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WWOXwas cloned as a putative tumor suppressor genemapping to chromosomal fragile site FRA16D. Deletions
affectingWWOXaccompanied by loss of expression are frequent in various epithelial cancers. Translocations and
deletions affectingWWOXare also common inmultiplemyeloma and are associatedwithworse prognosis. Met-
analysis of gene expression datasets demonstrates that low WWOX expression is significantly associated with
shorter relapse-free survival in ovarian and breast cancer patients. Although somatic mutations affecting
WWOX are not frequent, analysis of TCGA tumor datasets led to identifying 44 novel mutations in various
tumor types. The highest frequencies of mutations were found in head and neck cancers and uterine and gastric
adenocarcinomas.
Mouse models of gene ablation led us to conclude that Wwox does not behave as a highly penetrant, classical
tumor suppressor gene since its deletion is not tumorigenic inmostmodels and its role ismore likely to be of rel-
evance in tumor progression rather than in initiation. Analysis of signaling pathways associatedwithWWOX ex-
pression confirmed previous in vivo and in vitro observations linkingWWOX function with the TGFβ/SMAD and
WNT signaling pathways and with specific metabolic processes. Supporting these conclusions recently we dem-
onstrated that indeed WWOX behaves as a modulator of TGFβ/SMAD signaling by binding and sequestering
SMAD3 in the cytoplasmic compartment. As a consequence progressive loss of WWOX expression in advanced
breast cancer would contribute to the pro-metastatic effects resulting from TGFβ/SMAD3 hyperactive signaling
in breast cancer.
Recently, GWAS and resequencing studies have linked the WWOX locus with familial dyslipidemias and meta-
bolic syndrome related traits. Indeed, gene expression studies in liver conditional KO mice confirmed an associ-
ation between WWOX expression and lipid metabolism.
Finally, very recently the first human pedigrees with probands carrying homozygous germline loss of function
WWOX mutations have been identified. These patients are characterized by severe CNS related pathology that
includes epilepsy, ataxia and mental retardation.
In summary, WWOX is a highly conserved and tightly regulated gene throughout evolution and when defective
or deregulated the consequences are important and deleterious as demonstrated by its association not only with
poor prognosis in cancer but alsowith other important human pathologies such asmetabolic syndrome and CNS
related pathologic conditions.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).
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1. Introduction

By using conventional positional cloning approaches in 2000 we
clonedWWOX (WW domain containing oxidoreductase), a gene span-
ning chromosome region 16q23.3–q24.1, an area that was narrowed
down as commonly affected by genomic loses in breast and other can-
cers [1,2]. WWOX contains two distinct domains; the amino terminus
shows high sequence conservation to the WW domain family of pro-
teins displaying two WW domains and a central 283 amino acids do-
main homologous to the Short-Chain Dehydrogenase/Reductase (SDR)
superfamily (Fig. 1).

At the genomic level WWOX spans a region of over 1.1 Mbp in size
even though the encoded gene is not large, only 9 exons (NM_016373.
2) coding for a 414 AA protein (NP_057457.1). We observed that the
very large 5 and 8 introns contain the previously identified translocation
break points for multiple myeloma, specifically t(14;16)(q32;q23) [3].
We concluded that such intronic regions were highly recombinogenic
and prone to chromosomal rearrangements and we speculated in our
report that likely this was the same locus as that of chromosomal fragile
site FRA16D [2]. Soon thereafter a second group in search of the gene
target for FRA16D cloned FOR that resulted to be the same as WWOX
confirming the original speculations [4] and a third group reported the
mouse sequence [5]. FRA16D, is the second most frequently affected
constitutive site of chromosomal fragility in the whole human genome,
second only to FRA3B. Common or constitutive chromosomal fragile
sites are found in all individuals and are a constant chromosomal fea-
ture. These highly recombinogenic chromosomal loci are susceptible
to the occurrence of breaks, gaps and rearrangements.

2. WWOX throughout evolution

There is remarkable sequence conservation both at exonic and
intronic levels at the human andmouse orthologous chromosomal frag-
ile site regions for human FRA16D/WWOX and mouse Fra8E1/Wwox
[6]. WWOX/Wwox proteins display 94% identity and 96% similarity at
the amino acid level [5,6]. Remarkably when comparing with the
drosophila homologous protein, identity reaches 49% and 66% similari-
ty. Interestingly, within WWOX introns there is remarkable evolution-
ary conservation, multiple ultraconserved regions can be found within
these intronic regions suggesting that theremust exist significant evolu-
tionary selection pressure for preserving not only the coding but also
the non-coding regions of the WWOX locus. This phenomenon that is
also observed in other large fragile site loci such as FRA3B/FHIT, appears
Fig. 1.WWOX protein domains. Protein-protein interaction WW domains are shown in blue, c
replaced by a tyrosine (conservative change). The highly conserved short chain dehydrogen
triad is highlighted with S281 and the motif YXXXK noted at position 293–297. The conserved
phorylation sites at Y33 and Y287 are not depicted.
to be partially related to sequences encoding essential non-coding RNAs
within such large intronic regions [7,8]. An additional reason for the
preservation of such large non-coding areas at the WWOX locus is the
proven existence of various functional enhancer elements within such
intragenic regions [9].

Gilad et al. [10] utilized amultispecies cDNA array containing probes
for N1000 genes matching human, chimpanzee, orangutan and rhesus
macaque sequences, thus phylogenetically representing approximately
70 Ma of evolution, for comparing liver specific gene expression
between these species. One of the goals of the study was to identify
those genes whose expression has remained constant throughout evo-
lution, i.e. genes that remained evolving under ‘stabilizing selection’.
Interestingly, WWOX ranked among the top genes under stabilizing se-
lection, a categorymostly enriched by genes that fall under the gene on-
tology functional classification of ‘regulation of physiological processes’.
Furthermore, these authors concluded that precisely focusing on genes
such asWWOX,whose expression is tightly conserved among primates,
would be helpful for identifying promising candidates for disease-
association studies [10].

