62 research outputs found

    WWOX at the crossroads of cancer, metabolic syndrome related traits and CNS pathologies

    Get PDF
    WWOX was cloned as a putative tumor suppressor gene mapping to chromosomal fragile site FRA16D. Deletions affecting WWOX accompanied by loss of expression are frequent in various epithelial cancers. Translocations and deletions affecting WWOX are also common in multiple myeloma and are associated with worse prognosis. Metanalysis of gene expression datasets demonstrates that low WWOX expression is significantly associated with shorter relapse-free survival in ovarian and breast cancer patients. Although somatic mutations affecting WWOX are not frequent, analysis of TCGA tumor datasets led to identifying 44 novel mutations in various tumor types. The highest frequencies of mutations were found in head and neck cancers and uterine and gastric adenocarcinomas. Mouse models of gene ablation led us to conclude that Wwox does not behave as a highly penetrant, classical tumor suppressor gene since its deletion is not tumorigenic in most models and its role is more likely to be of relevance in tumor progression rather than in initiation. Analysis of signaling pathways associated with WWOX expression confirmed previous in vivo and in vitro observations linking WWOX function with the TGFβ/SMAD and WNT signaling pathways and with specific metabolic processes. Supporting these conclusions recently we demonstrated that indeed WWOX behaves as a modulator of TGFβ/SMAD signaling by binding and sequestering SMAD3 in the cytoplasmic compartment. As a consequence progressive loss of WWOX expression in advanced breast cancer would contribute to the pro-metastatic effects resulting from TGFβ/SMAD3 hyperactive signaling in breast cancer.Recently, GWAS and resequencing studies have linked the WWOX locus with familial dyslipidemias and metabolic syndrome related traits. Indeed, gene expression studies in liver conditional KO mice confirmed an association between WWOX expression and lipid metabolism.Finally, very recently the first human pedigrees with probands carrying homozygous germline loss of function WWOX mutations have been identified. These patients are characterized by severe CNS related pathology that includes epilepsy, ataxia and mental retardation. In summary, WWOX is a highly conserved and tightly regulated gene throughout evolution and when defective or deregulated the consequences are important and deleterious as demonstrated by its association not only with poor prognosis in cancer but also with other important human pathologies such as metabolic syndrome and CNS related pathologic conditions.Centro de Investigaciones Inmunológicas Básicas y Aplicada

    Breast Cancer Biomarker Discovery in the Functional Genomic Age: A Systematic Review of 42 Gene Expression Signatures

    Get PDF
    In this review we provide a systematic analysis of transcriptomic signatures derived from 42 breast cancer gene expression studies, in an effort to identify the most relevant breast cancer biomarkers using a meta-analysis method. Meta-data revealed a set of 117 genes that were the most commonly affected ranging from 12% to 36% of overlap among breast cancer gene expression studies. Data mining analysis of transcripts and protein-protein interactions of these commonly modulated genes indicate three functional modules significantly affected among signatures, one module related with the response to steroid hormone stimulus, and two modules related to the cell cycle. Analysis of a publicly available gene expression data showed that the obtained meta-signature is capable of predicting overall survival (P < 0.0001) and relapse-free survival (P < 0.0001) in patients with early-stage breast carcinomas. In addition, the identified meta-signature improves breast cancer patient stratification independently of traditional prognostic factors in a multivariate Cox proportional-hazards analysis

    Prólogo de los Editores Invitados del Número Especial COVID-19

    Get PDF
    Esta edición especial de la Revista de Innovación y Desarrollo Tecnológico y Social, tiene por finalidad presentar la diversidad de algunas de las líneas de acción llevadas adelante por la UNLP para contribuir a hacer frente a la presente pandemia. De esta forma se publican en este número 14 trabajos de investigación y desarrollo (I+D) llevados a cabo por distintos grupos en diferentes unidades académicas. Estos trabajos se desarrollaron por docentes, investigadores y alumnos en cada una de las Facultades de la UNLP gracias al apoyo de diferentes líneas de financiación provenientes del estado Provincial y Nacional, tales como el Ministerio de Salud de la Provincia de Buenos Aires y el Ministerio de Ciencia, Tecnología e Innovación Productiva de la Nación. Esta rápida y coordinada respuesta de nuestra Universidad frente a la crisis, fue impulsada desde el Rectorado y apoyada fuertemente por Decanos de las distintas Facultades. Las acciones llevadas a cabo han puesto de manifiesto que la modalidad convencional de I+D basada en grupos de trabajo aislados o dedicados al estudio de aspectos específicos puede ser re direccionada para generar un nuevo paradigma de I+D donde la experticia conjunta e interdisciplinaria puede dedicarse a la resolución de problemáticas complejas con inmediato impacto productivo y socio-cultural. En este sentido, la comunidad de la UNLP ha logrado definir con mayor claridad su función y responsabilidades en cada nivel de la organización, logrando mejorar la comunicación entre grupos de trabajo de una misma unidad académica y entre facultades, lo que ha permitido una interacción inédita hasta el presente

