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Big brake singularity is accommodated as an exotic quintessence field
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We describe a big brake singularity in terms of a modified Chaplygin gas equation of state p =
(ym — 1)p + avymp™ ", accommodate this late-time event as an exotic quintessence model obtained
from an energy-momentum tensor, and focus on the cosmological behavior of the exotic field, its
kinetic energy and the potential energy. At the background level, the exotic field does not blow up
whereas its kinetic energy and potential both grow without limit near the future singularity. We
evaluate the classical stability of this background solution by examining the scalar perturbations of
the metric along with the inclusion of entropy perturbation in the perturbed pressure. Within the
Newtonian gauge, the gravitational field approaches a constant near the singularity plus additional
regular terms. When the perturbed exotic field is associated with o > 0 the perturbed pressure
and contrast density both diverge, whereas the perturbed exotic field and the divergence of the
exotic field’s velocity go to zero exponentially. When the perturbed exotic field is associated with
a < 0 the contrast density always blows up, but the perturbed pressure can remain bounded. In
addition, the perturbed exotic field and the divergence of the exotic field’s velocity vanish near the
big brake singularity. We also briefly look at the behavior of the intrinsic entropy perturbation near

the singular event.
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I. INTRODUCTION

One of the most challenging riddles in the last decades
concerns the lack of understanding of current state of
the Universe. Supernovae data are compatible with an
accelerating Universe; however, the identity of the myste-
rious fuel which provokes such a speeding up is currently
unknown ﬂ] This agent is usually dubbed dark energy
and is characterized by a negative pressure which ensures
the violation of the strong energy condition. One of the
missing links in the standard cosmology framework is the
lack of a fundamental theory which can describe the main
properties of dark energy at the microscopic level. So, a
somewhat natural question to ask is, what is the funda-
mental particle associated with dark energy?.

Another point that should be addressed refers to the fi-
nal fate of the Universe: will the universe expand forever,
or will it slow down in the near future? These questions
are also physically interesting and must be explored ex-
tensively at different levels. For instance, one can study
what kind of final fates are compatible with the current
state of the Universe. Historically speaking, the first at-
tempt at examining the final state of the Universe was

2Electronic address: ichimento@Qdf.uba.ar
bElectronic address: martin@df.uba.ar

carried out by Barrow et al. many years ago; the authors
showed the existence of an accelerated closed FRW uni-
verse with a final singularity which exhibits an infinite
pressure E] In addition, several authors explored some
accelerating universes within the dark energy scenario,
endowed with a cosmological singularity in the asymp-
totic future [3], [4]. They also performed a full classifica-
tion of the final doomday by looking at the behavior of
the Hubble rate and its derivatives near the abrupt event
Eﬁ Bﬁ@]ﬁ], (6, @, [, @), [od), p), [02), 09, 04,

], [16], |17]. Another reliable method to understand
these new cosmic singularities relies on the existence of
causal geodesics that cannot be extended to arbitrary val-
ues of their proper time (geodesic incompleteness) ﬂﬁ] or
the possibility of showing that geodesic curves can be ex-
tended beyond a cosmic singularity [19], [20]. A popular
procedure to examine cosmic singularities is finding the
behavior of curvature invariants near the singular event
provided the strength of these singularities can be deter-
mined by applying the necessary and sufficient conditions
discovered by Tipler [21] and Krélak [22).

A complementary tool for exploring the physical na-
ture of cosmological singularities is based on the behav-
ior of dynamical variables which enter into the field equa-
tions. Indeed, analyzing the blowup of the energy density
or pressure singles out a pathological behavior that one
may connect with the physical behavior of the scale fac-
tor, the Hubble function, and its derivatives. Hence, the
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idea is to find certain physical properties which help us to
distinguish these kinds of silarities among each other

4, @), 4], [@, @), @, @d, o, [2.