3. WWOX normal expression and loss of expression in cancer

We observed that WWOX protein is ubiquitously expressed in
human tissues by means of immunohistochemistry (IHC) studies [11].
However it is preferentially highly expressed in secretory epithelia,
in reproductive, exocrine and endocrine organs and interestingly also
in neuronal bodies throughout the CNS including strong expression in
the Purkinje layer of the cerebellum [11]. RNASeq analyses from multi-
ple human tissues are quite in agreement with the previous IHC studies
and thyroid, brain, testis, ovary and prostate demonstrated to be the tis-
sues with the highest expression levels in that order (Fig. 2) as per the
EMBL-EBI Expression Atlas (http://www.ebi.ac.uk) Illumina Body Map
(experiment E-MTAB-513).

Studies from various laboratories have shown loss ofWWOXprotein
expression in multiple neoplasias such as breast [12,13], ovarian [14],
gastric [15], liver [16], lung [17], thyroid [18], pancreatic [19] and
other cancers [20]. This topic has been reviewed extensively elsewhere
by other authors [21]. Importantly, in various cancers loss ofWWOX ex-
pression is associated with indicators of poor prognosis and outcome,
e.g. in breast cancer [12,13], ovarian cancer [14], non-small cell lung
cancer [17] and bladder cancer [22].

It is worth noting that various alternatively spliced mRNA WWOX
forms were originally described by us and others as commonly
onserved tryptophans (W) are highlighted. In the second WW domain one tryptophan is
ase domain (SDR) is shown in orange. The characteristic oxidoreductase catalytic active
coenzyme binding region is also shown TGXXXGXG at position 130-137. Described phos-

http://www.ebi.ac.uk


Fig. 2.WWOX expression in normal human tissues as per RNASeq analyses. Data obtained
from the EMBL-EBI Expression Atlas (http://www.ebi.ac.uk) Illumina Body Map (experi-
ment E-MTAB-513). FPKM: Fragments per kilobase of exon per million fragments
mapped.

Fig. 3. Copy-number losses affecting theWWOX locus on TCGA tumor datasets, GISTIC al-
gorithm (31), data obtained from www.cbioportal.org. Freeze from February 2014. Ovar-
ian serous cystoadenocarcinoma, n = 489 (34); breast cancer, n = 778 (35) and TCGA
provisional data); stomach cancer n = 293, (TCGA provisional data); prostate cancer, n
= 197 (TCGA tumor set, provisional data), uterine cancer, n=363 (36); colorectal adeno-
carcinoma, (37 and TCGA provisional data). In red homozygous deletions, in blue hetero-
zygous losses.
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occurring in tumors and cancer lines. The most common of these alter-
native transcripts displayed deletions of exons 5–8 or 6–8 [4,23,24].
However, these alternatively spliced forms and others including those
reported in GeneBank as isoforms 2 (NM_130791.2) and 3 (NM_
130844.2) so far have not been demonstrated to encode viable protein,
since they are not detected by Western blot to the best of our
knowledge.

The most important mechanism leading to loss of WWOX expres-
sion appears to be genomic loss via gross chromosomal deletions
and rearrangements as will be discussed in the next section. Additional
mechanisms include epigenetic silencing by promoter hypermeth-
ylation [25] and degradation. It has been shown that WWOX can be
inactivated via polyubiquitination and subsequent proteosomal degra-
dation. ACK1 has been shown to interact with and phosphorylate
WWOX at Y287 thus targeting WWOX for rapid degradation [26].
WWOX has also been proposed to be a substrate of ubiquitin ligase
ITCH [27]. Additionally recently WWOX downregulation via targeting
by miR-134 in head and neck squamous cell carcinomas has also been
reported [28].

4. New data onWWOX copy number losses and mRNA expression
in cancer

A comprehensive analysis of copy number variation on over 740
cancer lines determined that the WWOX locus (FRA16D) was the
thirdmost common site of the whole genome affected by hemi and ho-
mozygous losses only after the p16 (CDKN2A) and the FHIT (FRA3B)
loci [29]. Recently, Beroukhim R et al. [30] reported a high resolution
study of somatic copy number alterations analyzing over 3000 cancer
specimens and identified WWOX among the most commonly affected
genes by genomic deletions as per GISTIC (genomic identification of sig-
nificant targets in cancer) algorithm analyses [31]. By using the same
algorithm we can now determine genomic losses on each specific
tumor dataset reported so far by The Cancer Genome Atlas (TCGA)
using the cbioPortal resource (www.cbioportal.org) [32,33]. Thus we
identified the tumor types most commonly affected by heterozygous
and homozygous WWOX deletions (Freeze February 2014). As can be
observed in Fig. 3, ovarian serous cystoadenocarcinoma is the tumor
type most commonly affected by genomic losses affecting WWOX
with 78% of cases showing heterozygous loss and 6% homozygous losses
[34] Heterozygous losses were observed in 52% of breast cancers [35],
33% of gastric adenocarcinomas, 29% of prostate adenocarcinomas,
21% of endometrial cancers [36] and 10% colorectal carcinomas [37]
(Fig. 3). Gastric adenocarcinomas and prostate carcinomas show a
relatively high frequency of homozygous losses affecting 7% of
cases. Fig. 4 displays the correlation betweenWWOX copy number sta-
tus and gene expression levels in ovarian and breast cancer. As can be
observed, heterozygous losses affect significantly WWOX expression
levels in both tumor types but evenmore significantly in ovarian cancer.

To further explore the prognostic value ofWWOXmRNA expression
in breast and ovarian carcinomas, we evaluated information from pub-
licly available gene expression data sets (oligo-microarrays) using the
Kaplan–Meier Plotter resource [38]. First, patients were divided into
two groups (high and lowWWOXexpression) according to the quantile
expressions of Affymetrix 219077_s_at and 210695_s_at probes. These
groups were then compared using the relapse-free survival and
progression-free survival for breast and ovarian cancer datasets respec-
tively. Kaplan–Meier analysis revealed that low expression of WWOX
was associated with shorter relapse-free survival in breast cancer
patients (n = 3259) (Fig. 5) and shorter progression-free survival in
ovarian cancer patients as well (n = 1156) (Fig. 6). Interestingly, we
identified a significant association between low expression of WWOX
and short time relapse-free survival in all breast cancer intrinsic sub-
types, but more pronounced in luminal B and basal-like subtypes
(Fig. 5).

