32 research outputs found

    Marky: a tool supporting annotation consistency in multi-user and iterative document annotation projects

    Get PDF
    Background and Objectives Document annotation is a key task in the development of Text Mining methods and applications. High quality annotated corpora are invaluable, but their preparation requires a considerable amount of resources and time. Although the existing annotation tools offer good user interaction interfaces to domain experts, project management and quality control abilities are still limited. Therefore, the current work introduces Marky, a new Web-based document annotation tool equipped to manage multi-user and iterative projects, and to evaluate annotation quality throughout the project life cycle. Methods At the core, Marky is a Web application based on the open source CakePHP framework. User interface relies on HTML5 and CSS3 technologies. Rangy library assists in browser-independent implementation of common DOM range and selection tasks, and Ajax and JQuery technologies are used to enhance user-system interaction. Results Marky grants solid management of inter- and intra-annotator work. Most notably, its annotation tracking system supports systematic and on-demand agreement analysis and annotation amendment. Each annotator may work over documents as usual, but all the annotations made are saved by the tracking system and may be further compared. So, the project administrator is able to evaluate annotation consistency among annotators and across rounds of annotation, while annotators are able to reject or amend subsets of annotations made in previous rounds. As a side effect, the tracking system minimises resource and time consumption. Conclusions Marky is a novel environment for managing multi-user and iterative document annotation projects. Compared to other tools, Marky offers a similar visually intuitive annotation experience while providing unique means to minimise annotation effort and enforce annotation quality, and therefore corpus consistency. Marky is freely available for non-commercial use at http://sing.ei.uvigo.es/markyThe authors thank the project PTDC/SAU-ESA/646091/2006/FCOMP-01-0124-FEDER-007480FCT, the Strategic Project PEst-OE/EQB/LA0023/2013, the Project "Bio-Health - Biotechnology and Bioengineering approaches to improve health quality", Ref. NORTE-07-0124-FEDER-000027, co-funded by the Programa Operacional Regional do Norte (ON.2 - O Novo Norte), QREN, FEDER, the project "RECI/BBB-EBI/0179/2012 - Consolidating Research Expertise and Resources on Cellular and Molecular Biotechnology at CEB/IBB", Ref. FCOMP-01-0124-FEDER-027462, FEDER, and the Agrupamento INBIOMED from DXPCTSUG-FEDER unha maneira de facer Europa (2012/273). The research leading to these results has received funding from the European Union's Seventh Framework Programme FP7/REGPOT-2012-2013.1 under grant agreement no. 316265 (BIOCAPS) and the [14VI05] Contract-Programme from the University of Vigo. This document reflects only the author's views and the European Union is not liable for any use that may be made of the information contained herein

    Agent-based spatiotemporal simulation of biomolecular systems within the open source MASON framework

    Get PDF
    Agent-based modelling is being used to represent biological systems with increasing frequency and success. This paper presents the implementation of a new tool for biomolecular reaction modelling in the open source Multiagent Simulator of Neighborhoods framework. The rationale behind this new tool is the necessity to describe interactions at the molecular level to be able to grasp emergent and meaningful biological behaviour. We are particularly interested in characterising and quantifying the various effects that facilitate biocatalysis. Enzymes may display high specificity for their substrates and this information is crucial to the engineering and optimisation of bioprocesses. Simulation results demonstrate that molecule distributions, reaction rate parameters, and structural parameters can be adjusted separately in the simulation allowing a comprehensive study of individual effects in the context of realistic cell environments. While higher percentage of collisions with occurrence of reaction increases the affinity of the enzyme to the substrate, a faster reaction (i.e., turnover number) leads to a smaller number of time steps. Slower diffusion rates and molecular crowding (physical hurdles) decrease the collision rate of reactants, hence reducing the reaction rate, as expected. Also, the random distribution of molecules affects the results significantly.The authors thank the Agrupamento INBIOMED from DXPCTSUG-FEDER unha maneira de facer Europa (2012/273). The research leading to these results has received funding from the European Union's Seventh Framework Programme FP7/REGPOT-2012-2013.1 under Grant Agreement no. 316265 (BIOCAPS) and the [14VI05] Contract-Programme from the University of Vigo. This document reflects only the authors' views and the European Union is not liable for any use that may be made of the information contained herein

