72 research outputs found

    Microglia and Microglia-Like Cells: Similar but Different

    Get PDF
    We want to thank all people for fighting in the front line of the COVID-19 pandemic, during which most parts of this article was written. We also acknowledge the task of the reviewers who contributed to improve the quality of this article.Microglia are the tissue-resident macrophages of the central nervous parenchyma. In mammals, microglia are thought to originate from yolk sac precursors and posteriorly maintained through the entire life of the organism. However, the contribution of microglial cells from other sources should also be considered. In addition to “true” or “bonafide” microglia, which are of embryonic origin, the so-called “microglia-like cells” are hematopoietic cells of bone marrow origin that can engraft the mature brain mainly under pathological conditions. These cells implement great parts of the microglial immune phenotype, but they do not completely adopt the “true microglia” features. Because of their pronounced similarity, true microglia and microglia-like cells are usually considered together as one population. In this review, we discuss the origin and development of these two distinct cell types and their differences. We will also review the factors determining the appearance and presence of microglia-like cells, which can vary among species. This knowledge might contribute to the development of therapeutic strategies aiming at microglial cells for the treatment of diseases in which they are involved, for example neurodegenerative disorders like Alzheimer’s and Parkinson’s diseases.University of Granada, Spain, and FEDER-Junta de Andalucía, Spain (grant number A1-CTS-324- UGR18

    PARP-1 activation after oxidative insult promotes energy stress-dependent phosphorylation of YAP1 and reduces cell viability

    Get PDF
    [EN]Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that catalyze the transfer of ADP-ribose units from NAD+ to several target proteins involved in cellular stress responses. Using WRL68 (HeLa derivate) cells, we previously showed that PARP-1 activation induced by oxidative stress after H2O2 treatment lead to depletion of cellular NAD+ and ATP, which promoted cell death. In this work, LC-MS/MS-based phosphoproteomics in WRL68 cells showed that the oxidative damage induced by H2O2 increased the phosphorylation of YAP1, a transcriptional co-activator involved in cell survival, and modified the phosphorylation of other proteins involved in transcription. Genetic or pharmacological inhibition of PARP-1 in H2O2-treated cells reduced YAP1 phosphorylation and degradation and increased cell viability. YAP1 silencing abrogated the protective effect of PARP-1 inhibition, indicating that YAP1 is important for the survival of WRL68 cells exposed to oxidative damage. Supplementation of NAD+ also reduced YAP1 phosphorylation, suggesting that the loss of cellular NAD+ caused by PARP-1 activation after oxidative treatment is responsible for the phosphorylation of YAP1. Finally, PARP-1 silencing after oxidative treatment diminished the activation of the metabolic sensor AMPK. Since NAD+ supplementation reduced the phosphorylation of some AMPK substrates, we hypothesized that the loss of cellular NAD+ after PARP-1 activation may induce an energy stress that activates AMPK. In summary, we showed a new crucial role of PARP-1 in the response to oxidative stress in which PARP-1 activation reduced cell viability by promoting the phosphorylation and degradation of YAP1 through a mechanism that involves the depletion of NAD+

    Ozone Therapy for Tumor Oxygenation: a Pilot Study

    Get PDF
    Tumor hypoxia is an adverse factor for chemotherapy and radiotherapy. Ozone therapy is a non-conventional form of medicine that has been used successfully in the treatment of ischemic disorders. This prospective study was designed to assess the effect of ozone therapy on tumor oxygenation. Eighteen subjects were recruited for the study. Systemic ozone therapy was administered by autohemotransfusion on three alternate days over one week. Tumor oxygenation levels were measured using polarographic needle probes before and after the first and the third ozone therapy session. Overall, no statistically significant change was observed in the tumor oxygenation in the 18 patients. However, a significant decrease was observed in hypoxic values ≤10 and ≤5 mmHg of pO(2). When individually assessed, a significant and inverse non-linear correlation was observed between increase in oxygenation and the initial tumor pO(2) values at each measuring time-point, thus indicating that the more poorly-oxygenated tumors benefited most (rho = −0.725; P = 0.001). Additionally, the effect of ozone therapy was found to be lower in patients with higher hemoglobin concentrations (rho = −0.531; P < 0.034). Despite being administered over a very short period, ozone therapy improved oxygenation in the most hypoxic tumors. Ozone therapy as adjuvant in chemo-radiotherapy warrants further research