5. WWOX mutations in cancer

The development of next generation sequencing technologies led to
a dramatic accumulation of genomic and expression data in the past
three years on multiple tumor types. The data by TCGA gives us now
the opportunity to determine the true frequency of somatic mutations
affecting WWOX in cancer. Data was obtained using the cbioportal re-
source (www.cbioportal.org) [32,33], as per freeze in February 2014.

The frequency of mutations affecting the WWOX coding region
across tumor types as expected is not very high. Nevertheless a total
of 44 novel WWOX somatic mutations have been identified to date
in various tumor types, 5 of these resulted in nonsense mutations
(3 in head and neck cancers and 2 in lung cancers), 2 frameshift in-
sertions, 1 frameshift deletion and 36missense mutations, each specific
mutation is depicted in Fig. 7 and described in Table 1. Of these, 8 so-
matic mutations were identified in uterine adenocarcinomas (3.2% of
cases, [36], 8 in head and neck cancers (4.1% of cases from Broad [39],
and in 2% of TCGA cases), 4 in gastric adenocarcinomas (2.3% of cases),
5 in colorectal cancers (2.2% of cases [37], 6 in melanoma (b2%), 5 in

http://www.cbioportal.org
http://www.cbioportal.org
image of Fig.%e2%82%ac2
image of Fig.%e2%82%ac3


Fig. 4. Correlation plots forWWOX copy-number alterations and correspondingmRNA expression in the TCGA breast cancer (left panel) and ovarian cancer (right panel) datasets as pro-
vided by cBioPortal resource. Breast and ovarian sampleswithWWOXdeletion (homozygous and heterozygous deletions) havemarkedly decreasedWWOXmRNA expression compared
with diploid samples (p b 0.05). WWOXmRNA expression among the copy-number alteration groups was compared with diploid groups using the Mann-Whitney U-Test.
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lung adenocarcinomas (b2%), 2 in lung squamous cell carcinomas
(b2%), 3 in breast carcinomas (b1%), and one mutation each in a pan-
creas, a bladder and a renal clear cell carcinoma (Table 1). Of particular
interest is that two identical mutations were identified at G260
resulting in frameshift insertions in a uterine adenocarcinoma and in
a breast carcinoma, two missense mutations were detected at R254
one in a colorectal and one in a uterine adenocarcinoma (R254C and
R254S respectively), two mutations at H147 were also observed
Fig. 5. Survival analysis plots depicting the worse prognostic effect on relapse-free survival o
subtypes.
resulting in missense mutations in a head and neck carcinoma and a
lung adenocarcinoma (H147Q and H147Y respectively).

The detected nonsense and frameshift mutations all have obvious
severe impact in protein functionality and of the 36missensemutations
18 (50%) are predicted to affect protein function based on themutation
assessor algorithm [40], noted in bold as high and medium functional
impact in Table 1. In summary, of all somatic mutations detected so
far affecting WWOX in human tumors 59% (26 of 44) are very likely to
f low WWOX expression in breast cancer patients (n=3259) according to each intrinsic

image of Fig.%e2%82%ac4
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Fig. 6. Survival analysis plots depicting theworse prognostic effect on relapse-free survival
of low WWOX expression in ovarian cancer patients (n = 1156).
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affect protein function, suggesting that is unlikely these mutations rep-
resent simple background mutational events.
6. WWOX in multiple myeloma

The frequent involvement of WWOX genomic and expression
abnormalities in multiple myeloma (MM) deserves a separate section.
In 1998, prior to the cloning ofWWOX, Chesi et al. [3], reported themo-
lecular characterization of a novel translocation in MM, t(14;16)(q32;
q23). The 16q23 region was observed translocated to an IgH locus in
20–25% of MM lines and fresh MM samples. It was concluded then
that the consequence of the t(14;16)(q32;q23) is mostly directed to in-
crease MAF expression (an oncogene located 3′ of WWOX's locus) [3].
However, we know now that an additional consequence of such trans-
location is the destruction of a functional WWOX allele. Analysis of the
genomic area spanned by WWOX revealed that the t(14;16)(q32;q23)
translocation breakpoints identified as KMS11, MM.1, JJN3 and ANBL6
in ch16q23 all map within intron 8 of the WWOX gene [2,6,41]. Trans-
location t(14;16)(q32;q23) is an indicator of poor prognosis and usually
associates with monosomy 13 [42]. Further pointing to the highly
recombinogenic nature of the WWOX locus, very recently the genera-
tion of chimeric transcripts involving the WWOX and the PVT1 gene
(a gene next to the MYC locus) in the RPMI8226 cell line harboring
der(16)t(16;22)ins(16;8)(q23;q24), in which PVT1 exon 1 was fused
to WWOX exon 9 was reported [43]. Additionally deletion of the
WWOX locus is observed in a significant percentage of MM patients
(20–35%), as determined by array CGH studies [44] and SNP arrays
[45–47]. Furthermore, it was determined that del(16q)was an indepen-
dent adverse prognostic indicator [45]. It was further determined that
LOH at 16q23.1was significantly associatedwith loss ofWWOX expres-
sion in MM cases [46]. Dickens and coworkers characterized regions of
homozygous deletion inMMandWWOXwas one of 29 genes identified
Fig. 7. Novel somatic mutations affecting WWOX in cancer samples. Data o
as affected by homozygous deletions in significant numbers of MM
cases [48].

In summary, loss ofWWOX expression inMM is frequent and occurs
as the consequence of multiple mechanisms including gross chromo-
somal rearrangements such as deletion and translocations. Additionally,
t(14;16)(q32;q23) and 16q losses are both associated with poor prog-
nosis in this disease.

