe.26.021455Afshinmanesh, F., White, J. S., Cai, W., & Brongersma, M. L. (2012). Measurement of the polarization state of light using an integrated plasmonic polarimeter. Nanophotonics, 1(2). doi:10.1515/nanoph-2012-0004Bauer, T., Banzer, P., Karimi, E., Orlov, S., Rubano, A., Marrucci, L., … Leuchs, G. (2015). Observation of optical polarization Möbius strips. Science, 347(6225), 964-966. doi:10.1126/science.1260635Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F., & Zayats, A. V. (2015). Spin–orbit interactions of light. Nature Photonics, 9(12), 796-808. doi:10.1038/nphoton.2015.201Espinosa-Soria, A., Rodríguez-Fortuño, F. J., Griol, A., & Martínez, A. (2017). On-Chip Optimal Stokes Nanopolarimetry Based on Spin–Orbit Interaction of Light. Nano Letters, 17(5), 3139-3144. doi:10.1021/acs.nanolett.7b00564Bauer, T., Orlov, S., Peschel, U., Banzer, P., & Leuchs, G. (2013). Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams. Nature Photonics, 8(1), 23-27. doi:10.1038/nphoton.2013.289Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S., & Luk’yanchuk, B. (2016). Optically resonant dielectric nanostructures. Science, 354(6314), aag2472. doi:10.1126/science.aag247

    Theoretical study about the gain in indirect bandgap semiconductor optical cavities

    Get PDF
    [EN] Indirect bandgap semiconductors such as silicon are not efficient light emitters because a phonon with a high momentum is required to transfer an electron from the conduction to the valence band. In a recent study (M.J. Chen et al., 2006) [6] an analytical expression of the optical gain in bulk indirect bandgap semiconductors was obtained. The main conclusion was that the free-carrier absorption was much higher than the optical gain at ambient temperature, which prevents lasing. In this work, we consider the case in which the semiconductor material is engineered to form an optical cavity characterized by a certain Purcell factor. We conclude that although the optical gain is increased, losses due to free carriers increase in the same way so lasing is also prevented even when creating a high-Q optical cavity. © 2012 Elsevier B.V. All rights reserved.This research has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number 233883 (TAILPHOX). The authors wish to thank M.J. Chen for his useful comments.Escalante Fernández, JM.; Martínez Abietar, AJ. (2012). Theoretical study about the gain in indirect bandgap semiconductor optical cavities. Physica B: Condensed Matter. 407(12):2044-2049. https://doi.org/10.1016/j.physb.2012.02.002204420494071

    Transverse Spin and Spin-Orbit Coupling in Silicon Waveguides

    Full text link
    Evanescent and tightly confined propagating waves exhibit a remarkable transverse spin density since the longitudinal component of the electric field is not negligible. In this work, we obtain via numerical simulations the electric field components of the fundamental guided modes of two waveguides typically used in silicon photonics: the strip and the slot waveguide. We obtain the relation between transverse and longitudinal field components, the transverse spin densities and other important parameters, such as the longitudinal component of the so-called Belinfante s spin momentum density. By asymmetrically placing a circularly-polarized point-like dipole source in regions showing local circular polarization, the guided mode is excited unidirectionally via spin-orbit coupling. In contrast to metal plates supporting surface plasmons, the multimode behavior of silicon waveguides results in different spin-orbit coupling properties for each guided mode. Our results may find application in silicon photonic devices, integrated quantum optics and polarization manipulation at the nanoscale.This work was supported in part by the Secretaria de Estado de Investigacion, Desarrollo e Innovacion under Grant TEC2014-51902-C2-1-R and in part by the Valencian Conselleria d'Educacio, Cultura i Esport under Grant PROMETEOII/2014/034.Espinosa Soria, A.; Martínez Abietar, AJ. (2016). Transverse Spin and Spin-Orbit Coupling in Silicon Waveguides. IEEE Photonics Technology Letters. 28(14):1561-1564. https://doi.org/10.1109/LPT.2016.2553841S15611564281

    Toward Chiral Sensing and Spectroscopy Enabled by All-Dielectric Integrated Photonic Waveguides