    WWOX at the crossroads of cancer, metabolic syndrome related traits and CNS pathologies

    Get PDF
    WWOX was cloned as a putative tumor suppressor gene mapping to chromosomal fragile site FRA16D. Deletions affecting WWOX accompanied by loss of expression are frequent in various epithelial cancers. Translocations and deletions affecting WWOX are also common in multiple myeloma and are associated with worse prognosis. Metanalysis of gene expression datasets demonstrates that low WWOX expression is significantly associated with shorter relapse-free survival in ovarian and breast cancer patients. Although somatic mutations affecting WWOX are not frequent, analysis of TCGA tumor datasets led to identifying 44 novel mutations in various tumor types. The highest frequencies of mutations were found in head and neck cancers and uterine and gastric adenocarcinomas. Mouse models of gene ablation led us to conclude that Wwox does not behave as a highly penetrant, classical tumor suppressor gene since its deletion is not tumorigenic in most models and its role is more likely to be of relevance in tumor progression rather than in initiation. Analysis of signaling pathways associated with WWOX expression confirmed previous in vivo and in vitro observations linking WWOX function with the TGFβ/SMAD and WNT signaling pathways and with specific metabolic processes. Supporting these conclusions recently we demonstrated that indeed WWOX behaves as a modulator of TGFβ/SMAD signaling by binding and sequestering SMAD3 in the cytoplasmic compartment. As a consequence progressive loss of WWOX expression in advanced breast cancer would contribute to the pro-metastatic effects resulting from TGFβ/SMAD3 hyperactive signaling in breast cancer.Recently, GWAS and resequencing studies have linked the WWOX locus with familial dyslipidemias and metabolic syndrome related traits. Indeed, gene expression studies in liver conditional KO mice confirmed an association between WWOX expression and lipid metabolism.Finally, very recently the first human pedigrees with probands carrying homozygous germline loss of function WWOX mutations have been identified. These patients are characterized by severe CNS related pathology that includes epilepsy, ataxia and mental retardation. In summary, WWOX is a highly conserved and tightly regulated gene throughout evolution and when defective or deregulated the consequences are important and deleterious as demonstrated by its association not only with poor prognosis in cancer but also with other important human pathologies such as metabolic syndrome and CNS related pathologic conditions.Centro de Investigaciones Inmunológicas Básicas y Aplicada

    Desarrollo de un sistema de expresión condicional del gen RHBDD2 para su sobreexpresión en un ratón transgénico

    Get PDF
    En estudios previos hemos identificado al gen RHBDD2 sobreexpresado en carcinomas invasores de mama. Hasta el momento se desconoce el rol funcional de dicha alteración aunque existen evidencias de que podría determinar un fenotipo favorable para las células tumorales. A fin de analizar in vivo las consecuencias biológicas de la sobreexpresión del gen RHBDD2, se llevó a cabo la construcción de un sistema de expresión condicional, para su inyección en células madres embrionarias de ratón. Este modelo permitirá inducir la sobreexpresión de RHBDD2 de manera temporal y tejido específica.Facultad de Ciencias Médica