    Adjuvant Ozonetherapy in Advanced Head and Neck Tumors: A Comparative Study

    Get PDF
    Advanced head and neck (H&N) tumors have a poor prognosis, and this is worsened by the occurrence of hypoxia and ischemia in the tumors. Ozonetherapy has proved useful in the treatment of ischemic syndromes, and several studies have described a potential increase of oxygenation in tissues and tumors. The aim of this prospective study was to evaluate the clinical effect of ozonetherapy in patients with advanced H&N cancer in the course of their scheduled radiotherapy. Over a period of 3 years, 19 patients with advanced H&N tumors who were undergoing treatment in our department with non-standard fractionated radiotherapy plus oral tegafur. A group of 12 patients was additionally treated with intravenous chemotherapy before and/or during radiotherapy. In the other group of seven patients, systemic ozonetherapy was administered twice weekly during radiotherapy. The ozonetherapy group was older (64 versus 54 years old, P = 0.006), with a higher percentage of lymph node involvement (71% versus 8%, P = 0.019) and with a trend to more unfavorable tumor stage (57% versus 8% IVb + IVc stages, P = 0.073). However, there was no significant difference in overall survival between the chemotherapy (median 6 months) and ozonetherapy (8 months) groups. Although these results have to be viewed with caution because of the limited number of patients, they suggest that ozonetherapy could have had some positive effect during the treatment of our patients with advanced H&N tumors. The adjuvant administration of ozonetherapy during the chemo–radiotherapy for these tumors merits further research

    Switching Roles: Beneficial Effects of Adipose Tissue-Derived Mesenchymal Stem Cells on Microglia and Their Implication in Neurodegenerative Diseases

    Get PDF
    This research was funded by the Andalusian Government, Spain (grant no. P20-01255 to M.D. and FEDER program grant no. A1-CTS-324-UGR18 to M.R.S.) and by the Spanish Ministry for Economy and Competition, Spain (grant no. SAF2017-85602-R and PID2020-119638RB-I00, both to E.G.-R.). A.I.S.-C. was the awardee of a Research Starting Fellowship for master´s students at the University of Granada, Spain. The APC was funded by MDPI.Neurological disorders, including neurodegenerative diseases, are often characterized by neuroinflammation, which is largely driven by microglia, the resident immune cells of the central nervous system (CNS). Under these conditions, microglia are able to secrete neurotoxic substances, provoking neuronal cell death. However, microglia in the healthy brain carry out CNS-supporting functions. This is due to the ability of microglia to acquire different phenotypes that can play a neuroprotective role under physiological conditions or a pro-inflammatory, damaging one during disease. Therefore, therapeutic strategies focus on the downregulation of these neuroinflammatory processes and try to re-activate the neuroprotective features of microglia. Mesenchymal stem cells (MSC) of different origins have been shown to exert such effects, due to their immunomodulatory properties. In recent years, MSC derived from adipose tissue have been made the center of attention because of their easy availability and extraction methods. These cells induce a neuroprotective phenotype in microglia and downregulate neuroinflammation, resulting in an improvement of clinical symptoms in a variety of animal models for neurological pathologies, e.g., Alzheimer’s disease, traumatic brain injury and ischemic stroke. In this review, we will discuss the application of adipose tissue-derived MSC and their conditioned medium, including extracellular vesicles, in neurological disorders, their beneficial effect on microglia and the signaling pathways involved.Andalusian Government, Spain P20-01255FEDER program grant no. A1-CTS-324-UGR18Spanish Ministry for Economy and Competition, Spain (grant no. SAF2017-85602-R and PID2020-119638RB-I00)Research Starting Fellowship for master´s students at the University of Granada, SpainMDP