    Full text link
    This is the peer reviewed version of the following article: Vázquez-Lozano, J. E., Martínez, A., Toward Chiral Sensing and Spectroscopy Enabled by All-Dielectric Integrated Photonic Waveguides. Laser & Photonics Reviews 2020, 14, 1900422, which has been published in final form at https://doi.org/10.1002/lpor.201900422. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Chiral spectroscopy is a powerful technique enabling to identify optically the chirality of matter. So far, most experiments to check the chirality of matter or nanostructures have been performed through arrangements wherein both the optical excitation and detection are realized via circularly polarized light propagating in free space. However, for the sake of miniaturization, it would be desirable to perform chiral spectroscopy in photonic integrated platforms, with the additional benefit of massive parallel detection, low¿cost production, repeatability, and portability. Here it is shown that all¿dielectric photonic waveguides can support chiral modes under proper combination of fundamental eigenmodes. Two mainstream configurations are investigated: a dielectric wire with square cross section and a slotted waveguide. Three different scenarios in which such waveguides could be used for chiral detection are numerically analyzed: waveguides as near¿field probes, evanescent¿induced chiral fields, and chiroptical interaction in void slots. In all the cases, a metallic nanohelix is considered as a chiral probe, though all the approaches can be extended to other kinds of chiral nanostructures as well as matter. These results establish that chiral applications such as sensing and spectroscopy could be realized in standard integrated optics, in particular, with silicon-based technology.The authors thank S. Lechago for valuable comments and technical support with the numerical simulations. This work was partially supported by funding from the European Commission Project THOR H2020-EU-829067. A.M. also acknowledges funding from Generalitat Valenciana (Grant No. PROMETEO/2019/123) and Spanish Ministry of Science, Innovation and Universities (Grant No. PRX18/00126).Vázquez-Lozano, JE.; Martínez Abietar, AJ. (2020). Toward Chiral Sensing and Spectroscopy Enabled by All-Dielectric Integrated Photonic Waveguides. Laser & Photonics Review. 14(9):1-12. https://doi.org/10.1002/lpor.201900422S112149FDA’S policy statement for the development of new stereoisomeric drugs. (1992). Chirality, 4(5), 338-340. doi:10.1002/chir.530040513Hutt, A. J., & Tan, S. C. (1996). Drug Chirality and its Clinical Significance. Drugs, 52(Supplement 5), 1-12. doi:10.2165/00003495-199600525-00003Smith, S. W. (2009). Chiral Toxicology: It’s the Same Thing…Only Different. Toxicological Sciences, 110(1), 4-30. doi:10.1093/toxsci/kfp097Naaman, R., Paltiel, Y., & Waldeck, D. H. (2019). Chiral molecules and the electron spin. Nature Reviews Chemistry, 3(4), 250-260. doi:10.1038/s41570-019-0087-1Lodahl, P., Mahmoodian, S., Stobbe, S., Rauschenbeutel, A., Schneeweiss, P., Volz, J., … Zoller, P. (2017). Chiral quantum optics. Nature, 541(7638), 473-480. doi:10.1038/nature21037Göhler, B., Hamelbeck, V., Markus, T. Z., Kettner, M., Hanne, G. F., Vager, Z., … Zacharias, H. (2011). Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA. Science, 331(6019), 894-897. doi:10.1126/science.1199339Zhu, H., Yi, J., Li, M.-Y., Xiao, J., Zhang, L., Yang, C.-W., … Zhang, X. (2018). Observation of chiral phonons. Science, 359(6375), 579-582. doi:10.1126/science.aar2711Cameron, R. P., Barnett, S. M., & Yao, A. M. (2012). Optical helicity, optical spin and related quantities in electromagnetic theory. New Journal of Physics, 14(5), 053050. doi:10.1088/1367-2630/14/5/053050Alpeggiani, F., Bliokh, K. Y., Nori, F., & Kuipers, L. (2018). Electromagnetic Helicity in Complex Media. Physical Review Letters, 120(24). doi:10.1103/physrevlett.120.243605Tang, Y., & Cohen, A. E. (2010). Optical Chirality and Its Interaction with Matter. Physical Review Letters, 104(16). doi:10.1103/physrevlett.104.163901Bliokh, K. Y., & Nori, F. (2011). Characterizing optical chirality. Physical Review A, 83(2). doi:10.1103/physreva.83.021803Tang, Y., & Cohen, A. E. (2011). Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light. Science, 332(6027), 333-336. doi:10.1126/science.1202817Barron, L. D. (2004). Molecular Light Scattering and Optical Activity. doi:10.1017/cbo9780511535468Hassey, R., Swain, E. J., Hammer, N. I., Venkataraman, D., & Barnes, M. D. (2006). Probing the Chiroptical Response of a Single Molecule. Science, 314(5804), 1437-1439. doi:10.1126/science.1134231Hendry, E., Carpy, T., Johnston, J., Popland, M., Mikhaylovskiy, R. V., Lapthorn, A. J., … Kadodwala, M. (2010). Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotechnology, 5(11), 783-787. doi:10.1038/nnano.2010.209Rhee, H., Choi, J. S., Starling, D. J., Howell, J. C., & Cho, M. (2013). Amplifications in chiroptical spectroscopy, optical enantioselectivity, and weak value measurement. Chemical Science, 4(11), 4107. doi:10.1039/c3sc51255jHo, C.-S., Garcia-Etxarri, A., Zhao, Y., & Dionne, J. (2017). Enhancing Enantioselective Absorption Using Dielectric Nanospheres. ACS Photonics, 4(2), 197-203. doi:10.1021/acsphotonics.6b00701Vázquez-Lozano, J. E., & Martínez, A. (2018). Optical Chirality in Dispersive and Lossy Media. Physical Review Letters, 121(4). doi:10.1103/physrevlett.121.043901Schäferling, M. (2017). Chiral Nanophotonics. Springer Series in Optical Sciences. doi:10.1007/978-3-319-42264-0Lee, S., Yoo, S., & Park, Q.-H. (2017). Microscopic Origin of Surface-Enhanced Circular Dichroism. ACS Photonics, 4(8), 2047-2052. doi:10.1021/acsphotonics.7b00479Barr, L. E., Horsley, S. A. R., Hooper, I. R., Eager, J. K., Gallagher, C. P., Hornett, S. M., … Hendry, E. (2018). Investigating the nature of chiral near-field interactions. Physical Review B, 97(15). doi:10.1103/physrevb.97.155418Collins, J. T., Kuppe, C., Hooper, D. C., Sibilia, C., Centini, M., & Valev, V. K. (2017). Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends. Advanced Optical Materials, 5(16), 1700182. doi:10.1002/adom.201700182Hentschel, M., Schäferling, M., Duan, X., Giessen, H., & Liu, N. (2017). Chiral plasmonics. Science Advances, 3(5). doi:10.1126/sciadv.1602735Govorov, A. O., Fan, Z., Hernandez, P., Slocik, J. M., & Naik, R. R. (2010). Theory of Circular Dichroism of Nanomaterials Comprising Chiral Molecules and Nanocrystals: Plasmon Enhancement, Dipole Interactions, and Dielectric Effects. Nano Letters, 10(4), 1374-1382. doi:10.1021/nl100010vZhao, Y., Askarpour, A. N., Sun, L., Shi, J., Li, X., & Alù, A. (2017). Chirality detection of enantiomers using twisted optical metamaterials. Nature Communications, 8(1). doi:10.1038/ncomms14180Kang, L., Ren, Q., & Werner, D. H. (2017). Leveraging Superchiral Light for Manipulation of Optical Chirality in the Near-Field of Plasmonic Metamaterials. ACS Photonics, 4(6), 1298-1305. doi:10.1021/acsphotonics.7b00057García-Etxarri, A., & Dionne, J. A. (2013). Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas. Physical Review B, 87(23). doi:10.1103/physrevb.87.235409Hendry, E., Mikhaylovskiy, R. V., Barron, L. D., Kadodwala, M., & Davis, T. J. (2012). Chiral Electromagnetic Fields Generated by Arrays of Nanoslits. Nano Letters, 12(7), 3640-3644. doi:10.1021/nl3012787Meinzer, N., Hendry, E., & Barnes, W. L. (2013). Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures. Physical Review B, 88(4). doi:10.1103/physrevb.88.041407Nesterov, M. L., Yin, X., Schäferling, M., Giessen, H., & Weiss, T. (2016). The Role of Plasmon-Generated Near Fields for Enhanced Circular Dichroism Spectroscopy. ACS Photonics, 3(4), 578-583. doi:10.1021/acsphotonics.5b00637J.Lasa‐Alonso D. R.Abujetas A.Nodar J. A.Dionne J. J.Sáenz G.Molina‐Terriza J.Aizpurua A.García‐Etxarri arXiv:2003.07653 [physics.optics] 2020.Solomon, M. L., Hu, J., Lawrence, M., García-Etxarri, A., & Dionne, J. A. (2018). Enantiospecific Optical Enhancement of Chiral Sensing and Separation with Dielectric Metasurfaces. ACS Photonics, 6(1), 43-49. doi:10.1021/acsphotonics.8b01365Graf, F., Feis, J., Garcia-Santiago, X., Wegener, M., Rockstuhl, C., & Fernandez-Corbaton, I. (2019). Achiral, Helicity Preserving, and Resonant Structures for Enhanced Sensing of Chiral Molecules. ACS Photonics, 6(2), 482-491. doi:10.1021/acsphotonics.8b01454Hu, J., Lawrence, M., & Dionne, J. A. (2019). High Quality Factor Dielectric Metasurfaces for Ultraviolet Circular Dichroism Spectroscopy. ACS Photonics, 7(1), 36-42. doi:10.1021/acsphotonics.9b01352Zhao, X., & Reinhard, B. M. (2019). Switchable Chiroptical Hot-Spots in Silicon Nanodisk Dimers. ACS Photonics, 6(8), 1981-1989. doi:10.1021/acsphotonics.9b00388Reyes Gómez, F., Oliveira, O. N., Albella, P., & Mejía-Salazar, J. R. (2020). Enhanced chiroptical activity with slotted high refractive index dielectric nanodisks. Physical Review B, 101(15). doi:10.1103/physrevb.101.155403Gómez, F. R., Mejía-Salazar, J. R., & Albella, P. (2019). All-Dielectric Chiral Metasurfaces Based on Crossed-Bowtie Nanoantennas. ACS Omega, 4(25), 21041-21047. doi:10.1021/acsomega.9b02381Mohammadi, E., Tsakmakidis, K. L., Askarpour, A. N., Dehkhoda, P., Tavakoli, A., & Altug, H. (2018). Nanophotonic Platforms for Enhanced Chiral Sensing. ACS Photonics, 5(7), 2669-2675. doi:10.1021/acsphotonics.8b00270Mohammadi, E., Tavakoli, A., Dehkhoda, P., Jahani, Y., Tsakmakidis, K. L., Tittl, A., & Altug, H. (2019). Accessible Superchiral Near-Fields Driven by Tailored Electric and Magnetic Resonances in All-Dielectric Nanostructures. ACS Photonics, 6(8), 1939-1946. doi:10.1021/acsphotonics.8b01767Pellegrini, G., Finazzi, M., Celebrano, M., Duò, L., & Biagioni, P. (2017). Chiral surface waves for enhanced circular dichroism. Physical Review B, 95(24). doi:10.1103/physrevb.95.241402Estevez, M. C., Alvarez, M., & Lechuga, L. M. (2011). Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6(4), 463-487. doi:10.1002/lpor.201100025Nie, X., Ryckeboer, E., Roelkens, G., & Baets, R. (2017). CMOS-compatible broadband co-propagative stationary Fourier transform spectrometer integrated on a silicon nitride photonics platform. Optics Express, 25(8), A409. doi:10.1364/oe.25.00a409Petersen, J., Volz, J., & Rauschenbeutel, A. (2014). Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science, 346(6205), 67-71. doi:10.1126/science.1257671Coles, R. J., Price, D. M., Dixon, J. E., Royall, B., Clarke, E., Kok, P., … Makhonin, M. N. (2016). Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nature Communications, 7(1). doi:10.1038/ncomms11183Gong, S.-H., Alpeggiani, F., Sciacca, B., Garnett, E. C., & Kuipers, L. (2018). Nanoscale chiral valley-photon interface through optical spin-orbit coupling. Science, 359(6374), 443-447. doi:10.1126/science.aan8010Le Kien, F., Busch, T., Truong, V. G., & Nic Chormaic, S. (2017). Higher-order modes of vacuum-clad ultrathin optical fibers. Physical Review A, 96(2). doi:10.1103/physreva.96.023835Picardi, M. F., Bliokh, K. Y., Rodríguez-Fortuño, F. J., Alpeggiani, F., & Nori, F. (2018). Angular momenta, helicity, and other properties of dielectric-fiber and metallic-wire modes. Optica, 5(8), 1016. doi:10.1364/optica.5.001016Abujetas, D. R., & Sánchez-Gil, J. A. (2020). Spin Angular Momentum of Guided Light Induced by Transverse Confinement and Intrinsic Helicity. ACS Photonics, 7(2), 534-545. doi:10.1021/acsphotonics.0c00064Bliokh, K. Y., & Nori, F. (2012). Transverse spin of a surface polariton. Physical Review A, 85(6). doi:10.1103/physreva.85.061801Alizadeh, M. H., & Reinhard, B. M. (2015). Enhanced Optical Chirality through Locally Excited Surface Plasmon Polaritons. ACS Photonics, 2(7), 942-949. doi:10.1021/acsphotonics.5b00151Nechayev, S., Barczyk, R., Mick, U., & Banzer, P. (2019). Substrate-Induced Chirality in an Individual Nanostructure. ACS Photonics, 6(8), 1876-1881. doi:10.1021/acsphotonics.9b00748Petronijevic, E., & Sibilia, C. (2019). Enhanced Near-Field Chirality in Periodic Arrays of Si Nanowires for Chiral Sensing. Molecules, 24(5), 853. doi:10.3390/molecules24050853Romero-García, S., Merget, F., Zhong, F., Finkelstein, H., & Witzens, J. (2013). Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths. Optics Express, 21(12), 14036. doi:10.1364/oe.21.014036Espinosa-Soria, A., & Martinez, A. (2016). Transverse Spin and Spin-Orbit Coupling in Silicon Waveguides. IEEE Photonics Technology Letters, 28(14), 1561-1564. doi:10.1109/lpt.2016.2553841Poulikakos, L. V., Thureja, P., Stollmann, A., De Leo, E., & Norris, D. J. (2018). Chiral Light Design and Detection Inspired by Optical Antenna Theory. Nano Letters, 18(8), 4633-4640. doi:10.1021/acs.nanolett.8b00083Pfeiffer, M. H. P., Herkommer, C., Liu, J., Morais, T., Zervas, M., Geiselmann, M., & Kippenberg, T. J. (2018). Photonic Damascene Process for Low-Loss, High-Confinement Silicon Nitride Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 24(4), 1-11. doi:10.1109/jstqe.2018.2808258Almeida, V. R., Xu, Q., Barrios, C. A., & Lipson, M. (2004). Guiding and confining light in void nanostructure. Optics Letters, 29(11), 1209. doi:10.1364/ol.29.001209Barrios, C. A., Gylfason, K. B., Sánchez, B., Griol, A., Sohlström, H., Holgado, M., & Casquel, R. (2007). Slot-waveguide biochemical sensor. Optics Letters, 32(21), 3080. doi:10.1364/ol.32.003080Choi, J. S., & Cho, M. (2012). Limitations of a superchiral field. Physical Review A, 86(6). doi:10.1103/physreva.86.063834Kramer, C., Schäferling, M., Weiss, T., Giessen, H., & Brixner, T. (2017). Analytic Optimization of Near-Field Optical Chirality Enhancement. ACS Photonics, 4(2), 396-406. doi:10.1021/acsphotonics.6b00887Gansel, J. K., Thiel, M., Rill, M. S., Decker, M., Bade, K., Saile, V., … Wegener, M. (2009). Gold Helix Photonic Metamaterial as Broadband Circular Polarizer. Science, 325(5947), 1513-1515. doi:10.1126/science.1177031Gansel, J. K., Wegener, M., Burger, S., & Linden, S. (2010). Gold helix photonic metamaterials: A numerical parameter study. Optics Express, 18(2), 1059. doi:10.1364/oe.18.001059Yang, Z., Zhao, M., & Lu, P. (2011). Improving the signal-to-noise ratio for circular polarizers consisting of helical metamaterials. Optics Express, 19(5), 4255. doi:10.1364/oe.19.004255Schäferling, M., Yin, X., Engheta, N., & Giessen, H. (2014). Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources. ACS Photonics, 1(6), 530-537. doi:10.1021/ph5000743Esposito, M., Tasco, V., Cuscunà, M., Todisco, F., Benedetti, A., Tarantini, I., … Passaseo, A. (2014). Nanoscale 3D Chiral Plasmonic Helices with Circular Dichroism at Visible Frequencies. ACS Photonics, 2(1), 105-114. doi:10.1021/ph500318pJi, R., Wang, S.-W., Liu, X., Guo, H., & Lu, W. (2016). Hybrid Helix Metamaterials for Giant and Ultrawide Circular Dichroism. ACS Photonics, 3(12), 2368-2374. doi:10.1021/acsphotonics.6b00575Kosters, D., de Hoogh, A., Zeijlemaker, H., Acar, H., Rotenberg, N., & Kuipers, L. (2017). Core–Shell Plasmonic Nanohelices. ACS Photonics, 4(7), 1858-1863. doi:10.1021/acsphotonics.7b00496Woźniak, P., De Leon, I., Höflich, K., Haverkamp, C., Christiansen, S., Leuchs, G., & Banzer, P. (2018). Chiroptical response of a single plasmonic nanohelix. Optics Express, 26(15), 19275. doi:10.1364/oe.26.019275Höflich, K., Feichtner, T., Hansjürgen, E., Haverkamp, C., Kollmann, H., Lienau, C., & Silies, M. (2019). Resonant behavior of a single plasmonic helix. Optica, 6(9), 1098. doi:10.1364/optica.6.001098Johnson, P. B., & Christy, R. W. (1972). Optical Constants of the Noble Metals. Physical Review B, 6(12), 4370-4379. doi:10.1103/physrevb.6.4370Thiel, M., Decker, M., Deubel, M., Wegener, M., Linden, S., & von Freymann, G. (2007). Polarization Stop Bands in Chiral Polymeric Three-Dimensional Photonic Crystals. Advanced Materials, 19(2), 207-210. doi:10.1002/adma.200601497Thiel, M., von Freymann, G., & Wegener, M. (2007). Layer-by-layer three-dimensional chiral photonic crystals. Optics Letters, 32(17), 2547. doi:10.1364/ol.32.002547Singh, H. J., & Ghosh, A. (2018). Large and Tunable Chiro-Optical Response with All Dielectric Helical Nanomaterials. ACS Photonics, 5(5), 1977-1985. doi:10.1021/acsphotonics.7b01455Espinosa-Soria, A., Griol, A., & Martínez, A. (2016). Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps. Optics Express, 24(9), 9592. doi:10.1364/oe.24.009592Espinosa-Soria, A., Pinilla-Cienfuegos, E., Díaz-Fernández, F. J., Griol, A., Martí, J., & Martínez, A. (2018). Coherent Control of a Plasmonic Nanoantenna Integrated on a Silicon Chip. ACS Photonics, 5(7), 2712-2717. doi:10.1021/acsphotonics.8b00447Yin, X., Schäferling, M., Metzger, B., & Giessen, H. (2013). Interpreting Chiral Nanophotonic Spectra: The Plasmonic Born–Kuhn Model. Nano Letters, 13(12), 6238-6243. doi:10.1021/nl403705kFilippov, V. N., Kotov, O. I., & Nikolayev, V. M. (1990). Measurement of polarisation beat length in single-mode optical fibres with a polarisation modulator. Electronics Letters, 26(10), 658-660. doi:10.1049/el:19900431Zhang, Q., Hernandez, T., Smith, K. W., Hosseini Jebeli, S. A., Dai, A. X., Warning, L., … Link, S. (2019). Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes. Science, 365(6460), 1475-1478. doi:10.1126/science.aax5415Schäferling, M., Engheta, N., Giessen, H., & Weiss, T. (2016). Reducing the Complexity: Enantioselective Chiral Near-Fields by Diagonal Slit and Mirror Configuration. ACS Photonics, 3(6), 1076-1084. doi:10.1021/acsphotonics.6b00147García-Meca, C., Lechago, S., Brimont, A., Griol, A., Mas, S., Sánchez, L., … Martí, J. (2017). On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices. Light: Science & Applications, 6(9), e17053-e17053. doi:10.1038/lsa.2017.5