There is a singularity called a big brake which emerges
within the context of a tachyon scalar field [6]. A weaker
extension can be obtained when a dust component is in-
cluded in the Friedmann equation provided the Hubble
function does not vanish at the singularity ﬂj] This sin-
gularity is reached in a finite time with a finite radius
when the derivative of the scale factor vanishes and the
acceleration term becomes unbounded ﬂa] We are going
to study a viable cosmological scenario where the afore-
said singularity can appear naturally in order to explore
its physical outcome. We present an interacting dark en-
ergy model [23], [24] with a phenomenological interaction
that leads to the existence of a big brake event Hﬁ] We
start our research by focusing on the interacting dark en-
ergy model and its unified counterpart. In order to do
that, we apply the source equation method as it seems to
have the virtue (among others) that it allows us to recon-
struct the partial densities associated with dark matter
and dark energy along with the total energy density in
terms of the scale factor [23], [25]. Further, we show that
the unified model is related to the modified Chaplygin
gas model, which in turn reveals the physical nature of
our proposal. In order to establish an interconnection
between the particle physics world and the cosmological
setup, we find a unified description in terms of a new
exotic quintessence field @] At the background level,
we show that the unified model can be mapped into an
exotic scalar field theory with the bonus that it also dis-
plays the exact behavior of the potential energy, kinetic
energy, and scale factor in terms of the exotic field. The
equation of motion of the exotic field is altered in rela-
tion to the standard one; however, the usual quintessence
can be recovered under certain conditions. This model
offers a new alternative to the well-known tachyon model
which attempts to unify of dark matter and dark en-
ergy. We introduce a covariant formulation of this new
model by proposing an energy-momentum tensor which
is very similar to the quintessence case. To the best of
our knowledge, the exotic quintessence model cannot be
(apparently) obtained from a Lagrangian. We extend
our analysis by considering the cosmological perturbation
around the big brake event with the aim of determin-
ing the classical stability of these solutions. We perform
the perturbations within the Newtonian gauge because
there is no residual gauge freedom and we can obtain
the gravitational potential straightforwardly by solving
its master Bessel equation. Once the gravitational po-
tential is known, we proceed to find the cosmic behavior
of the perturbed exotic field by solving the 0 — 0 per-
turbed Einstein’s equation. In dealing with the pressure
perturbation, we take into account two kinds of terms:
one represents the adiabatic contribution, while the other
accounts for the nonadiabatic pressure term which is re-
lated to the intrinsic entropy perturbation. We provide
a complete analysis of all relevant quantities, such as the

contrast density, the divergence of the exotic field’s veloc-
ity, and the intrinsic entropy perturbation near the sin-
gular event. At this point, we emphasize that the study
of a cosmological singularity in terms of a fundamental
theory was carried out by other authors as well. Bar-
row and Graham have recently shown that a new ultra-
weak generalized sudden singularity can be supported by
a scalar field with a simple power-law potential ﬂﬂ] In
fact, the appearance of a finite-time future singularity
within the context of inflation for a general noncanon-
ical scalar-tensor theory or a F(R) gravity model was
also studied by Nojiri et al. ﬂﬁ] It turned out that the
generalized sudden singularity can be compatible with
the observational data coming from Planck/BICEP2 if
this event takes place at the end of inflation or after-
wards ﬂﬁ] This singularity can be described in terms of
canonical and phantom scalar fields m or with the help
of generalized equation-of-state fluids [30].

The structure of the paper is as follows. In Sec. II
we present the interacting dark energy model which ex-
hibits the big brake event, and apply the source equation
method for reconstructing the total energy density, pres-
sure, and partial densities in terms of the scale factor. We
show the connection between the interacting setup and
the unified model; the latter leads to the modified Chap-
lygin gas model. We sketch the link between the unified
model and a new quintessence theory. Section III is de-
voted to showing that the new exotic quintessence model
can be obtained from a covariant energy-momentum ten-
sor. In Sec. IV we review and apply the cosmological
perturbation theory to the big brake event within the
Newtonian gauge. We take into account nonadiabatic
pressure perturbations and obtain the behavior of the
gravitational potential, contrast density, the divergence
of the exotic field’s velocity, and the intrinsic entropy
perturbation near the singular event.

II. INTERACTING TWO-COMPONENT
MODEL

The metric of spacetime is taken to be an isotropic
and homogeneous Friedmann-Roberston-Walker (FRW)
universe with zero spatial curvature (k = 0),

ds* = —dt* + a*(t)(dz® + dy? + dz?) (1)

where a(t) is the expansion scale factor. We investigate
an interacting dark sector model where the universe is
filled with two perfect fluids: one serves as a matter com-
ponent, while the the other represents a variable vacuum
energy (VVE) substratum. Both fluids have energy den-
sities pm, pz, pressures p,,, pz, and are described by lin-
ear equations of state pm.o = (Ym,a — 1)pm,e such that
the constant barotropic indeces v, and =, satisfy the
condition 0 < v, < ¥m. The total energy density p and
the conservation equation associated with this interact-
ing two-fluid model are

P = Pm + Pz, (2)



p/ = —TYmPm — VzPx, (3)

where the prime is a derivative with respect to the scale
factor, ' = d/dn = d/3Hdt = d/dIn (a/ag)?, and ag is
some value of reference for the scale factor. We point
out that the procedure outlined does not rely on the spe-
cific cosmological equations that govern the dynamic of a
homogeneous isotropic flat universe Hﬁ] Differentiating
Eq. @) and combining with Eq. (@]), we get a second-
order differential equation for the energy density,

P+ (Ym +Y2)P + Vm Vel = (Vm — Vo) [P + Vepa)- (4)

Thus the VVE or the matter acts as a source of the last
equation through the term p, +7,pz or —(pl, +¥Ympm) af-
ter using the conservation equation @)). In a natural way,
we identify the interaction term with the terms inside the
square bracket Q = p! 4+, p, and this identification splits
the conservation equation ([B]) into two equations. Here @
produces the exchange of energy between the two fluids
and we assume that it is a function of p, p/, and n. Hence
Eq. @) leads to the “source equation”

pH + (’Ym + ’Ym)p/ + YmVaP = ('7771 - '790) Qa (5)

which will be a useful tool for obtaining the energy den-
sity for a given phenomenological interaction term. From
the algebraic linear system of equations ([)-(l), we can
reconstruct p,, and p, as functions of p and its n deriva-
tive p’ :

