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Abstract: Indirect bandgap semiconductors such as silicon are not efficient light 

emitters because a phonon with a high momentum is required to transfer an electron 

from the conduction to the valence band. In a recent study [M. J. Chen et al., Japanese 

Journal of Applied Physics 45, 6576–6588 (2006)] an analytical expression of the 

optical gain in bulk indirect bandgap semiconductors was obtained. The main 

conclusion was that the free-carrier absorption was much higher than the optical gain 

at ambient temperature, which prevents lasing. In this work, we consider the case in 

which the semiconductor material is engineered to form an optical cavity characterized 

by a certain Purcell factor. We obtain that although the optical gain is increased, losses 

due to free carriers increase in the same way so lasing is also prevented even when 

creating a high-Q optical cavity. 
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I. Introduction 

Silicon photonics has boomed in the last few years as a promising way to create low-

cost, high-speed optical interconnects that replace copper wires in future computers [1-

3]. The main advantage of using silicon as a photonic material is that it can be 

processed in microelectronics foundries with high yield and low cost. However, silicon 

has a main drawback: it is an indirect bandgap semiconductor in which radiative 

transitions are unlikely and, as so, a very inefficient light emitter. A silicon laser would 

allow monolithic integration of photonics and electronics on a same chip [2]. Despite of 

huge research efforts by many groups around the world, an electrically-pumped room-

temperature silicon laser - perhaps the most pursued challenge within photonics - 

remains elusive.  

Bulk crystalline silicon has an indirect energy bandgap so emission of light requires the 

participation of phonons with the right momentum in order to satisfy the momentum 

conservation. The low probability of the phonon-mediated radiative recombination 

process makes silicon a highly inefficient light source. In fact, there exists the general 

belief that optical gain and thus laser operation in indirect bandgap semiconductors is 

not possible because the small optical gain-  which could be achieved in principle via 

band–band transitions mediated by phonons- will always be overcompensated by free 

carrier absorption, regardless of the excitation conditions [4]. This statement, together 

with the fact that no silicon lasing at room temperature has been reported yet, explains 

why typically III-V semiconductors having a direct band gap has been used to 

implement lasers in the near –infrared regime (such as the important optical 

communications band at wavelength about 1550 nm). 

However, some recent theoretical works analysing the possibility of achieving optical 

gain in indirect bandgap semiconductors at room temperature have given rise to certain 

controversy. For instance, Trupke and co-workers suggested that optical gain in silicon 

is theoretically possible and pointed out that the most suitable energy region is the sub-

bandgap region (near infrared) where processes involving phonons could help in 

achieving gain [5]. Moreover, they obtained that indirect optical transitions can provide 

negative absorption, i.e., optical gain without an electronic population inversion, but 

with the assistance of proper phonons. These theoretical arguments were also 

supported in Ref. [6] where an analytical expression for optical gain via phonon-

assisted optical transitions in indirect bandgap semiconductors is presented. The 

magnitude of optical gain in bulk crystalline silicon is calculated and shown to be 

smaller than the free carrier absorption at room temperature. However, it is shown, for 
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the first time, that the optical gain is greater than the free carrier absorption in bulk 

crystalline silicon at the temperature below 23 K [6].  

Other some experimental works have reported an increased photoluminescence from 

silicon when photonic cavities with high Q-factor are created Ref.[7-15]. In this case, 

the generation of photons is enhanced in comparison to the case of bulk silicon [16] 

because of the Purcell effect [17] (or, in other works, the increase of the optical density 

of states inside the cavity). However, those results have been mainly attributed to an 

increase of the spontaneous emission rate but nor lasing neither optical gain have 

been directly observed. So the natural question that arises is: can optical gain at room 

temperature be obtained in indirect bandgap semiconductors when an optical cavity 

instead of a bulk material is considered? In this work we try to answer this question by 

starting from the analytical results obtained in Ref. [6].  

II. Rate equations 

Figure 1 shows a schematic diagram that describes all possible optical transitions 

taking place in an indirect bandgap semiconductor such as silicon. It can be seen how 

three different kinds of particles are involved in this process: electrons, photons and 

phonons (which are not involved in the same process when taking place in direct 

bandgap semiconductors).  