7. Mouse models of WWOX ablation

Since the expression of WWOX is lost in many types of cancer,
mouse models of Wwox ablation have been generated to mimic
this loss and characterize the subsequent effects on development and
tumorigenesis. To this end, a mouse Wwox hypomorphic model
[49] and two full knockout lines [50,51] have been generated by dif-
ferent laboratories. The Wwox hypomorphic model was generated
by means of gene trap insertion technology targeting the Wwox
gene (Wwoxgt/gt). Wwox expression was undetectable in embryos
(10.5 dpc) and most adult tissues. However, this model was deemed a
functional hypomorph because low levels of protein expression could
be detected in some tissues such as testes [49]. Phenotypic analysis re-
vealed that Wwoxgt/gt mice were viable but had a significantly shorter
lifespan than their wild type (WT) counterparts (p = 0.02). During
the first 18 months of life 23% of Wwoxgt/gt died compared to WT and
it was not possible to determine the causes of death. However, at
the end of the survival experiment Wwoxgt/gt female hypomorphs
displayed a significant increase in malignant neoplasias compared to
WT littermates (p = 0.015), with the majority of tumors consisting of
B-cell lymphomas. Reduced fertility was also observed due to testicular
atrophy in hypomorphic males [49].

Two fullWwox knockoutmousemodels have been generated either
using a targeting construct to delete large regions of the Wwox gene
[50] or using mice harboring loxP sites flanking exon 1 of the gene
(Wwoxfl/fl) crossed tomice expressing Cre-recombinase under the con-
trol of the adenovirus EIIA promoter (EIIA-Cre) [51]. Both full knockout
models displayed complete ablation of Wwox protein in all tissues ex-
amined with heterozygotes expressing ~50% of WT levels. It was also
found that Wwox KO mice die postnatally as early as 72 h after birth
with none living longer than 3–4 weeks. The lifespan of theWwox het-
erozygotes was indistinguishable from WT mice. Further phenotypic
characterization revealed that Wwox ablation resulted in significant
growth retardation (dwarfism) that was noticeable at birth. Serum
chemistries of Wwox KO mice revealed hypoglycemia, hypocalcemia
aswell as signs ofmetabolic acidosis and kidney failure [50,51]. Interest-
ingly, bonehistomorphometry showed thatWwoxKOmice have severe
defects in bone formation in part due to increased osteoclastic activi-
ty [50,51]. Much like the hypomorphic Wwoxgt/gt mouse, Wwox KO
micewere found to have gonadal abnormalities such as testicular hypo-
plasia in males and reduced ovarian size in females. These effects were
suggested to be the result of impaired steroidogenesis [52].

One of the principal aims of ablatingWwox in mouse tissues was to
determine whether or not this gene behaves as a classical tumor sup-
pressor. Analysis of spontaneous tumor formation in the two short-
lived fullWwoxKOmodels differed. Aqeilan et al. reported spontaneous
formation of focal lesions along the diaphysis ofWwox KOmouse limbs
btained from www.cbioportal.org. See Table 1 for detailed description.
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Table 1
WWOXmutations in cancer samples. Data obtained from www.cbioportal.org as per freeze in freeze in February 2014.

Case ID Cancer study AA change Type Mutation assessor

TCGA-AX-A05Z Uterine (TCGA) [36] D267Y Missense Low
TCGA-AX-A2H5 Uterine (TCGA) [36] G260fs FS ins
TCGA-AP-A051 Uterine (TCGA) [36] L169I Missense Low
TCGA-AP-A0LM Uterine (TCGA) [36] L368M Missense Medium
TCGA-BS-A0UL Uterine (TCGA) [36] R254S Missense Medium
TCGA-BS-A0UF Uterine (TCGA) [36] R381S Missense Medium
TCGA-AX-A0J1 Uterine (TCGA) [36] R408W Missense Low
TCGA-N7-A4Y0 Uterine CS (TCGA) L204R Missense High
HN_62671 Head & neck (broad) [39] K142M Missense Medium
HN_63080 Head & neck (broad) [39] R175* Nonsense
HN_62814 Head & neck (broad) [39] V190M Missense High
TCGA-CV-7178 Head & neck (TCGA) (in revision) H147Q Missense Neutral
TCGA-CN-4731 Head & neck (TCGA) (in revision) R25* Nonsense
TCGA-CQ-5325 Head & neck (TCGA) (in revision) S351Y Missense High
TCGA-CN-4730 Head & neck (TCGA) (in revision) Y338fs FS del
TCGA-D6-6516 Head & neck (TCGA) (in revision) R264* Nonsense
MEL-Ma-Mel-48 Melanoma (broad) [104] S318L Missense Medium
ME011 Melanoma (broad) [104] T396I Missense Neutral
TCGA-ER-A197 Melanoma (TCGA provisional K284E Missense Neutral
TCGA-FW-A3R5 Melanoma (TCGA provisional L243F Missense Medium
TCGA-FW-A3R5 Melanoma (TCGA provisional P217L Missense Medium
TCGA-EE-A2MN Melanoma (TCGA provisional P252L Missense Medium
TCGA-BR-4256 Stomach (TCGA provisional) F342L Missense Low
TCGA-BR-4368 Stomach (TCGA provisional) M327T Missense Neutral
TCGA-CG-5721 Stomach (TCGA provisional) T317M Missense Medium
TCGA-BR-6452 Stomach (TCGA provisional) V337M Missense Low
TCGA-AA-3854 Colorectal (TCGA) [37] A399V Missense Low
TCGA-AG-A02N Colorectal (TCGA) [37] K125R Missense Low
TCGA-AA-3972 Colorectal (TCGA) [37] R254C Missense High
TCGA-AA-A01Z Colorectal (TCGA) [37] T339R Missense Neutral
TCGA-AA-A00N Colorectal (TCGA) [37] E139K Missense Medium
LUAD-74TBW Lung adeno (Broad) [105] E40V Missense Low
LUAD-B00915 Lung adeno (Broad) [105] R160M Missense Medium
TCGA-55-7576 Lung adeno (TCGA) (in press) H147Y Missense Neutral
TCGA-05-4396 Lung adeno (TCGA) (in press) G62* Nonsense
TCGA-05-4389 Lung adeno (TCGA) (in press) S250* Nonsense
TCGA-60-2720 Lung squ (TCGA) [106] E387K Missense Neutral
TCGA-66-2787 Lung squ (TCGA) [106] G137V Missense High
BR-M-105 Breast (Broad) [107] G260fs FS ins
TCGA-A2-A0CX Breast (TCGA) [35] H205Y Missense Medium
TCGA-A8-A0A6 Breast (TCGA) [35] T228P Missense Medium
ICGC_0037_TD Pancreas (ICGC) [108] V255I Missense Neutral
TCGA-AK-3428 Renal clear cell (TCGA) [109] R309L Missense High
TCGA-GV-A3QF Bladder (TCGA) [110] A161V Missense Low
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that appeared neoplastic andwere reported as suggestive of either peri-
osteal or chondroid osteosarcoma [50], but this was observed in only 4
pups out of 13 analyzed. In contrast, the analysis of EIIA-Cre; Wwox KO
mice found no evidence of spontaneous neoplasia in any tissue exam-
ined. This was also the case for EIIA-Cre+; Wwox+/flox heterozygous
mice indicating that the loss of oneWwox allele (i.e. haploinsufficiency)
appears not to be deleterious or carcinogenic in the longer-lived hetero-
zygous mice [51]. Increase tumorigenicity was reported when Wwox
heterozygous mice are exposed to chemical carcinogens [50,53] or
when backcrossed into a C3H mammary tumor susceptible genetic
background [54].