 Yept
m — - — x

Ymp +p
; =—. (6)
'Ym - 'Ym

'-Ym _"Yz

When the energy density p is obtained after solving the
source equation () for a given interaction term @, we
are able to find the matter and VVE energy densities in
terms of the scale factor. Comparing the total pressure
p(p,p') = —p — p’ with the effective equation of state
of the dark sector p = (v — 1)p, we obtain the effective
conservation equation p’ + vp = 0, where the effective
barotropic index is by v = (Vi pm + Yapz)/p-

In dealing with the interacting dark sector, we pro-
pose a phenomenological interaction which is a nonlinear
combination of p,,, p;, and p

Q= nvm ”";f’””, (7)

and whose physical motivation was explored in detail in
our previous article m] Taking 7, = 0 and leaving v,
as a free parameter in Eq. (@), we obtain the matter
energy density and the VVE density p,, = —p'/Vm, pz =
p+ p'/vm as functions of p and p’. Replacing the latter
equations in the interaction term (), we see that the
source equation (B is considerably simplified,

pp" 4+ ym(n+1)pp’ +np'? = 0. (8)

We will find the general solution of the source (&) from
a nonlinear superposition of the two basis solutions of a

second-order linear differential equation by changing to
the variable z = p"*1,

2+ ym(n+1)2’ = 0. (9)

Its first integral and the energy density are given by

/ j—

pr=—rmlp+ap™"), (10)

ag\ 3vm (1)) Y/ HD
p—{a {—l—l—(;) }} , (11)

where « is one of the integration constants while the other
was set so that the square bracket in Eq. (1) vanishes
as the scale factor reaches the finite value agz. This is
a necessary condition to achieve a singularity. In fact,
at as = a(ts) the energy density (I, the pressure p,
the barotropic index =, or the acceleration a, vanishes
or diverges at a finite time t¢5, as can be seen from the
following expressions:

p=Ym—1)p+avmp ", (12)
Y= [L+ap 7], (13)
b L3y —2)p— Gy (14)
o= gBm e ==
« (e
Pm=p+ —,  pr=——. (15)
p p

As a by-product of the nonlinear interaction (), we are
led to an effective one-fluid model with a modified Chap-
lygin gas equation of state [ Eq. ()] [25]. Finally,
the n derivative energy density () and the effective
barotropic index expressed as functions of the scale factor
are

B'YM(n+1)
(&) g

P = —QYm (_
a

Tm
3Ym (n+1) °
- ()

as

v = (17)

Note that the barotropic index always diverges (7 — o0)
in the a — ag limit for any value of n. The remaining
quantities- namely the pressure, the acceleration, and the
matter and VVE densities- can be obtained as functions
of the scale factor by combining Eqs. ([I2)), (I4), and ([I5)
along with Eq. ().

Now, we are in a position to show how the interact-
ing dark sector can be mapped into an exotic scalar field
scenario. Our idea is to provide a physical interpretation
of the emergence of a sudden future (big brake) singular-
ity by linking a phenomenological two-interacting fluids
model with a new scalar field model. We will describe
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the model in terms of the kinetic variable 2 of the exotic
scalar field and the potential variable V' = V(¢) instead
of the dark matter and dark energy densities p,, and p,.

Our starting point is to note that the conservation
equation @) can be written as p’ = —(Ympm + Yapz) =
—(p +p) = 2H, so it suggests a natural identification
with the kinetic energy in terms of the first derivative of
the total energy density,

#=—p, (18)

which implies that the energy density and pressure of the
interacting two-fluid mixture as well as the matter energy
density,

(2.52 Tm — V=
p=—+—"pa, (19)
Tm TYm
(”Ym - 1) ; TYm — Yz
p= ¢* — Pas (20)
Tm Ym
reproduce the relation
p+p=3¢° (21)

of the quintessence scalar field. Substituting the energy
density ([I9) into the conservation equation (B]), we find
the exotic scalar field equation for ¢ generalizing the
Klein-Gordon equation ﬂ%],

s 3’7771 ] ('7771 B Vm)pm
o+ > Ho+ 29 0, (22)
which shows that the conservation equation (@) and
source equation (@) both have the same kind of phys-
ical information. In order to go from the dark energy
densities p.,, p, to the variables characterizing the ex-
otic scalar field ¢? and V(¢), we identify the potential

V(¢) with the VVE density

V() = pu- (23)

Coming back to our model, in which the barotropic
index of the VVE is v, = 0, Eqs. ([@) and 20)) can be
recast as

_ @
p=_-+ V(9), (24)
p= mﬁy—;” P V(). (25)

while the dark matter energy density and the exotic
scalar field equation become

Q'52
Pm = —» 26
Ym ( )

T -
¢+{§H¢+%4ﬂ=m (27)

where V/ = dV/d¢. In the particular case that the inter-
acting dark components are associated with a scalar field
in the form ¢? = 2p,, and V(¢) = p,, with equations of
state p,, = pm and p, = —p, (namely, stiff matter and
VVE, respectively), the exotic scalar field becomes the
quintessence field and the energy-momentum tensor con-
servation of the dark sector (as a whole) reduces to the
Klein-Gordon equation. For any other interacting two-
fluid mixture, we are led to an exotic quintessence field

0.