    GATA3 protein as a MUC1 transcriptional regulator in breast cancer cells

    Get PDF
    INTRODUCTION: Recent studies have demonstrated that members of the GATA-binding protein (GATA) family (GATA4 and GATA5) might have pivotal roles in the transcriptional upregulation of mucin genes (MUC2, MUC3 and MUC4) in gastrointestinal epithelium. The zinc-finger GATA3 transcription factor has been reported to be involved in the growth control and differentiation of breast epithelial cells. In SAGE (serial analysis of gene expression) studies we observed an intriguing significant correlation between GATA3 and MUC1 mRNA expression in breast carcinomas. We therefore designed the present study to elucidate whether MUC1 expression is regulated by GATA3 in breast cancer cells. METHODS: Promoter sequence analysis of the MUC1 gene identified six GATA cis consensus elements in the 5' flanking region (GATA1, GATA3 and four GATA-like sequences). Chromatin immunoprecipitation and electrophoretic mobility-shift assays were employed to study the presence of a functional GATA3-binding site. GATA3 and MUC1 expression was analyzed in vitro with a GATA3 knockdown assay. Furthermore, expression of GATA3 and MUC1 genes was analyzed by real-time RT-PCR and immunohistochemistry on breast cancer-specific tissue microarrays. RESULTS: We confirmed the presence of a functional GATA3-binding site on the MUC1 promoter region in the MCF7 cell line. We determined that GATA3 knockdown assays led to a decrease in MUC1 protein expression in MCF7 and T47D cells. In addition, we detected a statistically significant correlation in expression between GATA3 and MUC1 genes at the mRNA and protein levels both in normal breast epithelium and in breast carcinomas (p = 0.01). GATA3 expression was also highly associated with estrogen receptor and progesterone receptor status (p = 0.0001) and tumor grade (p = 0.004) in breast carcinomas. CONCLUSION: Our study provides evidence indicating that GATA3 is probably a mediator for the transcriptional upregulation of MUC1 expression in some breast cancers

    Gene expression signature of estrogen receptor α status in breast cancer

    Get PDF
    BACKGROUND: Estrogens are known to regulate the proliferation of breast cancer cells and to modify their phenotypic properties. Identification of estrogen-regulated genes in human breast tumors is an essential step toward understanding the molecular mechanisms of estrogen action in cancer. To this end we generated and compared the Serial Analysis of Gene Expression (SAGE) profiles of 26 human breast carcinomas based on their estrogen receptor α (ER) status. Thus, producing a breast cancer SAGE database of almost 2.5 million tags, representing over 50,000 transcripts. RESULTS: We identified 520 transcripts differentially expressed between ERα-positive (+) and ERα-negative (-) primary breast tumors (Fold change ≥ 2; p < 0.05). Furthermore, we identified 220 high-affinity Estrogen Responsive Elements (EREs) distributed on the promoter regions of 163 out of the 473 up-modulated genes in ERα (+) breast tumors. In brief, we observed predominantly up-regulation of cell growth related genes, DNA binding and transcription factor activity related genes based on Gene Ontology (GO) biological functional annotation. GO terms over-representation analysis showed a statistically significant enrichment of various transcript families including: metal ion binding related transcripts (p = 0.011), calcium ion binding related transcripts (p = 0.033) and steroid hormone receptor activity related transcripts (p = 0.031). SAGE data associated with ERα status was compared with reported information from breast cancer DNA microarrays studies. A significant proportion of ERα associated gene expression changes was validated by this cross-platform comparison. However, our SAGE study also identified novel sets of genes as highly expressed in ERα (+) invasive breast tumors not previously reported. These observations were further validated in an independent set of human breast tumors by means of real time RT-PCR. CONCLUSION: The integration of the breast cancer comparative transcriptome analysis based on ERα status coupled to the genome-wide identification of high-affinity EREs and GO over-representation analysis, provide useful information for validation and discovery of signaling networks related to estrogen response in this malignancy

    GATA3 protein as a MUC1 transcriptional regulator in breast cancer cells

    Get PDF
    Introduction Recent studies have demonstrated that members of the GATA-binding protein (GATA) family (GATA4 and GATA5) might have pivotal roles in the transcriptional upregulation of mucin genes (MUC2, MUC3 and MUC4) in gastrointestinal epithelium. The zinc-finger GATA3 transcription factor has been reported to be involved in the growth control and differentiation of breast epithelial cells. In SAGE (serial analysis of gene expression) studies we observed an intriguing significant correlation between GATA3 and MUC1 mRNA expression in breast carcinomas. We therefore designed the present study to elucidate whether MUC1 expression is regulated by GATA3 in breast cancer cells. Methods: Promoter sequence analysis of the MUC1 gene identified six GATA cis consensus elements in the 5′ flanking region (GATA1, GATA3 and four GATA-like sequences). Chromatin immunoprecipitation and electrophoretic mobility-shift assays were employed to study the presence of a functional GATA3-binding site. GATA3 and MUC1 expression was analyzed in vitro with a GATA3 knockdown assay. Furthermore, expression of GATA3 and MUC1 genes was analyzed by realtime RT-PCR and immunohistochemistry on breast cancer-specific tissue microarrays. Results: We confirmed the presence of a functional GATA3-binding site on the MUC1 promoter region in the MCF7 cell line. We determined that GATA3 knockdown assays led to a decrease in MUC1 protein expression in MCF7 and T47D cells. In addition, we detected a statistically significant correlation in expression between GATA3 and MUC1 genes at the mRNA and protein levels both in normal breast epithelium and in breast carcinomas (p = 0.01). GATA3 expression was also highly associated with estrogen receptor and progesterone receptor status (p = 0.0001) and tumor grade (p = 0.004) in breast carcinomas. Conclusion: Our study provides evidence indicating that GATA3 is probably a mediator for the transcriptional upregulation of MUC1 expression in some breast cancers.Facultad de Ciencias Médica