    Optical Chirality in Dispersive and Lossy Media

    Full text link
    [EN] Several dynamical properties of electromagnetic waves such as energy, momentum, angular momentum, and optical helicity have been recently reexamined in dispersive and lossless media. Here, we address an alternative derivation for the optical chirality, extending it so as to include dissipative effects as well. To this end, we first elaborate on the most complete form of the conservation law for the optical chirality, without any restrictions on the nature of the medium. As a result we find a general expression for the optical chirality density both in lossless and lossy dispersive media. Our definition is perfectly consistent with that originally introduced for electromagnetic fields in free space, and is applicable to any material system, including dielectrics, plasmonic nanostructures, and left-handed metamaterials.The authors are grateful to C. Garcia-Meca for valuable comments and discussions. This work was supported by funding from Ministerio de Economia y Competitividad (MINECO) of Spain under Contract No. TEC2014-51902-C2-1-R.Vázquez-Lozano, JE.; Martínez Abietar, AJ. (2018). Optical Chirality in Dispersive and Lossy Media. Physical Review Letters. 121(4):043901-1-043901-7. https://doi.org/10.1103/PhysRevLett.121.043901S043901-1043901-7121

    Fano resonances and electromagnetically induced transparency in silicon waveguides loaded with plasmonic nanoresonators

    Full text link
    The fundamental electric dipolar resonance of metallic nanostrips placed on top of a dielectric waveguide can be excited via evanescent wave coupling, thus giving rise to broad dips in the transmission spectrum of the waveguide. Here we show via numerical simulations that narrower and steeper Fano-like resonances can be obtained by asymmetrically coupling in the near field a larger nanostrip supporting an electric quadrupole in the frequency regime of interest to the original, shorter nanostrip. Under certain conditions, the spectral response corresponding to the electromagnetically induced transparency phenomenon is observed. We suggest that this hybrid plasmonic photonic approach could be especially relevant for sensing or all-optical switching applications in a photonic integrated platform such as silicon photonics.RO acknowledges support from Generalitat Valenciana through the VALi+d postdoctoral program (exp APOSTD/2014/004). AM acknowledges funding from contracts TEC2014-51902-C2-1-R and TEC2014-61906-EXP (MINECO/FEDER, UE) and NANOMET PLUS-PROMETEOII/2014/034 (Conselleria d'Educacio, Cultura i Esport).Ortuño Molinero, R.; Cortijo-Munuera, M.; Martínez Abietar, AJ. (2017). Fano resonances and electromagnetically induced transparency in silicon waveguides loaded with plasmonic nanoresonators. Journal of Optics. 19(2):025003-1-025003-7. https://doi.org/10.1088/2040-8986/aa51e0S025003-1025003-7192Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010). Plasmonics for extreme light concentration and manipulation. Nature Materials, 9(3), 193-204. doi:10.1038/nmat2630Zijlstra, P., Paulo, P. M. R., & Orrit, M. (2012). Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nature Nanotechnology, 7(6), 379-382. doi:10.1038/nnano.2012.51Kauranen, M., & Zayats, A. V. (2012). Nonlinear plasmonics. Nature Photonics, 6(11), 737-748. doi:10.1038/nphoton.2012.244Husnik, M., Niegemann, J., Busch, K., & Wegener, M. (2013). Quantitative spectroscopy on individual wire, slot, bow-tie, rectangular, and square-shaped optical antennas. Optics Letters, 38(22), 4597. doi:10.1364/ol.38.004597Fan, P., Yu, Z., Fan, S., & Brongersma, M. L. (2014). Optical Fano resonance of an individual semiconductor nanostructure. Nature Materials, 13(5), 471-475. doi:10.1038/nmat3927Rodríguez-Fortuño, F. J., Martínez-Marco, M., Tomás-Navarro, B., Ortuño, R., Martí, J., Martínez, A., & Rodríguez-Cantó, P. J. (2011). Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses. Applied Physics Letters, 98(13), 133118. doi:10.1063/1.3558916Lorente-Crespo, M., Wang, L., Ortuño, R., García-Meca, C., Ekinci, Y., & Martínez, A. (2013). Magnetic Hot Spots in Closely Spaced Thick Gold Nanorings. Nano Letters, 13(6), 2654-2661. doi:10.1021/nl400798sRodríguez-Fortuño, F. J., Espinosa-Soria, A., & Martínez, A. (2016). Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics. Journal of Optics, 18(12), 123001. doi:10.1088/2040-8978/18/12/123001Lipson, M. (2005). Guiding, modulating, and emitting light on Silicon-challenges and opportunities. Journal of Lightwave Technology, 23(12), 4222-4238. doi:10.1109/jlt.2005.858225Thomson, D., Zilkie, A., Bowers, J. E., Komljenovic, T., Reed, G. T., Vivien, L., … Nedeljkovic, M. (2016). Roadmap on silicon photonics. Journal of Optics, 18(7), 073003. doi:10.1088/2040-8978/18/7/073003Alepuz-Benache, I., García-Meca, C., Rodríguez-Fortuño, F. J., Ortuño, R., Lorente-Crespo, M., Griol, A., & Martínez, A. (2012). Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide. Nanophotonics IV. doi:10.1117/12.922300Bernal Arango, F., Kwadrin, A., & Koenderink, A. F. (2012). Plasmonic Antennas Hybridized with Dielectric Waveguides. ACS Nano, 6(11), 10156-10167. doi:10.1021/nn303907rFévrier, M., Gogol, P., Aassime, A., Mégy, R., Delacour, C., Chelnokov, A., … Dagens, B. (2012). Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide. Nano Letters, 12(2), 1032-1037. doi:10.1021/nl204265fChamanzar, M., Xia, Z., Yegnanarayanan, S., & Adibi, A. (2013). Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy. Optics Express, 21(26), 32086. doi:10.1364/oe.21.032086Peyskens, F., Subramanian, A. Z., Neutens, P., Dhakal, A., Van Dorpe, P., Le Thomas, N., & Baets, R. (2015). Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide. Optics Express, 23(3), 3088. doi:10.1364/oe.23.003088Peyskens, F., Dhakal, A., Van Dorpe, P., Le Thomas, N., & Baets, R. (2015). Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform. ACS Photonics, 3(1), 102-108. doi:10.1021/acsphotonics.5b00487Castro-Lopez, M., de Sousa, N., Garcia-Martin, A., Gardes, F. Y., & Sapienza, R. (2015). Scattering of a plasmonic nanoantenna embedded in a silicon waveguide. Optics Express, 23(22), 28108. doi:10.1364/oe.23.028108Espinosa-Soria, A., Griol, A., & Martínez, A. (2016). Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps. Optics Express, 24(9), 9592. doi:10.1364/oe.24.009592Verellen, N., Sonnefraud, Y., Sobhani, H., Hao, F., Moshchalkov, V. V., Dorpe, P. V., … Maier, S. A. (2009). Fano Resonances in Individual Coherent Plasmonic Nanocavities. Nano Letters, 9(4), 1663-1667. doi:10.1021/nl9001876Luk’yanchuk, B., Zheludev, N. I., Maier, S. A., Halas, N. J., Nordlander, P., Giessen, H., & Chong, C. T. (2010). The Fano resonance in plasmonic nanostructures and metamaterials. Nature Materials, 9(9), 707-715. doi:10.1038/nmat2810Shafiei, F., Monticone, F., Le, K. Q., Liu, X.-X., Hartsfield, T., Alù, A., & Li, X. (2013). A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nature Nanotechnology, 8(2), 95-99. doi:10.1038/nnano.2012.249Yang, Z.-J., Zhang, Z.-S., Zhang, L.-H., Li, Q.-Q., Hao, Z.-H., & Wang, Q.-Q. (2011). Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers. Optics Letters, 36(9), 1542. doi:10.1364/ol.36.001542Liu, N., Langguth, L., Weiss, T., Kästel, J., Fleischhauer, M., Pfau, T., & Giessen, H. (2009). Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Materials, 8(9), 758-762. doi:10.1038/nmat2495Harris, S. E. (1997). Electromagnetically Induced Transparency. Physics Today, 50(7), 36-42. doi:10.1063/1.881806Wu, C., Khanikaev, A. B., Adato, R., Arju, N., Yanik, A. A., Altug, H., & Shvets, G. (2011). Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nature Materials, 11(1), 69-75. doi:10.1038/nmat3161Chang, W.-S., Lassiter, J. B., Swanglap, P., Sobhani, H., Khatua, S., Nordlander, P., … Link, S. (2012). A Plasmonic Fano Switch. Nano Letters, 12(9), 4977-4982. doi:10.1021/nl302610vEspinosa-Soria, A., & Martinez, A. (2016). Transverse Spin and Spin-Orbit Coupling in Silicon Waveguides. IEEE Photonics Technology Letters, 28(14), 1561-1564. doi:10.1109/lpt.2016.2553841Amin, M., Farhat, M., & Baǧcı, H. (2013). A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications. Scientific Reports, 3(1). doi:10.1038/srep02105Knight, M. W., Wu, Y., Lassiter, J. B., Nordlander, P., & Halas, N. J. (2009). Substrates Matter: Influence of an Adjacent Dielectric on an Individual Plasmonic Nanoparticle. Nano Letters, 9(5), 2188-2192. doi:10.1021/nl900945qValamanesh, M., Borensztein, Y., Langlois, C., & Lacaze, E. (2011). Substrate Effect on the Plasmon Resonance of Supported Flat Silver Nanoparticles. The Journal of Physical Chemistry C, 115(7), 2914-2922. doi:10.1021/jp1056495Berkovitch, N., Ginzburg, P., & Orenstein, M. (2012). Nano-plasmonic antennas in the near infrared regime. Journal of Physics: Condensed Matter, 24(7), 073202. doi:10.1088/0953-8984/24/7/073202Lu, H., Liu, X., Mao, D., & Wang, G. (2012). Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Optics Letters, 37(18), 3780. doi:10.1364/ol.37.003780Chen, J., Sun, C., & Gong, Q. (2013). Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide. Optics Letters, 39(1), 52. doi:10.1364/ol.39.000052Binfeng, Y., Hu, G., Zhang, R., & Yiping, C. (2016). Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator. Journal of Optics, 18(5), 055002. doi:10.1088/2040-8978/18/5/05500

    Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics

    Get PDF
    [EN] The interaction of light with subwavelength metallic nano-structures is at the heart of different current scientific hot topics, namely plasmonics, metamaterials and nanoantennas. Research in these disciplines during the last decade has given rise to new, powerful concepts providing an unprecedented degree of control over light manipulation at the nanoscale. However, only recently have these concepts been used to increase the capabilities of light processing in current photonic integrated circuits (PICs), which traditionally rely only on dielectric materials with element sizes larger than the light wavelength. Amongst the different PIC platforms, silicon photonics is expected to become mainstream, since manufacturing using well-established CMOS processes enables the mass production of low-cost PICs. In this review we discuss the benefits of introducing recent concepts arisen from the fields of metamaterials, plasmonics and nanoantennas into a silicon photonics integrated platform. We review existing works in this direction and discuss how this hybrid approach can lead to the improvement of current PICs enabling novel and disruptive applications in photonics.AM and AE-S acknowledge funding from contracts TEC2014-51902-C2-1-R and TEC2014-61906-EXP (MINECO/FEDER, UE) and, FR-F acknowledges funding from EPSRC (UK).Rodríguez Fortuño, FJ.; Espinosa-Soria, A.; Martínez Abietar, AJ. (2016). Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics. Journal of Optics. 18(12):123001-1-123001-14. https://doi.org/10.1088/2040-8978/18/12/123001S123001-1123001-14181