By combining the dark matter energy density (I3]) with
the energy density (1) and Eq. (26]), we obtain the ex-
otic kinetic energy ¢? /7m as a functions of the scale fac-
tor, so we have

n2 _ Im (%
(d) ) - ? (b)?ﬂ’m(""'l) . 1

a

) 39m (n+1)
(28)

Assuming that the evolution of the homogeneous and
isotropic flat universe is described by the Einstein field
equations and the dynamics of the effective one-fluid
model is governed by the corresponding Friedmann con-
straint, 3H? = p, we integrate Eq. () and find two sets
of solutions. We have two cases to explore, depending on
the sign of «.

e >0

Under this condition, we find that the potential and ki-
netic energies involves hyperbolic functions:

—n/(n+1)

V=—a«a [a sinh? wAgb] ) (29)

(;'52 = Y p coth? wAQ, (30)

p= [a sinh? wA¢] YD) , (31)

p=(Ym coth? wA¢ — 1) p, (32)

¥ = Ym coth? WA, (33)

a = as [cosh2 wAgb} ~1/3%m(n1) , (34)
a 112

¢ _ 3|3 coth’ wAg| | (35)

W — _\/3”Ym (n_|_1)7 (36)

2

where A¢p = ¢ — ¢s and ¢5 is an integration constant.

e <0



Under this condition, we find that the potential and ki-
netic energies involves trigonometric functions:

V = —a[—asin® wAg] —r/lny) , (37)
¢* = —Ympcot? WA, (38)

p = [~asin®wAg] ntl) (39)

p = (—vm cot’ wA¢p — 1) p, (40)

v = —m cot? WAP, (41)

a = a, [cos® wAQ] /37 () , (42)
Z = % ; + Y cot? WAG| . (43)

In both cases, the scale factor reaches its finite value
as and the exotic scalar field also takes a finite value
¢s = P(ts) where is ts the cosmological time where the
finite-time future singularity occurs. In other words, the
case a < 0 is related to the case a > 0 by means of a Wick
rotation in the exotic quintessence field, as can be noticed
from the next transformations: cos(iwA¢) = cosh(wAg)
and sin(iwA¢) = isinh(wAg).

IIT. COVARIANT APPROACH

So far, we have shown the appearance of a modified
Chaplygin equation of state associated to the effective
fluid of two interacting dark components. Further, we
demonstrated that such an effective fluid can be mapped
into an exotic scalar field theory by proposing a natu-
ral identification. Our next task is to provide a covari-
ant energy-momentum tensor associated to the exotic
quintessence model. In doing so, we propose that the
energy-momentum tensor can be recast as

T,uv = V#vayd) - (%?;71)

m

ngaéﬁvaéf’

- (”’”7;” GV (6, V), (44)

m

where the exotic scalar field ¢ is driven by the general-
ized potential energy V (¢, Vo). This is reminiscent of
the situation in generalized scalar-quintessence-type the-
ories. Now, taking the covariant derivative of the energy-
momentum tensor ([#4]) and projecting it along the direc-
tion of V¥ ¢, we obtain the ¢ equation of motion

(’Ym - ’7;6) va(bvozv
Ym va¢va¢

VOV ot —

2—m) (V'9V"¢).(V, V)
Ym VeV

Hence, the equation of motion of the exotic scalar field
differs substantially from the standard quintessence field
provided the kinetic energy contributions which appear
in the last two terms.

From the FRW background (Il) and energy-momentum
tensor (@) we can read off the energy density and pres-
sure of the homogeneous exotic field as —T¢) = p and
T; = pé;. We notice that the generalized potential plays
the same role as the dark energy density p,. In particu-
lar, for a mix of matter and VVE (v, = 0), and an exotic
scalar field driven by a potential V' = V(¢) depending
only on ¢, we reproduce Eqs. (), 20), and 22). Also,
from these equations we note that the frictional term in
the exotic scalar field equation differs from the standard
case as well as the potential term.

From the physical point of view, it is appropriate to
point out certain caveats of our model. One way to
present this issue is by comparing our interacting two-
component model established on the exotic quintessence
field m] with the well-known big brake scenario based
on a tachyon field ﬂa] Even though we have presented
the new exotic field from the standpoint of a covariant
model, we have not been able to obtain its Lagrangian
representation. This fact does not mean that such a La-
grangian description does not exist, given that the exotic
quintessence field has not been sufficiently investigated
in the literature, and it appears to be not as simple as
the tachyon model ﬂa] Our work is a contribution aimed
at understanding the above problem.