 

Figure1. Schematic diagram of all possible optical transitions in an indirect bandgap 

semiconductor 
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In Ref. [6], M. J. Chen and co-workers obtained a theoretical expression for the 

different transition rates that occur in bulk indirect bandgap semiconductors. For the 

sake of clarity, we represent here the expression of these rates: 
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In Eqs. (1)-(4),  Rsp is the spontaneous emission rate, Rst is the stimulated emission 

rate, Rst is the absorption rate, np is the photon occupation number, nq is the phonon 

occupation number,   is the photon energy,   is the phonon energy, F  is the 

difference between the quasi-Fermi levels for electrons and holes, N is the electron 

concentration, P is hole concentration (in our study we consider that N=P), Eg is the 

indirect bandgap energy, KB is the Boltzman constant and T is the temperature (we 

assume room temperature throughout this work). In this work we consider silicon as 

indirect bandgap semiconductor, so the radiative transition rates can be calculated 

using the Eqs.(1)-(4) and the values given in the Table I in Ref.[6]. We also consider all 

the assumptions made in Ref. [6]. 

The following equations system1 [6] governs the temporal variation of the photon 

density (Np), the phonon density (Nq) and the carrier density (N): 
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where Rp is the pumping rate by current injection or optical excitation,  is the 

spontaneous emission factor representing the fraction of spontaneous emission 

                                                           
1
 The subscript B stands for the different rates in bulk silicon. 
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entering the optical mode has been considered, Nqo is the phonon density at 

thermodynamic equilibrium, and cp andq are the lifetime of carriers, photons and 

phonons, respectively. The losses of photons due to the effects such as optical 

scattering or free carrier absorption can be characterized by a photon lifetime p [6]. 

The loss of phonons (last term of Eq.(5c), which represent the anharmonic phonon 

interaction, can be characterized by a phonon lifetime q[6]. The recombination lifetime 

of carriers is given by 1/CC,RAD C,NRADC,RAD C,SRH C,Auger. In Ref.[6], it 

is assumed that the non-radiative recombination rate is determined by the non-radiative 

Shockley-Read-Hall (SRH) mechanism. However, in the case of a very high carrier 

density in silicon, the Auger recombination lifetime is the dominant recombination 

mechanism, so C,SRH C,Auger ,[18-20]. Considering the above and taking into 

account the carrier density that we consider in this work (~1019cm-3) then we get 

C,RAD=10-4
and C,NRAD=10-7 in silicon bulk. 

III. Increase of the optical gain with Purcell factor. 

The system of equations (5) was solved in [6] for bulk silicon. In this work we have 

solved the same system but considering a photonic cavity characterized by a quality 

factor (Q), a modal volume (V0) and Purcell factor (Fp). These three parameters are 

related to each other by the following equation [17]: 
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where  is the resonant wavelength of the cavity and n its refractive index. It has to be 

mentioned that we consider that the cavity only affects the photonic density of states by 

means of FP but it has no effect on the statistics of the phonons involved in the 

emission process. This is a good assumption taking into account that the wavelength of 

the phonons involved in the emission process is much smaller than the optical cavity 

size (which should be at least half a photon wavelength) so that phonons see a bulk 

material.  

In the system under consideration, the spontaneous emission (Bsp), stimulated 

emission (Bst) and absorption (Bab) coefficients are given by the Fermi Golden Rule, 


 22
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 . For instance, the spontaneous emission coefficient can be 

obtained as: 
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The Purcell factor Fp can be obtained as the ratio between the transition rate 

coefficients inside the cavity (Wcav) and in bulk (WB): 
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So the spontaneous emission coefficient in the cavity is obtained as: 

  ,, BspPcavsp BFB      (10) 

This means that the photonic cavity increases the spontaneous emission coefficient by 

a Fp factor. The creation of the cavity also affects several parameters by means of Fp. 

For instance, the M parameter given by Eq. (4), which is proportional to Bsp, will be also 

proportional to FP, when considering the photonic cavity: 

  MFM BPcav      (11) 

The photon lifetime inside the cavity is given by [21]: 
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Then, from Eq. (6) we get that the photon lifetime inside the cavity is also enhanced by 

Fp in comparison with the photon lifetime in bulk:  

     Bp,cavp,  PF      (13) 

The density of states per energy interval for the single photon is [22]: 
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The group index ng is proportional of a photonic cavity is proportional to the photon 

lifetime and therefore, to the quality factor, so we also get that the density of states per 

energy interval is enhanced by Fp when the photonic cavity is created:  

   )()( BPcav EDFED      (15) 

This is a quite intuitive result: the density of states inside the optical cavity is increased 

proportional to the Purcell factor. If we consider the density of states, Kp, which can be 

calculated as   )(Kp  dEED  we get that it is also proportional to Fp, as:  

   p,BPp,cav KFK       (16) 
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It can be seen that the main effect of the optical cavity is to enhance all these 

parameters (Bsp, M, p, D) by the Purcell factor.  