    Effect of loss on the dispersion relation of photonic and phononic crystals

    Full text link
    [EN] A theoretical analysis is made of the transformation of the dispersion relation of waves in artificial crystals under the influence of loss, including the case of photonic and phononic crystals. Considering a general dispersion relation in implicit form, an analytic procedure is derived to obtain the transformed dispersion relation. It is shown that the dispersion relation is generally shifted in the complex (k,ω) plane, with k the wave number and ω the angular frequency. The value of the shift is obtained explicitly as a function of the perturbation of material constants accounting for loss. The method is shown to predict correctly the transformation of the complex band structure k(ω). Several models of the dispersion relation near a symmetry point of the Brillouin zone are analyzed. A lower bound for the group velocity, related to the local shape of the band around symmetry points, is derived for each caseFinancial support from the European Community's Seventh Framework program (FP7/2007-2013) under Grant Agreement No. 233883 (TAILPHOX) is gratefully acknowledged. V. L. acknowledges the support of the Labex ACTION program (Contract No. ANR-11-LABX-01-01).Laude, V.; Escalante Fernández, JM.; Martínez Abietar, AJ. (2013). Effect of loss on the dispersion relation of photonic and phononic crystals. Physical Review B. 88:2243021-2243028. https://doi.org/10.1103/PhysRevB.88.224302S2243021224302888Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022-2025. doi:10.1103/physrevlett.71.2022Pennec, Y., Vasseur, J. O., Djafari-Rouhani, B., Dobrzyński, L., & Deymier, P. A. (2010). Two-dimensional phononic crystals: Examples and applications. Surface Science Reports, 65(8), 229-291. doi:10.1016/j.surfrep.2010.08.002Maldovan, M., & Thomas, E. L. (2006). Simultaneous localization of photons and phonons in two-dimensional periodic structures. Applied Physics Letters, 88(25), 251907. doi:10.1063/1.2216885Sadat-Saleh, S., Benchabane, S., Baida, F. I., Bernal, M.-P., & Laude, V. (2009). Tailoring simultaneous photonic and phononic band gaps. Journal of Applied Physics, 106(7), 074912. doi:10.1063/1.3243276Baba, T. (2008). Slow light in photonic crystals. Nature Photonics, 2(8), 465-473. doi:10.1038/nphoton.2008.146Thévenaz, L. (2008). Slow and fast light in optical fibres. Nature Photonics, 2(8), 474-481. doi:10.1038/nphoton.2008.147Laude, V., Beugnot, J.-C., Benchabane, S., Pennec, Y., Djafari-Rouhani, B., Papanikolaou, N., … Martinez, A. (2011). Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs. Optics Express, 19(10), 9690. doi:10.1364/oe.19.009690Vlasov, Y. A., O’Boyle, M., Hamann, H. F., & McNab, S. J. (2005). Active control of slow light on a chip with photonic crystal waveguides. Nature, 438(7064), 65-69. doi:10.1038/nature04210Hughes, S., Ramunno, L., Young, J. F., & Sipe, J. E. (2005). Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity. Physical Review Letters, 94(3). doi:10.1103/physrevlett.94.033903O’Faolain, L., White, T. P., O’Brien, D., Yuan, X., Settle, M. D., & Krauss, T. F. (2007). Dependence of extrinsic loss on group velocity in photonic crystal waveguides. Optics Express, 15(20), 13129. doi:10.1364/oe.15.013129Pedersen, J. G., Xiao, S., & Mortensen, N. A. (2008). Limits of slow light in photonic crystals. Physical Review B, 78(15). doi:10.1103/physrevb.78.153101Hussein, M. I. (2009). Theory of damped Bloch waves in elastic media. Physical Review B, 80(21). doi:10.1103/physrevb.80.212301Moiseyenko, R. P., & Laude, V. (2011). Material loss influence on the complex band structure and group velocity in phononic crystals. Physical Review B, 83(6). doi:10.1103/physrevb.83.064301Figotin, A., & Vitebskiy, I. (2006). Slow light in photonic crystals. Waves in Random and Complex Media, 16(3), 293-382. doi:10.1080/17455030600836507Thurston, R. N. (1977). Direct Calculation of the Group Velocity. IEEE Transactions on Sonics and Ultrasonics, 24(2), 109-110. doi:10.1109/t-su.1977.30920Hsue, Y.-C., Freeman, A. J., & Gu, B.-Y. (2005). Extended plane-wave expansion method in three-dimensional anisotropic photonic crystals. Physical Review B, 72(19). doi:10.1103/physrevb.72.195118Stefanou, N., Karathanos, V., & Modinos, A. (1992). Scattering of electromagnetic waves by periodic structures. Journal of Physics: Condensed Matter, 4(36), 7389-7400. doi:10.1088/0953-8984/4/36/013Laude, V., Achaoui, Y., Benchabane, S., & Khelif, A. (2009). Evanescent Bloch waves and the complex band structure of phononic crystals. Physical Review B, 80(9). doi:10.1103/physrevb.80.092301Psarobas, I. E., Stefanou, N., & Modinos, A. (2000). Scattering of elastic waves by periodic arrays of spherical bodies. Physical Review B, 62(1), 278-291. doi:10.1103/physrevb.62.278Laude, V., Moiseyenko, R. P., Benchabane, S., & Declercq, N. F. (2011). Bloch wave deafness and modal conversion at a phononic crystal boundary. AIP Advances, 1(4), 041402. doi:10.1063/1.3675828Yang, S., Page, J. H., Liu, Z., Cowan, M. L., Chan, C. T., & Sheng, P. (2002). Ultrasound Tunneling through 3D Phononic Crystals. Physical Review Letters, 88(10). doi:10.1103/physrevlett.88.104301Davoyan, A. R., Liu, W., Miroshnichenko, A. E., Shadrivov, I. V., Kivshar, Y. S., & Bozhevolnyi, S. I. (2011). Mode transformation in waveguiding plasmonic structures. Photonics and Nanostructures - Fundamentals and Applications, 9(3), 207-212. doi:10.1016/j.photonics.2011.01.00

    Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs

    Full text link
    We present the design of two waveguides (ladder and slot-ladder waveguides) implemented in a silicon honeycomb photonic-phononic crystal slab, which can support slow electromagnetic and elastic guided modes simultaneously. Interestingly, the photonic bandgap extends along the first Brillouin zone; so with an appropriate design, we can suppress propagation losses that arise coupling to radiative modes. From the phononic point of view, we explain the slow elastic wave effect by considering the waveguide as a chain of coupled acoustic resonators (coupled resonant acoustic waveguide), which provides the mechanism for slow elastic wave propagation. The ladder waveguide moreover supports guided phononic modes outside the phononic bandgap, similar to photonic slab modes, resulting in highly confined phononic modes propagating with low losses. Such waveguides could find important applications to the observation of optomechanical and electrostriction effects, as well as to enhanced stimulated Brillouin scattering and other opto-acoustical effects in nanoscale silicon structures. We also suggest that they can be the basis for a "perfect" photonic-phononic cavity in which damping by coupling to the surroundings is completely forbidden.Financial support from the multidisciplinary project of UPV, PAID-05-12 (CE 20130141).Escalante Fernández, JM.; Martínez Abietar, AJ.; Laude, V. (2014). Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs. Journal of Applied Physics. 115(6):64302-64307. https://doi.org/10.1063/1.4864661S64302643071156Maldovan, M., & Thomas, E. L. (2006). Simultaneous localization of photons and phonons in two-dimensional periodic structures. Applied Physics Letters, 88(25), 251907. doi:10.1063/1.2216885Maldovan, M., & Thomas, E. L. (2006). Simultaneous complete elastic and electromagnetic band gaps in periodic structures. Applied Physics B, 83(4), 595-600. doi:10.1007/s00340-006-2241-ySadat-Saleh, S., Benchabane, S., Baida, F. I., Bernal, M.-P., & Laude, V. (2009). Tailoring simultaneous photonic and phononic band gaps. Journal of Applied Physics, 106(7), 074912. doi:10.1063/1.3243276Mohammadi, S., Eftekhar, A. A., Khelif, A., & Adibi, A. (2010). Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs. Optics Express, 18(9), 9164. doi:10.1364/oe.18.009164Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J., & Painter, O. (2009). Optomechanical crystals. Nature, 462(7269), 78-82. doi:10.1038/nature08524Laude, V., Beugnot, J.-C., Benchabane, S., Pennec, Y., Djafari-Rouhani, B., Papanikolaou, N., … Martinez, A. (2011). Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs. Optics Express, 19(10), 9690. doi:10.1364/oe.19.009690Pennec, Y., Rouhani, B. D., El Boudouti, E. H., Li, C., El Hassouani, Y., Vasseur, J. O., … Martinez, A. (2010). Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs. Optics Express, 18(13), 14301. doi:10.1364/oe.18.014301Papanikolaou, N., Psarobas, I. E., & Stefanou, N. (2010). Absolute spectral gaps for infrared light and hypersound in three-dimensional metallodielectric phoxonic crystals. Applied Physics Letters, 96(23), 231917. doi:10.1063/1.3453448SoljaČiĆ, M., & Joannopoulos, J. D. (2004). Enhancement of nonlinear effects using photonic crystals. Nature Materials, 3(4), 211-219. doi:10.1038/nmat1097Khelif, A., Mohammadi, S., Eftekhar, A. A., Adibi, A., & Aoubiza, B. (2010). Acoustic confinement and waveguiding with a line-defect structure in phononic crystal slabs. Journal of Applied Physics, 108(8), 084515. doi:10.1063/1.3500226Escalante, J. M., Martínez, A., & Laude, V. (2013). Dispersion relation of coupled-resonator acoustic waveguides formed by defect cavities in a phononic crystal. Journal of Physics D: Applied Physics, 46(47), 475301. doi:10.1088/0022-3727/46/47/475301Adibi, A., Yong Xu, Lee, R. K., Yariv, A., & Scherer, A. (2000). Properties of the slab modes in photonic crystal optical waveguides. Journal of Lightwave Technology, 18(11), 1554-1564. doi:10.1109/50.896217Adibi, A., Xu, Y., Lee, R. K., Yariv, A., & Scherer, A. (2001). Guiding mechanisms in dielectric-core photonic-crystal optical waveguides. Physical Review B, 64(3). doi:10.1103/physrevb.64.033308Krautkrämer, J., & Krautkrämer, H. (1990). Ultrasonic Testing of Materials. doi:10.1007/978-3-662-10680-8Puerto, D., Griol, A., Escalante, J. M., Pennec, Y., Djafari-Rouhani, B., Beugnot, J., … Martinez, A. (2012). Honeycomb Photonic Crystal Waveguides in a Suspended Silicon Slab. IEEE Photonics Technology Letters, 24(22), 2056-2059. doi:10.1109/lpt.2012.2219516Song, B.-S., Noda, S., Asano, T., & Akahane, Y. (2005). Ultra-high-Q photonic double-heterostructure nanocavity. Nature Materials, 4(3), 207-210. doi:10.1038/nmat1320Safavi-Naeini, A. H., Alegre, T. P. M., Winger, M., & Painter, O. (2010). Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity. Applied Physics Letters, 97(18), 181106. doi:10.1063/1.3507288Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S., & Painter, O. (2012). Optimized optomechanical crystal cavity with acoustic radiation shield. Applied Physics Letters, 101(8), 081115. doi:10.1063/1.4747726Shin, H., Qiu, W., Jarecki, R., Cox, J. A., Olsson, R. H., Starbuck, A., … Rakich, P. T. (2013). Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nature Communications, 4(1). doi:10.1038/ncomms2943Chan, J., Alegre, T. P. M., Safavi-Naeini, A. H., Hill, J. T., Krause, A., Gröblacher, S., … Painter, O. (2011). Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478(7367), 89-92. doi:10.1038/nature1046

    On-Chip Optimal Stokes Nanopolarimetry Based on Spin-Orbit Interaction of Light

    Get PDF
    [EN] Full measurement of the polarization of light at the nanoscale is expected to be crucial in many scientific and technological disciplines. Ideally, such measurements will require miniaturized Stokes polarimeters able to determine polarization nondestructively, locally, and in real time. For maximum robustness in measurement, the polarimeters should also operate optimally. Recent approaches making use of plasmonic nanostructures or metasurfaces are not able to fulfill all these requirements simultaneously. Here, we propose and demonstrate a method for subwavelength-footprint Stokes nanopolarimetry based on spin-orbit interaction of light. The method, which basically consists on a subwavelength scatterer coupled to a (set of) multimode waveguide(s), can fully determine the state of polarization satisfying all the previous features. Remarkably, the nanopolarimetry technique can operate optimally (we design a nanopolarimeter whose polarization basis spans 99.7% of the maximum tetrahedron volume inside the Poincaré sphere) over a broad bandwidth. Although here experimentally demonstrated on a silicon chip at telecom wavelengths, spin-orbit interaction-based nanopolarimetry is a universal concept to be applied in any wavelength regime or technological platform.A.M. acknowledges support from the Spanish Ministry of Economy and Competiveness (MINECO) under grant TEC2014-51902-C2-1-R and the Valencian Conselleria d'Educacion, Cultura i Esport under grant PROMETEOII/2014/034. FJ.R.-F. acknowledges support from the European Research Council under project ERC-2016-STG-714151-PSINFONI. A.E.-S. acknowledges support from the Spanish Ministry of Economy and Competiveness (MINECO) under grant BES-2015-073146.Espinosa Soria, A.; Rodríguez Fortuño, FJ.; Griol Barres, A.; Martínez Abietar, AJ. (2017). On-Chip Optimal Stokes Nanopolarimetry Based on Spin-Orbit Interaction of Light. Nano Letters. 17(5):3139-3144. https://doi.org/10.1021/acs.nanolett.7b00564S3139314417
    corecore