Also, we should take into account that our interacting
two-component model includes a matter component that
is not necessarily dust because in general the barotropic
index 7, is not equal to the unity, indicating that we are
dealing with warm dark matter. Of course, we can take
Ym arbitrarily close to unity. Anyway, we should stress
that the effective barotropic index ([IT) behaves as dust
(v = 1) when the scale factor takes the value

+ =0.  (45)

Adust = as(l - ,Ym)l/B'ym(nJrl)’ (46)

meaning that perhaps a dust component should not
be too significant in the construction of the exotic
quintessence scenario.

IV. PERTURBATION EQUATIONS

In order to examine the physical consequences intro-
duced by this model, we will analyze the behavior of cos-
mological perturbations around the big brake singularity
in both of the cases mentioned above. The main reason
for studying this issue is to extract the behavior of the
perturbed exotic field and its potential, as well as the
behavior of the gravitational potential, and by doing so
we will be able to explore the classical stability of these
solutions near the singularity.



In dealing with the cosmic perturbations around the
singular event, we will follow the notation of Ma and
Bertschinger M] We will restrict our analysis to the
Newtonian gauge provided we are interested in the scalar
mode of the metric perturbations; namely, vector and
tensor modes are neglected from the beginning. How-
ever, we want to emphasize that the classical stability of
another type of singularities (sudden-type) were exam-
ined by Barrow and Lip a few years ago Né], including
an analysis of the vector and tensor modes using a gauge-
invariant formalism developed by Bardeen. In that work,
the authors performed a generic analysis for perfect flu-
ids that included adiabatic pressure perturbations and
did not make reference to any scalar field theory.

One of the main reasons for choosing the Newtonian
gauge is that the physical observers are attached to the
unperturbed metric so they measure both the gravita-
tional and the velocity fields. Besides, this metric tensor
becomes diagonal and this simplifies calculations. More-
over, the equations have a simple physical interpretation
for perturbations inside the horizon and there is no resid-
ual gauge freedom. The perturbations of the FRW metric
in the Newtonian gauge read

ds® = a2(7') {—d72(1 +20) 4+ (1 — 2\11)5ijdxidxj} ,

(47)
where 7 stands for the conformal time and ¥ represents
the analog of the Newtonian gravitational potential. Eq.
@D tells us that the we can neglect shear perturbation.
To linear order, the energy-momentum tensor is given by

0 = —(p + bp), (48)
Tio = (P +p)vi = —T87 (49)
T} = (p+ 6p)s;, (50)

where the velocity perturbation is defined as v* = dz*/dr.
The first-order perturbed Einstein equations can be re-
cast as

. 2
K20 + 3H(T + HT) = %5T§’, (51)
. a2
R +HY) = = (p+ ), (52)
.. . a a® .
U+ 3HY + (25 —HHT = €5T;. (53)

Above we defined 6 = ik'v; = V.o and identified (p +
p)0 = ik!6T?, while the conformal Hubble parameter is
given by H = a/a. Besides, the perturbed part of the
energy-momentum conservation gives

ptp (0-3%),  (59)

5+3H(c§—w(p))6= 5

ke

0+H(1—3c2)0= ——5
+H( cs) T w(p)

+ k20, (55)

where § = dp/p, w(p) = p(p)/p, and ¢2 = dp/dp stands
for the speed sound of the scalar field. Let us take a closer
look at the pressure perturbations for the exotic scalar
field. Asis well known, scalar fields can generate entropic
perturbations, implying that dp|ys = ¢? dp|ys only holds
in the rest frame of the exotic scalar field, where the per-
turbed energy momentum looks diagonal for a comov-
ing observer. Thus, we can interpret the quantity c2
as the speed at Wthh pressure fluctuations propagate.
However, we notice that for any other frame the link be-
tween pressure and density breaks down. In particular,
this means that the adiabatic sound speed ¢2 = p/ is not
equal to the sound speed of the scalar field. In order to es-
tablish a general relation between pressure perturbations
and density perturbations, we must take into account
that the pressure perturbations have two kinds of con-
tributions, namely, adiabatic and entropy components.
For any given frame, the intrinsic entropy perturbation
of matter is a gauge-invariant variable I':

p_@_é@_é(@_iﬂ>
pp)

56
p wp p (56)

Notice that I' is a dimensionless quantity. Here, we inter-
pret the intrinsic entropy perturbation as a displacement
between hypersurfaces of uniform pressure and uniform
energy density. Using a gauge transformation between
the density perturbation dp and the density perturbation
in the rest frame dp|¢,

0
dpl f—(5p+37-[(p+p)

(57)
we can determine the pressure perturbation in a general
frame in terms of the rest-frame sound speed,

@l — )

6]? - cs rf6p +3H Cs rf
It is worth noting that we have to use Eq. (G8]) to obtain
c? ;. As stated earlier, in a general frame, the pressure
perturbation involves a density perturbatlon along with
an additional velocity term which accounts for the en-
tropy generation.