    The cancer gene WWOX behaves as an inhibitor of SMAD3 transcriptional activity via direct binding

    Get PDF
    Background: The WW domain containing protein WWOX has been postulated to behave as a tumor suppressor in breast and other cancers. Expression of this protein is lost in over 70% of ER negative tumors. This prompted us to investigate the phenotypic and gene expression effects of loss of WWOX expression in breast cells. Methods: Gene expression microarrays and standard in vitro assays were performed on stably silenced WWOX (shRNA) normal breast cells. Bioinformatic analyses were used to identify gene networks and transcriptional regulators affected by WWOX silencing. Co-immunoprecipitations and GST-pulldowns were used to demonstrate a direct interaction between WWOX and SMAD3. Reporter assays, ChIP, confocal microscopy and in silico analyses were employed to determine the effect of WWOX silencing on TGFβ-signaling. Results: WWOX silencing affected cell proliferation, motility, attachment and deregulated expression of genes involved in cell cycle, motility and DNA damage. Interestingly, we detected an enrichment of targets activated by the SMAD3 transcription factor, including significant upregulation of ANGPTL4, FST, PTHLH and SERPINE1 transcripts. Importantly, we demonstrate that the WWOX protein physically interacts with SMAD3 via WW domain 1. Furthermore, WWOX expression dramatically decreases SMAD3 occupancy at the ANGPTL4 and SERPINE1 promoters and significantly quenches activation of a TGFβ responsive reporter. Additionally, WWOX expression leads to redistribution of SMAD3 from the nuclear to the cytoplasmic compartment. Since the TGFβ target ANGPTL4 plays a key role in lung metastasis development, we performed a meta-analysis of ANGPTL4 expression relative to WWOX in microarray datasets from breast carcinomas. We observed a significant inverse correlation between WWOX and ANGPTL4. Furthermore, the WWOX lo/ANGPTL4hi cluster of breast tumors is enriched in triple-negative and basal-like sub-types. Tumors with this gene expression signature could represent candidates for anti-TGFβ targeted therapies. Conclusions: We show for the first time that WWOX modulates SMAD3 signaling in breast cells via direct WW-domain mediated binding and potential cytoplasmic sequestration of SMAD3 protein. Since loss of WWOX expression increases with breast cancer progression and it behaves as an inhibitor of SMAD3 transcriptional activity these observations may help explain, at least in part, the paradoxical pro-tumorigenic effects of TGFβ signaling in advanced breast cancer.Facultad de Ciencias MédicasCentro de Investigaciones Inmunológicas Básicas y Aplicada

    Breast cancer biomarker discovery in the functional genomic age: A systematic review of 42 gene expression signatures

    Get PDF
    In this review we provide a systematic analysis of transcriptomic signatures derived from 42 breast cancer gene expression studies, in an effort to identify the most relevant breast cancer biomarkers using a meta-analysis method. Meta-data revealed a set of 117 genes that were the most commonly affected ranging from 12% to 36% of overlap among breast cancer gene expression studies. Data mining analysis of transcripts and protein-protein interactions of these commonly modulated genes indicate three functional modules signifcantly affected among signatures, one module related with the response to steroid hormone stimulus, and two modules related to the cell cycle. Analysis of a publicly available gene expression data showed that the obtained meta-signature is capable of predicting overall survival (P < 0.0001) and relapse-free survival (P < 0.0001) in patients with early-stage breast carcinomas. In addition, the identifed meta-signature improves breast cancer patient stratifcation independently of traditional prognostic factors in a multivariate Cox proportional-hazards analysis.Facultad de Ciencias Médica
    corecore