Beside, we have to consider that  C,RAD=1/WRAD, where WRAD is the radiative transition 

coefficient that is proportional to Purcell Factor. Some experimental values of the 

Purcell factor in light-emitting silicon optical cavities tuned close to the emission 

wavelength can be seen in Table I of Ref. [13]. Values between 160-1000 are reported 

depending strongly on the considered cavity mode. However, researchers have 

designed cavities with quality factors of the order  of 106 and modal volumes of the 

order ~0.1(n)3 at wavelengths around 1000nm, which would enable Purcell factor 

values greater than 105 [23,25]. If we consider this value of the Purcell factor we can 

consider, as a first approximation, thatC,RAD>C,NRAD and then CC,RAD can be 

considered a good approximation because the optical cavity will enhance the radiative 

transition in comparison with non-radiative transition. So we get: 

   
BC,

cavC,

PF


       (17) 

Therefore, in contrast to the previously addressed parameters, now we obtain that the 

total lifetime of carriers is inversely proportional to the Purcell factor when the optical 

cavity is created. Substituting the expressions (11), (13),(15) and (16) in our system of 

coupled equations (5) we get: 
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In the steady-state regime all the time derivatives are zero so from Eq. (18b) we obtain:  
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and 
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Eq. (20) stands for the threshold condition. Our results show that inside the optical 

cavity the threshold condition for laser oscillation is not so restrictive as in bulk and the 

photon loss of the resonant cavity is quickly compensated. We can also obtain the 

following expression for the optical gain in the cavity: 
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which is the same as in Ref. [6] but with the addition of the Purcell factor when 

considering the spontaneous emission rate: 

)()( ,,   BspPcavsp RFR               (22)  

We can see that the optical gain increases in proportion to the Purcell factor, as it could 

be expected:  

)()(   BPcav gFg          (23) 

where gB is the optical gain in bulk and gcav is the optical gain inside the cavity. 

IV. Variation of the optical gain, photon density, phonon density, carrier 

density, oscillation laser threshold and threshold pumping 

As in Ref. [6], we will discuss the steady-state solutions in two different situations: 

below and above threshold, but now ,in the case where we have a silicon cavity. 

a) Below threshold, the photon density is low, so the net stimulated emission rate 

can be neglected and: 
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 ppp nKN    ;     qqq nKN      (25d) 

Using the values shown in Table I of Ref. [6], which can be considered as typical 

values in silicon, we get that the first term in the left side of Eq. (25c) is approximately 

equal to FP(nq+1)x10-4 whilst the second term is approximately equal to (nq- nq0)x1012. 

Therefore, we can neglect the first term and then approximate nq  nq0 at room 

temperature, which is a good assumption provided that FP ≤ 1014 . Then we obtain: 
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From Eq. (32a) we get that the carrier concentration is: 
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Using again the values of the Table I in Ref. [6] and performing some approximations 

we get: 
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The higher the Purcell factor (or the Q-factor of the photonic cavity), the better the 

approximation in Eq. (28) will be. Finally, by substituting Eqs. (26) and (28) into Eq. 

(25b), the photon density in the cavity is obtained as: 
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b) Above threshold, it occurs that  F , so finally the threshold 

condition for laser oscillation is: 
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Substituting the threshold condition given by Eq. (30) into Eqs. (31a) and (31c) the 

following equation is obtained  
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Using the values in Ref. [6] again, we get: 
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If Fp<<1014 the term A1
2 is found to be much greater than A2, so A2 can be neglected 

and the approximate solution to Eq. (32) is: 
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Substituting Eq. (35) into Eq. (30) we get the following approximation for the threshold 

of the carrier density: 
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We can see that FP decreases the carrier density threshold to get the laser oscillation. 

Substituting  Eqs. (36) and (30) into Eq. (31a) and using the approximation nq nq0, we 

get:  
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Where we must take into account that Bpp Kn , is the photon density in bulk but 

BppP KnF , is the photon density inside the photonic cavity, and Rth is the pumping rate 

at threshold. The final expressions we get for the carrier, photon and phonon densities 

are summarized in Table I. 

Table I  Summary of theoretical expression for for the carrier, photon and phonon densities 
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Table 1 Final expressions for Np, Nq and N in the photonic cavity. 

 

 

 

V. Numerical results 

In all the numerical results displayed in this section we employ again the parameters 

summarized in Table I of Ref. [6]. To start with, in Fig. 2 we represent the pumping rate 
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at threshold, Rp,th, as a function of the cavity Purcell factor. The Rth dependence on 

 1 pF is intuitive since FP decreases the carrier lifetime, so increasing the pumping 

rate is necessary to get the population inversion. We should mention that we have 

considered that the carrier lifetime is equal to the radiative lifetime, which can be 

considered a good approximation in our scenario as previously discussed. 

 

Figure 2. Dependence of Rp,th on the Purcell factor. 

