16,493 research outputs found

    Cylindrical wormholes with positive cosmological constant

    Get PDF
    We construct cylindrical, traversable wormholes with finite radii by taking into account the cut-and-paste procedure for the case of cosmic string manifolds with a positive cosmological constant. Under reasonable assumptions about the equation of state of the matter located at the shell, we find that the wormhole throat undergoes a monotonous evolution provided it moves at a constant velocity. In order to explore the dynamical nonlinear behaviour of the wormhole throat, we consider that the matter at the shell is supported by anisotropic Chaplygin gas, anti-Chaplygin gas, or a mixed of Chaplygin and anti-Chaplygin gases implying that wormholes could suffer an accelerated expansion or contraction but the oscillatory behavior seems to be forbidden.Comment: 5 pages, no figures. Accepted for publication in PRD. (http://link.aps.org/doi/10.1103/PhysRevD.88.027507

    Black holes in Einstein-Gauss-Bonnet gravity with a string cloud background

    Get PDF
    We obtain a black hole solution in the Einstein-Gauss-Bonnet theory for the string cloud model in a five dimensional spacetime. We analyze the event horizons and naked singularities. Later, we compute the Hawking temperature THT_{\mathrm{H}}, the specific heat CC, the entropy SS, and the Helmholtz free energy FF of the black hole. The entropy was computed using the Wald formulation. In addition, the quantum correction to the Wald's entropy is considered for the string cloud source. We mainly explore the thermodynamical global and local stability of the system with vanishing or non-vanishing cosmological constant. The global thermodynamic phase structure indicates that the Hawking-Page transition is achieved for this model. Further, we observe that there exist stable black holes with small radii and that these regions are enlarged when choosing small values of the string cloud density and of the Gauss-Bonnet parameter. Besides, the rate of evaporation for these black holes are studied, determining whether the evaporation time is finite or not. Then, we concentrate on the dynamical stability of the system, studying the effective potential for s-waves propagating on the string cloud background.Comment: 13 pages, 5 figures. References adde

    Concise Review: The Potential Use of Intestinal Stem Cells to Treat Patients With Intestinal Failure.

    Get PDF
    : Intestinal failure is a rare life-threatening condition that results in the inability to maintain normal growth and hydration status by enteral nutrition alone. Although parenteral nutrition and whole organ allogeneic transplantation have improved the survival of these patients, current therapies are associated with a high risk for morbidity and mortality. Development of methods to propagate adult human intestinal stem cells (ISCs) and pluripotent stem cells raises the possibility of using stem cell-based therapy for patients with monogenic and polygenic forms of intestinal failure. Organoids have demonstrated the capacity to proliferate indefinitely and differentiate into the various cellular lineages of the gut. Genome-editing techniques, including the overexpression of the corrected form of the defective gene, or the use of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 to selectively correct the monogenic disease-causing variant within the stem cell, make autologous ISC transplantation a feasible approach. However, numerous techniques still need to be further optimized, including more robust ex vivo ISC expansion, native ISC ablation, and engraftment protocols. Large-animal models can to be used to develop such techniques and protocols and to establish the safety of autologous ISC transplantation because outcomes in such models can be extrapolated more readily to humans.The field of intestinal stem cell biology has exploded over the past 5 years with discoveries related to in vivo and in vitro stem cell identity and function. The goal of this review article is to highlight the potential use of these cells to treat various epithelial disorders of the gut and discuss the various roadblocks that will be encountered in the coming years

    Big brake singularity is accommodated as an exotic quintessence field

    Get PDF
    We describe a big brake singularity in terms of a modified Chaplygin gas equation of state p=(\ga_{m}-1)\rho+\al\ga_{m}\rho^{-n}, accommodate this late-time event as an exotic quintessence model obtained from an energy-momentum tensor, and focus on the cosmological behavior of the exotic field, its kinetic energy and the potential energy. At the background level, the exotic field does not blow up whereas its kinetic energy and potential both grow without limit near the future singularity. We evaluate the classical stability of this background solution by examining the scalar perturbations of the metric along with the inclusion of entropy perturbation in the perturbed pressure. Within the Newtonian gauge, the gravitational field approaches a constant near the singularity plus additional regular terms. When the perturbed exotic field is associated with \al>0 the perturbed pressure and contrast density both diverge, whereas the perturbed exotic field and the divergence of the exotic field's velocity go to zero exponentially. When the perturbed exotic field is associated with \al<0 the contrast density always blows up, but the perturbed pressure can remain bounded. In addition, the perturbed exotic field and the divergence of the exotic field's velocity vanish near the big brake singularity. We also briefly look at the behavior of the intrinsic entropy perturbation near the singular event.Comment: 11 pages, no figures. Accepted for its publication in PR

    Interacting dark sector with transversal interaction

    Full text link
    We investigate the interacting dark sector composed of dark matter, dark energy, and dark radiation for a spatially flat Friedmann-Robertson-Walker (FRW) background by introducing a three-dimensional internal space spanned by the interaction vector Q\mathbf{Q} and solve the source equation for a linear transversal interaction. Then, we explore a realistic model with dark matter coupled to a scalar field plus a decoupled radiation term, analyze the amount of dark energy in the radiation era and find that our model is consistent with the recent measurements of cosmic microwave background anisotropy coming from Planck along with the future constraints achievable by CMBPol experiment.Comment: To appear in the proceedings of "CosmoSur II - Gravitation and Cosmology in the Southern Cone" (Valparaiso, Chile, 27-31 May 2013
    • …
    corecore