    Schuurs–Hoeijmakers Syndrome (PACS1 Neurodevelopmental Disorder): Seven Novel Patients and a Review

    Get PDF
    Síndrome de Schuurs-Hoeijmakers; Discapacitat intel·lectual; Trastorns rarsSíndrome de Schuurs-Hoeijmakers; Discapacidad intelectual; Trastornos rarosSchuurs–Hoeijmakers syndrome; Intellectual disability; Rare disordersSchuurs–Hoeijmakers syndrome (SHMS) or PACS1 Neurodevelopmental disorder is a rare disorder characterized by intellectual disability, abnormal craniofacial features and congenital malformations. SHMS is an autosomal dominant hereditary disease caused by pathogenic variants in the PACS1 gene. PACS1 is a trans-Golgi-membrane traffic regulator that directs protein cargo and several viral envelope proteins. It is upregulated during human embryonic brain development and has low expression after birth. So far, only 54 patients with SHMS have been reported. In this work, we report on seven new identified SHMS individuals with the classical c.607C > T: p.Arg206Trp PACS1 pathogenic variant and review clinical and molecular aspects of all the patients reported in the literature, providing a summary of clinical findings grouped as very frequent (≥75% of patients), frequent (50–74%), infrequent (26–49%) and rare (less than ≤25%).This work was possible thanks to the funding provided by the project “Proyecto Piloto para la mejora del diagnóstico genético en personas y familias afectadas o con sospecha de padecer enfermedades raras de base genética” of the Ministry of Health, under the grant BOCM-20181126-24 provided by the Consejería de Sanidad de la Comunidad de Madrid. Funding to J.P. and F.J.R. was partially provided by the group research grant DGA/FEDER B32_17R/B32_20R

    Gene expression analysis of aberrant signaling pathways in meningiomas

    Get PDF
    Examining aberrant pathway alterations is one method for understanding the abnormal signals that are involved in tumorigenesis and tumor progression. In the present study, expression arrays were performed on tumor-related genes in meningiomas. The GE Array Q Series HS-006 was used to determine the expression levels of 96 genes that corresponded to six primary biological regulatory pathways in a series of 42 meningiomas, including 32 grade I, four recurrent grade I and six grade II tumors, in addition to three normal tissue controls. Results showed that 25 genes that were primarily associated with apoptosis and angiogenesis functions were downregulated and 13 genes frequently involving DNA damage repair functions were upregulated. In addition to the inactivation of the neurofibromin gene, NF2, which is considered to be an early step in tumorigenesis, variations of other biological regulatory pathways may play a significant role in the development of meningiomaThis study was partially supported by Fondo de Investigaciones Sanitarias, Ministerio de Ciencia e Innovación, Spain, Grants PI‑08/1849 and PI‑10/1972; and by grant PI‑10‑045 from the Fundación Sociosanitaria de Castilla‑La Mancha, Spai

    Proposing to use artificial neural Networks for NoSQL attack detection

    Get PDF
    [EN] Relationships databases have enjoyed a certain boom in software worlds until now. These days, with the rise of modern applications, unstructured data production, traditional databases do not completely meet the needs of all systems. Regarding these issues, NOSQL databases have been developed and are a good alternative. But security aspects stay behind. Injection attacks are the most serious class of web attacks that are not taken seriously in NoSQL. This paper presents a Neural Network model approach for NoSQL injection. This method attempts to use the best and most effective features to identify an injection. The features used are divided into two categories, the first one based on the content of the request, and the second one independent of the request meta parameters. In order to detect attack payloads features, we work on character level analysis to obtain malicious rate of user inputs. The results demonstrate that our model has detected more attack payloads compare with models that work black list approach in keyword level

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Development of CBR-BDI Agents: A Tourist Guide Application

    Get PDF
    In this paper we present an agent-based application of a wireless tourist guide that combines the Beliefs-Desires-Intentions approach with learning capabilities of Case Base Reasoning techniques. This application shows how to develop adaptive agents with a goal driven design and a decision process built on a CBR architecture. The resulting agent architecture has been validated by real users who have used the tourist guide application, on a mobile device, and can be generalized for the development of other personalized services
    corecore