 

Figure 3 shows the carrier concentration, phonon density and photon density as a 

function of the pumping rate Rp for Fp values between 100 and 2000 (the arrow 

indicates the direction of increasing Fp). In Fig. 3(a) we can see that the threshold 

charge concentration decreases with Fp, which means that we do not need a very high 

population inversion to reach the laser oscillation, and as a result, the laser oscillation 

condition is less restrictive. In Figs. 3(b) and (c) we can see that both the phonon and 

photon densities grow rapidly after the threshold, which is a clear signature of the co-

stimulated emission of photons and phonons. But we can also observe that the phonon 

and photon densities do not grow in the same way. This can be explained by 

considering that the Purcell effect affects only the photons lifetime but not the phonons 

lifetime. This observation leaves an open door to investigate a possible Purcell 

effect for phonons. 
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(a) 

 

(b) 
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(c) 

Figure 3. Carrier density (a), phonon density (b) and photon density (c) as a function of the pumping 

rate for values of the Purcell factor between 100 and 2000.      

VI. Free-carrier absorption and optical gain 

In order to achieve optical amplification, and eventually lasing, the magnitude of optical 

amplification has to be large enough to overcome the optical losses resulting from the 

silicon itself and the optical cavity. A major loss mechanism that can hinder 

amplification is free carrier absorption (FCA). The FCA magnitude, FC, in bulk silicon 

at around room temperature is given by following empirical expression [25, 26], 

    1051.01001.1 22020 TPNFC        (38)  

where N and P are, respectively, the electrons and holes densities. The expression of 

the optical gain inside the cavity as a function of N is: 

      
)(

exp
1

1)1(
)(8

)( 2

22

23
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n

n
nM

n

ch
Fg

Bq

q

qBPcav




















 












   (39)  

If we compare the FCA (Eq. (38)) and the optical gain (Eq. (39)) for different values of 

Purcell factor we get that the optical gain the gain exceeds the FCA for Fp > 30. 

However, this result is in contrast with the fact that optical gain in silicon cavities at 

room temperature has not been observed experimentally, which leads us to conclude 

that we need to consider also how the photonic cavity affects the FCA losses.  In Ref. 

[27], T. F. Bogges and co-workers study both two photon absorption (TPA) and FCA in 
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crystalline silicon. They describe the propagation of a optical pulse travelling along the 

z direction taking into account the presence of linear absorption, TPA and FCA, using 

this expression: 

  2 NIII
dz

dI
      (40)  

where I is the irradiance,is the linear absorption, is TPA coefficient and  is the 

FCA cross section. The irradiance dimension is: 
2

2

tm

ωΠ
Wm[I]

p
 , where p is the 

photon number. Since p=NpV Eq.(40) can be transformed into: 

   
2

ppp

p
N

dz

d



     (41)  

And finally we get 

     V22

ppp

p
NNVNVN

dz

dN
V       (42)  

The last term in the right side of Eq.(42) is the loss due to FCA,  VpFCA NN  . We 

obtained before that the photon density is proportional to Purcell factor inside of the 

cavity. Therefore, it is straightforward to conclude that the FCA losses inside of the 

cavity are proportional to Fp:  , PcavFCA F . The result is that both FCA losses and 

optical gain scale with the Purcell factor in the same way, just as it occurs in a bulk 

semiconductor. In the cavity at room temperature we get the results depicted in Fig. 4 

which show an identical behaviour to those presented in Ref. [6] for bulk silicon. 

 

Figure 4. FCA loss (red line) and optical (black line) in an indirect bandgap semiconductor cavity 

at ambient temperature 
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By taking into account this finding, we believe that the luminescence peaks from silicon 

cavities reported in Refs. [7,18-20] are not due to optical gain, but to an increase of the 

quantum efficiency in the process of emission. The quantum efficiency in the radiative 

process can be is defined as: 

   
nradrad

cav

rad

cav

WW

W


      (43) 

Since P

rad

cav FW  , we get: 

      

P

nrad

rad

bulk

rad

bulk

F

W
W

W



      (44)  

It can be seen that the quantum efficiency approaches unity for large values of the 

Purcell factor, which can explain the luminescence peaks, but lasing is not feasible in 

silicon cavities at room temperature. 

VII. Conclusion 

In this work we have described theoretically the different processes related to light 

emission from indirect bandgap semiconductor cavities. We have obtained that net 

optical gain in silicon at room temperature is not feasible despite the use of  a high-Q 

photonic cavity since the Purcell factor affects the optical gain and the free-carrier 

absorption losses in the same way. In this sense, it has to be mentioned that we only 

have considered the losses to due free carrier absorption. However, other losses 

mechanisms will also co-exists in the system under study, which will further hinder the 

possibility of lasing emission.  
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