Now, using Eqs. (@) and (@) we calculate the per-
turbed density and perturbed pressure associated with
the exotic quintessence model as

2(1

o= 220 (50d —wd?) + evdo. (59

o =23 (506~ wé?) — Vds,  (60)

where v = (ym—1)/vm and € = (Ym —Y2)/¥m- Equations
(9 and ([@0) are quite similar to those expressions as-
sociated with the standard quintessence model. Indeed,



the standard model can be recovered by demanding that
the coefficients which appear in the kinetic energy are
both equal; this choice leads to v, = 2 and v, = 0, so
our scheme contains the quintessence model. The main
difference in relation to the standard model is that now
the kinetic energy term does not appear with the same
coefficient in the perturbed density and perturbed pres-
sure.

The adiabatic sound speed for the exotic scalar field
can be written as

By | Vied
2 _ (177)0'2 + 6771 61
Ca - H¢2 ’ ( )
379

where we have used the equation of motion ([22)) to elim-
inate the second derivative of ¢ in Eq. (E1)).

In order to obtain the rest-frame sound speed ¢? ; of
the exotic scalar field, we use Eqs. (19), 20), (E]), G3),
©0), and (GI). After some manipulation, we find that
the rest-frame sound speed can be recast as

2 _ 7
s rf (1_,_)/)

c (62)

To avoid the propagation of non-casual perturbations,
we must demand that 0 < ¢ ; < 1, which implies that
0 < v < 1/2. The aforesaid constraint can be alterna-
tively translated as 1 < 7,, < 2. One comment might be
in order here: the adiabatic sound speed (GI)) is a back-
ground quantity which should be clearly distinguished
from the speed of sound, which is essentially a perturba-
tive quantity.

Our next task is to determine a master equation for
the gravitational potential. Combining Eqs. (@8)- (G0)

with Egs. &) - (B3), we find

U+ 3H(1 + 3¢2)T + {2?'1 + k22 + (32 + 1)7—[2} =0.

(63)
In this way, the master equation for the gravitational po-
tential (G3]) has time-dependent coefficients that involve
only background quantities. As the pressure perturba-
tion contains adiabatic and entropy contributions for the
exotic scalar field, the master equation for the gravita-
tional potential ¥ exhibits both contributions encoded in
the distinctive roles played by ¢Z and ¢? .

After solving Eq. (G3]), we must use the constraint (&1))
again to derive the leading term of the density perturba-
tion near the singularity; and by doing so, we arrive at
a first-order differential equation for the perturbed field

09,

- [R2U + 3H(T + HT
(1o el 5 = 1—pws-| W HDL
¢ ¢

(64)
where the ths of Eq. (@) is known. Another method is
to solve the perturbed equation of motion for the exotic
field, which can be obtained from Eq. (B4)) or by explic-
itly perturbing the equation of motion ([@5]) around its

background solution as ¢ — ¢ + d¢,

2

2y +1 a? k B
7‘[5(254- ﬁ <a—2 + EV¢¢) op =

5;b+2(1_ -
5—2y . . €
20— T =)

Eq. (G3) suggests that the potential energy is a func-
tion of the exotic scalar field only. Considering the off-
diagonal component of the perturbed energy-momentum
tensor associated with the exotic quintessence field T =
$d'6p/a® = (p + p)v', we can derive v' = §'0¢/(pa?)
and therefore the divergence of the exotic field’s velocity
is given by 0 = —k?§¢/(¢a?). In short, solving Eq. (64
also leads us to the functional form of # while the contrast
density is simply obtained from its definition, 6 = dp/p.

At this point, it is essential to use another time vari-
able called T' to analyze the leading behavior of different
contributions which appear in Eq. (63]). To be more pre-
cise, plugging Eq. (34) or Eq. ([@2) into the Friedmann
constraint leads to ¢ = ¢, + w(da)/2T"/2, depending
on the sign of «, where v = (2n+2)/(2n 4+ 1). Here, the
new cosmic time is a linear redefinition of the standard
cosmic time ¢, so it can be written as T' = ¢o(ts —t) with
co = V/3aym/2(v — 1). Using this time variable, one can
show that the leading terms of the total density, pressure,
and adiabatic sound speed as T' — 0 are given by

WV (65)

p = T2, (66)
p oy, TV, (67)

s ym(v —2) 2(v—1)
~——— T . 68
G T (68)

After changing of time variable in Eq. (63]), going from
the conformal time to the new cosmic time T, plugging
Egs. (@0)-(©8) into Eq. (63), and retaining the leading

terms, we arrive at a much simpler master equation,

U+ 6T + 6720 =0, (69)

where & = k(2—v)/3 and & = —2v(v—1) /30, are two
constants while k = +1. It is essential to bear in mind
that a big brake singularity is achieved for 1 < v < 2,
corresponding to a nonzero scale factor 0 < a(ts) < oo,
vanishing energy density, and infinite pressure, leading
to a cosmic scenario where at finite time the acceleration
diverges, d(ts) = —oo.