    The endoplasmic reticulum Ca2+-ATPase SERCA2b is upregulated in activated microglia and its inhibition causes opposite effects on migration and phagocytosis

    Get PDF
    This is the peer reviewed version of the following article: Morales-Ropero JM, Arroyo-Urea S, Neubrand VE, Martín-Oliva D, Marín-Teva JL, Cuadros MA, Vangheluwe P, Navascués J, Mata AM, Sepúlveda MR. The endoplasmic reticulum Ca2+ -ATPase SERCA2b is upregulated in activated microglia and its inhibition causes opposite effects on migration and phagocytosis. Glia. 2021 Apr;69(4):842-857, which has been published in final form at https://onlinelibrary.wiley.com/doi/10.1002/glia.23931. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.The accepted version is under embargo until April 2022.Activation of microglia is an early immune response to damage in the brain. Although a key role for Ca2+ as trigger of microglial activation has been considered, little is known about the molecular scenario for regulating Ca2+ homeostasis in these cells. Taking into account the importance of the endoplasmic reticulum as a cellular Ca2+ store, the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2b) is an interesting target to modulate intracellular Ca2+ dynamics. We found upregulation of SERCA2b in activated microglia of human brain with Alzheimer´s disease and we further studied the participation of SERCA2b in microglial functions by using the BV2 murine microglial cell line and primary microglia isolated from mouse brain. To trigger microglia activation, we used the bacterial lipopolysaccharide (LPS), which is known to induce an increase of cytosolic Ca2+. Our results showed an upregulated expression of SERCA2b in LPS-induced activated microglia likely associated to an attempt to restore the increased cytosolic Ca2+ concentration. We analyzed SERCA2b contribution in microglial migration by using the specific SERCA inhibitor thapsigargin in scratch assays. Microglial migration was strongly stimulated with thapsigargin, even more than with LPS-induction, but delayed in time. However, phagocytic capacity of microglia was blocked in the presence of the SERCA inhibitor, indicating the importance of a tight control of cytosolic Ca2+ in these processes. All together, these results provide for the first time compelling evidence for SERCA2b as a major player regulating microglial functions, affecting migration and phagocytosis in an opposite manner.Grant mP_BS_35-2014 from CEI BioTic GranadaPP2016-PJI05 from University of GranadaA1-CTS-324-UGR18 from FEDER-Junta de Andalucía, SpainPP2016-PIP08 from University of GranadaBFU2017-85723-P from Spanish Ministry of Economy and Competitiveness co-financed with FEDERG044212N from Flanders Research Foundatio

    Nuclear translocation of glutaminase GLS2 in human cancer cells associates with proliferation arrest and differentiation

    Get PDF
    Glutaminase (GA) catalyzes the first step in mitochondrial glutaminolysis playing a key role in cancer metabolic reprogramming. Humans express two types of GA isoforms: GLS and GLS2. GLS isozymes have been consistently related to cell proliferation, but the role of GLS2 in cancer remains poorly understood. GLS2 is repressed in many tumor cells and a better understanding of its function in tumorigenesis may further the development of new therapeutic approaches. We analyzed GLS2 expression in HCC, GBM and neuroblastoma cells, as well as in monkey COS-7 cells. We studied GLS2 expression after induction of differentiation with phorbol ester (PMA) and transduction with the full-length cDNA of GLS2. In parallel, we investigated cell cycle progression and levels of p53, p21 and c-Myc proteins. Using the baculovirus system, human GLS2 protein was overexpressed, purified and analyzed for posttranslational modifications employing a proteomics LC-MS/MS platform. We have demonstrated a dual targeting of GLS2 in human cancer cells. Immunocytochemistry and subcellular fractionation gave consistent results demonstrating nuclear and mitochondrial locations, with the latter being predominant. Nuclear targeting was confirmed in cancer cells overexpressing c-Myc- and GFP-tagged GLS2 proteins. We assessed the subnuclear location finding a widespread distribution of GLS2 in the nucleoplasm without clear overlapping with specific nuclear substructures. GLS2 expression and nuclear accrual notably increased by treatment of SH-SY5Y cells with PMA and it correlated with cell cycle arrest at G2/M, upregulation of tumor suppressor p53 and p21 protein. A similar response was obtained by overexpression of GLS2 in T98G glioma cells, including downregulation of oncogene c-Myc. Furthermore, human GLS2 was identified as being hypusinated by MS analysis, a posttranslational modification which may be relevant for its nuclear targeting and/or function. Our studies provide evidence for a tumor suppressor role of GLS2 in certain types of cancer. The data imply that GLS2 can be regarded as a highly mobile and multilocalizing protein translocated to both mitochondria and nuclei. Upregulation of GLS2 in cancer cells induced an antiproliferative response with cell cycle arrest at the G2/M phase