7.1. Conditional targeted Wwox deletion

Due to the early postnatal death of full Wwox KO mice the pheno-
typic analysis of Wwox ablation in adult tissues was impossible. To
this end conditional, tissue-specific ablation of Wwox was achieved by
utilizing Wwoxfl/fl mice and crossing them with mice either expressing
Cre recombinase under control of the bovine keratin 5 promoter (BK5-
Cre) or under the control of theMMTV promoter (MMTV-Cre) for abla-
tion in the mammary gland and other epithelial tissues [55].

Microscopic andmorphometric analyses on the effects of Wwox ab-
lation in both conditional deletion models revealed a significant defect
in mammary branching morphogenesis in virgin females. However,
this defect did not impede the mammary epithelium from reaching
functional maturity during pregnancy as these mice were eventually
able to lactate normally. By transcriptome analyses we determined
that the expression of the non-canonical Wnt pathway ligand Wnt5a,
a protein known to inhibit ductal extension and lateral branching [56],
was significantly upregulated in Wwox KO mammary epithelium. In
addition we observed a significant upregulation and activation of the
IL6-Jak-STAT3 pathway and levels of phospho-STAT3 were greatly
increased in Wwox KO mammary epithelium from virgin mice [55].
This increase in Jak-STAT3 signaling could be one of the mechanisms
by which Wnt5a is transcriptionally upregulated [57] and subsequent-
ly inhibits ductal morphogenesis. Interestingly however, as will be
discussed in following sections, Wnt5a is also a direct transcriptional
target of the TGFβ/SMAD signaling pathway [56].

BK5-Cre; Wwox KO mice were viable, fertile and females were able
to lactate. Unexpectedly, these mice died prematurely (68–117 days of
age) independent of gender for yet undetermined reasons. In contrast,
Wwox ablation via MMTV-Cre had no effect on survival or natural
aging. After 1.5 years of follow up of the MMTV-Cre; Wwox KO mice it
was determined that the loss of Wwox expression is not carcinogenic
in any tissue. Similarly, we did not detect any evidence of malignant
development in the shorter-lived BK5-Cre; Wwox KO mice. Further-
more, no evidence of increase proliferation or development of premalig-
nant lesions was observed. Consistent with the findings in the EIIA-Cre

nif-antibody:HN_62671
nif-antibody:HN_63080
nif-antibody:HN_62814


Table 2
Rodent models of WWOX ablation.

Model Target tissue Observed phenotypes Tumors Reference

Wwoxgt/gt hypomorph mouse All tissues -Moderately shorter lifespan
-Reduced fertility
-Testicular atrophy

B-cell lymphomas in
older female mice

49

Wwox−/− mouse All tissues -Viability 2–3 weeks
-Severe dwarfism
-Hypoglycemia
-Delayed bone formation/osteopenia
-Increased osteoclast activity
-Gonadal abnormalities
-Altered steroidogenesis

Lesions compatible with
periosteal osteosarcomas
in 4 of 13 KO mice

50,52

EIIA-Cre; Wwoxfl/fl mouse All tissues -Viability 3 weeks
-Severe dwarfism
-Hypocapnia
-Leukopenia
-Hypoglycemia
-Splenic atrophy
-Delayed bone formation/osteopenia
-Epileptic seizures
-Ataxia

No 51

Ide/Ide rat, spontaneous
Wwox mutation

All tissues -Viability 3–12 weeks
-Severe dwarfism
-Audiogenic epileptic seizures
-Low plasma levels of LH and FSH
-Leydig cells dysfunction

No 103

BK5-Cre; Wwoxfl/fl mouse Skin, mammary gland and
other Keratin5 expressing
epithelia

-Viability 10–17 weeks
-Impaired mammary branching

No 55

MMTV-Cre; Wwoxfl/fl mouse Mammary & salivary glands -Normal lifespan
-Impaired mammary branching

No 55

Alb-Cre; Wwoxfl/fl mouse Liver -Normal lifespan
-Altered lipid metabolism

No 58

Osx-Cre; Wwoxfl/fl mouse Bone (osteoblasts) -Normal lifespan
-No bone defects

No Aldaz Lab,
unpublished
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model, we found that the loss of a single Wwox allele (i.e. haploin-
sufficiency) did not have any observable phenotypic effect in the mam-
mary gland [55].

We further analyzed conditional Wwox ablation in additional
tissues such as in bone (osteoblasts) using Osterix-Cre (Osx-Cre) mice
and in liver using Albumin-Cre (Alb-Cre) mice. Similarly to the de-
scribed mammary gland models we found no evidence of spontaneous
tumor formation in the targeted tissues (unpublished observations and
[58]. The observations with the various models of Wwox ablation are
summarized in Table 2.

8. WWOX in cellular pathways

As earlier mentioned, theWWOX gene encodes a 46 kD cytoplasmic
protein containing two functional protein domains, two amino-
terminal WW-domains and a carboxy-terminal short chain dehydroge-
nase domain (SDR) (Fig. 1). The SDR is an enzymatic domain that is
predicted to carry out NADP(H)-dependent dehydrogenase reactions
with yet to be identified substrates.