It is convenient to define T' = (y/c
are constants to determined later) Nﬁ
relation into the master equation (EH)

(where s and ¢
and insert this

Y+ (L= s+ 5800 +526() VT = 0. (T0)

In order to show that Eq. (0) is analogous to a Bessel
equation we need to propose a useful parametrization.



Hence, we insert ¥ = y™P(y) into Eq. (70), which now
reads

5252 sv

SV

Y*P "+ (14+2m—s+s& )yP'+m(m—s—s&1)+

(71)
We fix our parametrization by choosing sv = 2, 2m =
s(1—¢&1), and ¢ = sv/& [32]. The latter choice leads to

v*P" +yP' + [m? — P =0, (72)

whose solution involves the Bessel functions of the first
and second kind, called J,,, and Y,,, respectively,

P = AJn(y) + BYm(y),

where A and B are two integration constants. By keeping
the leading term of J,, and Y;, as y — 0, we arrive at
U ~ Ay*™ + B @] Coming back to our original time
variable, the gravitational potential reads

U = AT"+ + B.

(73)

(74)

If kK = +1 then we have & = (v + 1)/3, while the choice
k = —1leads us to £~ = (5 —v)/3. Notice that the grav-
itational potential does not depend on the wave number
k explicitly.

Let us first analyze the case with k = —1, - = (5 —
v)/3, and o > 0. Replacing (74) into (GIl), we obtain the
contrast density

5p —2k?B . 2B

P V3
Also, from the equation above we derive that § o
T20-v) which becomes divergent as T — 0. For pur-

poses of comparison, let us also give the leading term in
the pressure perturbation,

—2k%Bc?
6p = ﬂ_ﬁ_

3=, (75)

2
as

V3coAay, (2 — v) -
(v—1)

Thus we have two kinds of power-law terms in Eq. (76)
provided both diverge for v € (1,2) but in a different way
for each one; namely, for v € (1,1,) one term dominates
over the other one (with v, = 5/4), while for v € (v.,2)
the situation is reversed. Equation (70]) tells us that the
divergent parts of pressure perturbations are associated
with the intrinsic entropy perturbation.

Inserting Eqs. (29), (@), and ([A) into Eq. (64]) and
keeping only the leading term, we obtain a first-order
differential equation for the exotic field perturbation,

B07m(2 — V) v—2
WT( ). (76)

8¢ +miTVDsp = moT T, (77)

with m; < 0 and ms > 0 in the case of B > 0. The
perturbed exotic field is

b ey (1 T_”&F v 7 |y [T —3)
2(v—=3) v—3

Sdo do

(78)

P =

where I'[d, 2] is the incomplete gamma function whereas
D, is a constant which depends on v, |my|, and |ms].
From Eq. (78), we obtain that the perturbed exotic field

. is exponentially suppressed as T" — 0, so near the big

brake the perturbation decays to zero. F urther, the di-
vergence § oc T~*)/25¢ also goes to zero near the singu-
larity. Although the potential energy and kinetic energy
at the background level behave as a negative power law
near the singularity, the perturbed exotic field decays ex-
ponentially to zero, assuring the classical stability of this
solution.

We now deal with the other case corresponding to the
options k = +1, {4 = (v+1)/3, and o < 0. The contrast
density can be written as

—2k’B Aoy, . (v-s)
op = + Tu 79
’ a3 V3(v—1) (79)
and therefore the contrast is
2
5 _ —2]{; BT(27U) 4 AOZ'Ym(V =+ 1) (Vg2) (80)
a? 2v/3(v — 1)

Then, the density perturbation vanishes for v € (8/7,2)
but becomes divergent when v € (1,8/7). Equation (80)
tells us that the contrast variable blows up at the big-
brake event. We turn our attention to pressure pertur-
bations,

_ —2k?Be? ;. 2cA(1 —i—u)T(ufS)
T T v

Since v € (1,2), we obtain that the pressure perturba-
tions ([BI) always diverge as T' — 0.

Inserting Eqs. (B7), @), and ([9) into Eq. (64]) and
keeping only the leading term, we arrive at a first-order
differential equation for the exotic field perturbation,

op (81)

86 — [ma|T¢ D6 = ijma|T*T, (82)

where mg and my4 are two constants which depend of v,
a, and 7, only. The perturbed exotic field is given by

99 _ e (1 v B g [ v |m3|T(V3)]> :
(5(;50 6¢0 2(1/ - 3) v—3
(83)
where E, is a constant. From Eq. (83), we obtain that
the perturbed exotic field is again exponentially sup-
pressed as T — 0, implying that 8 oc T®*=2/2§¢ goes
to zero. Therefore, we conclude that the kinetic and po-
tential energies diverge near the big brake event but the
perturbed exotic field decays to zero and 6 as well. Our
overall conclusion is that in order to really understand
future-like singularities it is fundamental to explore clas-
sical perturbations near background solutions, and when
doing it is physically useful approach such cosmological
"scenarios from the viewpoint of a microscopic model such
as the exotic quintessence model presented above.