    Early and late skin reactions to radiotherapy for breast cancer and their correlation with radiation-induced DNA damage in lymphocytes

    Get PDF
    INTRODUCTION: Radiotherapy outcomes might be further improved by a greater understanding of the individual variations in normal tissue reactions that determine tolerance. Most published studies on radiation toxicity have been performed retrospectively. Our prospective study was launched in 1996 to measure the in vitro radiosensitivity of peripheral blood lymphocytes before treatment with radical radiotherapy in patients with breast cancer, and to assess the early and the late radiation skin side effects in the same group of patients. We prospectively recruited consecutive breast cancer patients receiving radiation therapy after breast surgery. To evaluate whether early and late side effects of radiotherapy can be predicted by the assay, a study was conducted of the association between the results of in vitro radiosensitivity tests and acute and late adverse radiation effects. METHODS: Intrinsic molecular radiosensitivity was measured by using an initial radiation-induced DNA damage assay on lymphocytes obtained from breast cancer patients before radiotherapy. Acute reactions were assessed in 108 of these patients on the last treatment day. Late morbidity was assessed after 7 years of follow-up in some of these patients. The Radiation Therapy Oncology Group (RTOG) morbidity score system was used for both assessments. RESULTS: Radiosensitivity values obtained using the in vitro test showed no relation with the acute or late adverse skin reactions observed. There was no evidence of a relation between acute and late normal tissue reactions assessed in the same patients. A positive relation was found between the treatment volume and both early and late side effects. CONCLUSION: After radiation treatment, a number of cells containing major changes can have a long survival and disappear very slowly, becoming a chronic focus of immunological system stimulation. This stimulation can produce, in a stochastic manner, late radiation-related adverse effects of varying severity. Further research is warranted to identify the major determinants of normal tissue radiation response to make it possible to individualize treatments and improve the outcome of radiotherapy in cancer patients

    In Vivo Tumor Targeting and Imaging with Engineered Trivalent Antibody Fragments Containing Collagen-Derived Sequences

    Get PDF
    There is an urgent need to develop new and effective agents for cancer targeting. In this work, a multivalent antibody is characterized in vivo in living animals. The antibody, termed “trimerbody”, comprises a single-chain antibody (scFv) fragment connected to the N-terminal trimerization subdomain of collagen XVIII NC1 by a flexible linker. As indicated by computer graphic modeling, the trimerbody has a tripod-shaped structure with three highly flexible scFv heads radially outward oriented. Trimerbodies are trimeric in solution and exhibited multivalent binding, which provides them with at least a 100-fold increase in functional affinity than the monovalent scFv. Our results also demonstrate the feasibility of producing functional bispecific trimerbodies, which concurrently bind two different ligands. A trimerbody specific for the carcinoembryonic antigen (CEA), a classic tumor-associated antigen, showed efficient tumor targeting after systemic administration in mice bearing CEA-positive tumors. Importantly, a trimerbody that recognizes an angiogenesis-associated laminin epitope, showed excellent tumor localization in several cancer types, including fibrosarcomas and carcinomas. These results illustrate the potential of this new antibody format for imaging and therapeutic applications, and suggest that some laminin epitopes might be universal targets for cancer targeting
    corecore