We determined that the WWOX protein resides predominantly in
the perinuclear region overlapping with the Golgi region [23]. To more
precisely define the sequences responsible for perinuclear targeting,
we used site directed mutagenesis on GFP-WWOX fusion proteins, to
generate large exonic deletions of the SDR domain while keeping the
WW domains intact and vice versa deleting the WW domains and
preserving the SDR domain. We concluded that proper sub-cellular lo-
calization is affected by the disruption of the SDR domain [59]. Further-
more, we generated GFP-WWOX proteins containing single point
mutations (S281A, Y293F, and K297A) destroying WWOX's catalytic
activity. Remarkably, we observed that the amino acids predicted to
be required for WWOX enzymatic activity were also necessary for
perinuclear localization (Aldaz laboratory unpublished observations).
In contrast to our observations Chang et al. reported thatWWOX
localizes to mitochondria and to the nucleus and these investiga-
tors speculated that WWOX translocates between these compart-
ments depending on specific stimuli [5,60]. So far we were unable
to detect WWOX protein in the nuclear compartment or in mito-
chondria [23,59] the reasons for this discrepancy remain unclear.
A possibility exists however, that WWOXmay translocate from dif-
ferent cellular compartments upon very specific signals and at a
very rapid rate making difficult its detection in the nucleus or
mitochondria.

WW domains are involved in protein–protein interactions with
modular proline-rich recognition motifs. The highly compact WW
domains (35–45AA in length) are characterized by the presence of a
pair of conserved tryptophans (W). These two signature W residues
are spaced approximately 20–22 AA apart and play a fundamental role
in the structure and function of the domain. WW domains have a very
diverse proline-containing sequence preference. Based on such binding
preference four groups of WW domains have been described. Two are
major andmore common, Groups I and II and two less common, Groups
III and IV [61]. Group I binds the minimal core consensus Pro-Pro-x-Tyr
(PPxY). Examples of WW domain containing proteins from Group I
include YAP1, Dystrophin and NEDD4 family members. We and others
demonstrated that WWOX WW1 is a Group I WW domain that spe-
cifically binds peptides containing the consensus PPxY motif [62,63].
TheWWOXWW2 is not a classicalWWdomain due to the replacement
of the second signature tryptophan with a tyrosine at position 85. In a
recent report that analyzed the interaction between WWOX WW do-
mains and ERBB4-CTF, it was shown that the WW2 domain does not
bind to consensus PPxY motifs but does augment the ability of WW1
to do so [64].

Several proteins containing the PPxY consensus motif have been
identified as WWOX interacting partners such as p73, AP2γ, JUN,
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EZRIN, ERBB4 (CTF), MET (CTF) and RUNX2. The possible consequences
and cancer related implications of these various interactions have been
reviewed elsewhere [65]. Several of these proteins are transcription
factors and due to the primarily perinuclear localization of WWOX
these binding events usually result in the cytoplasmic sequestra-
tion and subsequent inhibition of nuclear activity. For instance WWOX
has been shown to suppress the transcriptional activity of two p53,
homologues, p73 and ΔNp63α. Inhibition of p73 was reported to result
in an increase in apoptosis achieved by sequestering p73 in the cyto-
plasm [66]. The WWOX interaction with ΔNp63α has been suggested
to result in stabilizing ΔNp63α by antagonizing the function of the E3
ubiquitin ligase ITCH while also inhibiting ΔNp63α nuclear transloca-
tion and transactivation. It was also reported that the inhibition of
ΔNp63α function by WWOX reverses the resistance of cancer cells to
cisplatin [67]. More recently a functional role of WWOX as an inhibitor
of the Wnt/beta catenin pathway also due to interaction and cytoplas-
mic sequestration of Dishevelled family member proteins was sug-
gested [68].

Although the physiological relevance of several of the described
in vivo interactions requires further research, it is clear that a role for
WWOX is emerging as a regulator of transcription by limiting tran-
scription factor access to the nucleus through cytoplasmic sequestra-
tion. It is also very likely that these interactions and effects of WWOX
on downstream target gene expression may be dependent on cell and
tissue context.

8.1. Signaling pathways and biofunctions associated with WWOX

Some authors originally proposed that WWOX behaves as a pro-
apoptotic molecule [5]. Furthermore, WWOX overexpression has
been reported to induce apoptosis in lung [69], prostate [70] and
breast [71] cancer lines among others; in most of these cases the de-
livery of WWOX was via adenoviral vectors. On the other hand we
and others, never observed or reported apoptosis induction in cancer
lines from breast, liver, lung or ovarian origin either transiently or
stably transfected for WWOX expression [23,72,73]. In agreement
with Gourley et al. [72], we hypothesize that WWOX per se is not
pro-apoptotic when overexpressed in cancer cells devoid of WWOX
expression and the reported pro-apoptotic effect is highly depen-
dent on using delivery vectors that induced significant cellular stress
such as adenoviral vectors. Thus the physiological biofunctions and
cellular pathways associated with WWOX remain to be better
defined.

To identify signaling pathways and biofunctions associated with
WWOX expression, we employed the “guilt by association” principle,
which states that gene co-expression might indicate shared regulatory
mechanisms and roles in related biological processes [74,75]. First,
we identified the top WWOX co-expressed genes among 100 breast
datasets (approximately 4800 samples, including normal, tumor and
breast cancer lines) by using the Multiexperiment Matrix (http://biit.
cs.ut.ee/mem/) bioinformatics resource. Briefly, we identified the 200
top positively and negatively correlated genes based on the expression
profiles of the most reliable WWOX probe sets according to the JetSet
(http://www.cbs.dtu.dk/biotools/jetset/) scoring approach (219077_s_
at and 210695_s_at probes) (Fig. 8A). Second, we used ClueGO [76]
and CluePedia Cytoscape's plug-in [77] for functional analyses, network
generation and visualization of theWWOX co-expressed genes. In addi-
tion, we employed the Enrichr online resource (http://amp.pharm.
mssm.edu/Enrichr) for ChIP enrichment analysis (ChEA) [78]. Among
the top enriched biofunctions, we found regulation of mammary gland
morphogenesis and branching, coenzyme Ametabolic process and reg-
ulation of cysteine-type endopeptidase activity among other metabolic
processes. WNT signaling pathway, senescence/autophagy and fat cell
differentiation were also identified as enriched biofunctions associated
with the list of WWOX co-expressed genes (Fig. 8B, C). These results
are consistent with the previous studies that showed the correlation
betweenWWOX and ER-alpha expression in human breast carcinomas
[12,13] and the effects of WWOX ablation impairing mouse mammary
branchingmorphogenesis [55]. Importantly and as discussed in the pre-
vious sections of this review, recent studies indeed suggested that
WWOX is a novel modulator of the canonical and non-canonical WNT
signaling pathways [55,68]. In addition, ChIP enrichment analysis
allowed us to identify a set of transcription factors that are the most
likely to have regulated WWOX associated gene expression changes.
We detected a statistically significant enrichment of SOX2 and SMAD
transcription factors that are likely responsible for many of the gene
sets co-expressed with WWOX. Interestingly and linking the previous
in vivo [55] and these in silico observations, mammary gland branching
morphogenesis is intimately link aswell with the TGFβ/SMAD signaling
pathway [79,80]. It is worth noting, as earlier mentioned, that indeed
Wnt5a is a transcriptional target of the TGFβ/SMAD signaling pathway
[56].
8.2. WWOX as a regulator of TGFβ signaling