We end this section by looking at the behavior of the
intrinsic entropy perturbation associated with the exotic
quintessence field M] Since the intrinsic entropy per-
turbation of matter is a gauge-invariant variable [33], one
can use this quantity as a useful approach to investigate
the behavior of the exotic quintessence model near the
singular event. Such a quantity can be written in terms of
nonadiabatic pressure perturbations by using Eq. (B8] as
I’ = 6pnaa/p- We focus on the first case associated with
the choice a@ > 0. Imserting Eqs. (@0]), ([@7), and (G8)
along with Eqs. (78) and (@) into Eq.(56), we arrive at
the leading terms in the intrinsic entropy perturbation,

(v — 1) = B(2 — v) + V3o A2 — )T 52

(84)
Equation (84]) tells us that it goes to a constant as T — 0
only for v € (1,v.) with v. = 5/4, whereas it remains
unbounded for other values of v. Inserting Eqs. (Gal),

©7), @), @), and @) into Eq. (GL), the intrinsic

entropy perturbation is given by

(1—2v)

I =—2V3c0AQ2 - )T~ 5, (85)

in the second case with @ < 0. It is therefore clear
from this expression that the aforesaid physical magni-
tude becomes divergent near the big brake for all values
of v e (1,2).

V. SUMMARY

We have considered four-dimensional cosmological so-
lutions in which a flat FRW universe exhibits a singular
event at a finite time called a big brake, characterized
by a nonzero finite scalar factor, vanishing Hubble rate,
and infinite acceleration. We have shown that this cos-
mic scenario seems to appear when the universe is filled
with two interacting components: one serves as matter,
whereas the other represents a variable vacuum energy;
the exchange of energy between these components corre-
sponds to a nonlinear function of the total energy density
and its first derivative. A byproduct of this proposal is
that the effective model admits an equation of state corre-
sponding to a modified Chaplyigin gas model, depending
on the sing of a certain parameter. In solving the field
equation, we applied the source equation approach be-
cause it is a useful method to reconstruct the partial en-
ergy densities, pressure, total density, and barotropic in-
dex in terms of the scale factor. Later, we demonstrated
how two interacting dark components can be mapped
into an exotic quintessence (microscopic) model, which
is characterized by the lack of a Lagrangian function but
it can be presented as a model coming from an energy-
momentum tensor. The latter tensor is reminiscent of
a generalized scalar field theory provided the potential
term can also depend on the kinetic energy. In addi-
tion, we obtained the covariant equation of motion for

the quintessence field and showed that additional kinetic
contributions appeared.

We have examined several physical outcomes when the
background solutions associated with the big brake singu-
larity are perturbed. In doing so, we performed our anal-
ysis within the Newtonian gauge provided, the physical
observers are attached to the unperturbed metric so they
measure both the gravitational and the velocity fields.
We have examined only the scalar mode of the metric
and included entropy perturbation in the perturbed pres-
sure. To be more precise, we have considered a general
relation between pressure perturbations and density per-
turbations, and by doing so we took into account the
adiabatic and entropy components in pressure perturba-
tions. We obtained and solved a master equation for the
gravitational Newtonian potential. Keeping the leading
terms in the aforesaid equation, we showed that the gen-
eral solution involves the Bessel functions of the first and
second kind, which near the singular event can be writ-
ten as power laws. Indeed, we found that the Newto-
nian potential leads to a constant plus additional regular
terms, so it does not blow up. After that, we solved a
first-order equation for the exotic quintessence field us-
ing the 0 — 0 perturbed Einstein equation and employing
the perturbed exotic quintessence density. We studied
two different cases depending on the effective equation of
state associated with the exotic quintessence field. For
the a > 0 case, we have found that the perturbed ex-
otic field cannot grow without limit near the singularity;
in fact, it is exponentially suppressed, assuring that the
perturbation decays to zero near the big brake. We cal-
culated other physical magnitudes; for instance, the di-
vergence 6 o« T?~")/2§¢ also goes to zero whereas the
perturbed pressure and contrast density both become di-
vergent near the singularity. The other case correspond-
ing to a < 0 led to a perturbed exotic quintessence field
that decays exponentially and the perturbed pressure is
fully regular for certain values of the model parameter
v. However, the contrast density blows up. Interestingly
enough, the perturbed exotic field and the divergence of
the exotic field’s velocity both vanish near the big brake
event. Regardless of the fact that the kinetic energy and
potential explode near the singular event, the perturbed
exotic field can be controlled which means that this so-
lution is classically stable. Such a finding showed us the
critical importance of considering a microscopic model for
studying future singularities like the big brake event and
the key role played by the perturbation, which helped us
to explore the stability of the solutions.

We have shown that the intrinsic entropy perturbation
can remain bounded for certain values of v near the big
brake singularity when o > 0; however, it magnitude
cannot be controlled in the a < 0 case, growing without
limit near the singular event. It is worthwhile to point
out that both cases are not physically equivalent at the
perturbative level given the signature displayed by the
intrinsic entropy perturbation.
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