We recently demonstrated that the ablation of WWOX in normal
breast cells resulted in significant overexpression of a number of
TGFβ/SMAD3 target genes known to be essential for cancer progres-
sion such as ANGPTL4, PTHLH, FST and SERPINE1 [81]. We ultimately
showed that WWOX acts as an inhibitor of SMAD3 transcriptional
activity by sequestering it in the cytoplasm upon TGFβ stimulation
and inhibiting its occupation of target gene promoters. This inhibi-
tion relies upon a WW1 domain-dependent interaction with the
SMAD3 181PPGY184 motif.

TGFβ signaling in breast cells has been an intense and ongoing area
of research due to the effects of this signaling pathway being paradoxi-
cal. In normal mammary epithelium TGFβ signaling acts in a tumor
suppressive fashion inhibiting cell growth [79] by activating the expres-
sion of cyclin dependent kinase inhibitors such as CDKN2B (p15) and
CDKN1A (p21) and repressing genes involved in cell proliferation such
as MYC [82–84]. However, the effect and transcriptional output of
TGFβ signaling changes dramatically when breast cancers progress
to advanced stages, becoming pro-oncogenic and activating subsets
of genes involved in cell proliferation, epithelial-to-mesenchymal
transition and metastasis [85–87]. The key switches explaining the
so-called 'TGFβ paradox’ as tumors progress are still not well under-
stood [88].

We hypothesize that WWOX is a key component contributing to
the regulation and homeostasis of the TGFβ pathway likely in two crit-
ical ways: Firstly by binding and preventing the nuclear translocation of
receptor-regulated SMADS (R-SMADs) that all contain PPxY motifs (PY
box) such as SMAD3 (regardless of their phosphorylation status) and of
key co-activators such as RUNX2, thus preventing the transcriptional
activation of pro-metastatic genes. Secondly by competing with WW
domain containing NEDD4 family ubiquitin ligases such as NEDD4L in
charge of the degradation of R-SMADs but more importantly also of
inhibitory SMAD7 that contains a PY box as well [89]. In yet unreported
studies we indeed observed a direct interaction between WWOX and
SMAD7. In other words when WWOX is available inhibitory SMAD7
would be protected from degradation, thus serving as a potential reser-
voir of this important inhibitory protein (Fig. 9).

In summary we propose that the progressive loss of WWOX
expression in advanced breast cancer would contribute to deregulating
the TGFβ pathway and may explain, at least in part, the pro-metastatic
effects resulting from TGFβ/SMAD3 hyperactive signaling in breast
cancer. In support of this hypothesis meta-analysis of three in-
dependent breast cancer datasets representing a total of 819 pa-
tient samples showed a significant negative correlation between
WWOX and ANGPTL4. Furthermore, the WWOXlo/ANGPTL4hi sub-
group was enriched in basal-like and triple-negative breast cancer
[81].

http://biit.cs.ut.ee/mem/
http://biit.cs.ut.ee/mem/
http://www.cbs.dtu.dk/biotools/jetset/
http://amp.pharm.mssm.edu/Enrichr
http://amp.pharm.mssm.edu/Enrichr


Fig. 8. Identification of signaling pathways associatedwithWWOXmRNA expression in breast samples. (A) Heatmap of the top ranked list of probes that are positively (red squares) and
negatively (blue squares) co-expressedwithWWOX in 100 Affymetrix HG-U133 plus 2 oligo-microarrays datasets (n= 4800 samples) as provided byMultiexperiment Matrix resource.
Each element corresponds to a dataset and the columns are clustered. (B) Classification in enriched biofunctios ofWWOXcorrelated genes as determined by ClueGO analysis. The percent-
age of genes per term is proportionally represented in the pie chart. (C) CluePedia network of functionally enriched pathways and genes identified in theWWOX co-expression analysis.
Red nodes and blue nodes represent genes with positive or negative (respectively) correlation with WWOX expression.
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Fig. 9. The TGFβ/SMAD signaling network is regulated by multipleWWdomain containing NEDD4 family E3 ubiquitin ligases, such as NEDD4L, SMURF1, SMURF2 and others not shown.
Activated SMAD3 is marked for degradation at the nucleus by a second phosphorylation at T179 (represented by red circled P) in the linker region that is instrumental for the binding of
NEDD4L resulting in polyubiquitination and degradation. Inhibitory SMAD7 serves as scaffolding protein for SMURF1/2 or NEDD4L to cooperate in the degradation of TGFβ receptors (89).
WWOX interacts with multiple players of the TGFβ/SMAD signaling network. WWOX has been shown to bind and sequester SMAD3 in the cytoplasmic compartment regardless of phos-
phorylation status (81), similarly interacts and sequesters key coactivator transcription factors such as RUNX2 (65) and in recent studies we observed that interacts as well with inhibitor
SMAD7 (unpublished Aldaz Laboratory), thus serving as a potential reservoir for this important inhibitory signaling molecule.
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Fig. 11. Tonic-clonic seizures of Wwox knock-out mice. Twenty-day-old Wwox KO mice
were exposed to a digital 14 kHz tone. Seizures also develop spontaneously in Wwox
KO mice, closely reproducing the human phenotype (101).
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9. Emerging role of WWOX in other human pathologies

9.1. WWOX in lipid disorders and metabolic syndrome related conditions

Genomewide association studies (GWAS) from various laboratories
led to the identification of a region-wide significant association between
low levels of high-density lipoprotein cholesterol (HDL-C) and the
WWOXgene in dyslipidemic families and lowHDL-C cases and controls,
as well as in population-based cross sectional and prospective cohorts.
Low HDL-C is a well-known major risk factor for coronary artery dis-
ease. One particular SNP, rs2548861 in intron 8 ofWWOX, demonstrat-
ed a very significant association (p=6.9 × 10−7)with lowHDL-C levels
[90]. Other studies observed not only an associationwithHDL-C but also
with triglycerides levels as well [91,92]. Very recently resequencing
studies by Iatan et al. [58] identified 8 genomic variants significantly as-
sociated and segregatingwith the low-HDL trait in two French Canadian
dyslipidemic families. Furthermore in the same study by gene expres-
sion profiling we determined that liver specific Wwox conditional KO
mice displayed significantly altered lipid metabolic pathways and
increased plasma triglyceride levels in female mice, suggesting a signif-
icant role forWWOX inmodulating HDL and lipid metabolism [58]. The
association of the Wwox locus with lipid metabolism is also supported
by mouse quantitative trait loci (QTL) maps [93].

Interestingly, multiple studies have implicated the WWOX locus
with othermetabolic syndrome related conditions such as type 2 diabe-
tes [94,95], hypertension susceptibility [96], coronary artery calcifica-
tion [97], obesity [98], and left ventricular thickness [99]. Furthermore,
by exploring the Phenotype Genotype Integrator resource (PheGenI,
http://www.ncbi.nlm.nih.gov/gap/phegeni) that merges NHGRI GWAS
data with various databases including dbGAP, it is possible to observe
an emerging theme of metabolic syndrome related traits significantly
associated with SNPs mapping to the WWOX locus including: body
mass index, body weight, C-reactive protein levels, insulin levels, car-
diovascular disease, cholesterol, blood pressure and various traits
asocciated with cardiovascular parameters among others. Most of
Fig. 10. Germline homozygous WWOXmutations cause severe CNS pathology, predominantly
specific homozygousmutations described so far are shown. Families 1 and 2 reported byMallare
reported by Abdel-Salam G et al. (102) characterized by early lethal microcephaly, epilepsy, gr
these data derives from the NHLBI's Framingham SNP health Associa-
tion Resource and the Family Heart Study datasets among other sources
(Supplementary Table 1).

9.2. Germline loss-of-function WWOX mutations lead to epilepsy, ataxia
and mental retardation

In 2007 Gribaa et al. reported a new form of childhood onset autoso-
mal recessive cerebellar ataxia and epilepsy in a large consanguineous
family from Saudi Arabia with four siblings affected and mapped its
locus to chromosome 16q21–q23 [100], SCAR12, MIM# 614322. Very
recently by exome sequencing it was determined thatWWOX is homo-
zygously mutated in all four children affected by the described pheno-
type [101]. The mutation Pro47Thr affects an extremely conserved
proline residue that is a critical component of the firstWWdomain con-
sensus sequence of WWOX. We demonstrated in the same report that
characterized by epilepsy, ataxia and mental retardation. The three human pedigrees and
tM. et al. (101), family 3 depicting a true full humanWWOX knock-out case (p.Arg54*) as
owth retardation and retinal degeneration.

http://www.ncbi.nlm.nih.gov/gap/phegeni
image of Fig.%e2%82%ac11
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this mutation renders WWOX unable of binding PPxY target motifs in
interacting partner proteins [101]. A second consanguineous family
was identified carrying a highly conserved homozygous mutation
Gly372Arg of the WWOX protein and the phenotype of the two
affected siblings in this family also showed early-onset generalized
tonic–clonic epilepsy, metal retardation and ataxia. In this case the mu-
tation affects a glycine found at the C-terminus in the oxidoreductase
domain of WWOX and its functional consequences are less clear [101].
Interestingly, an independent report very recently confirmed these
observations by describing a new case from another consanguineous
family affected by a very similar althoughmore severe phenotype char-
acterized by severe growth retardation, microcephaly, epileptic sei-
zures, retinopathy and early death at 16 months of age. In this case
the homozygous WWOX germline alteration is a nonsense mutation
at arginine 54 (pArg54*) leading to a virtual WWOX human full knock-
out case [102]. The homozygous mutations leading to the described
human syndromes are summarized in Fig. 10.

Previously Suzuki et al. [103] reported a phenotype reminiscent to
that now observed in humans by analyzing the Ide/Ide rats that are
characterized by dwarfism, postnatal lethality, male hypogonadism
and epilepsy (Table 2). Interestingly, these authors concluded that the
Ide mutation is a 13 bp deletion in exon 9 of Wwox leading to a frame-
shift of the last 44 codons of Wwox and replacement with a novel open
reading frame of 54 codons. These authors could not detect Wwox pro-
tein bymeans ofWestern blot suggesting that thismutation leads to full
knockout of the protein.

In the above described report ofMallaret et al. [101] we also demon-
strated thatWwox full KOmice display an extremely similar phenotype
to that observed in humans and rats, sinceWwox KOmice in their short
life-span of 3–4 weeks develop spontaneous and audiogenic epileptic
seizures as well (Fig. 11).

In summary, although homozygous mutations affecting WWOX in
humans are likely to be rare the described findings underscore the like-
lihood thatWWOX plays a critical role in normal CNS development and
physiology.
10. Concluding remarks

In this review we revisited the status of WWOX in cancer and de-
scribed its emerging role in other important human pathologies. Much
still remains to be learned on the physiological role ofWWOX, although
numerous interacting protein partners have been identified we under-
stand very little on the enzymatic role of WWOX, the true substrate/s
of this oxidoreductase remain to be identified.

The mechanistic association of WWOX loss of function with tumor
progression warrants further investigation as does the potential role of
this protein as modulator of lipid metabolism and its association with
metabolic syndrome related conditions.

Finally, the recent identification of the first humans carrying homo-
zygous germline WWOX mutations characterized as suffering early
onset epilepsy, ataxia and mental retardation, undoubtedly indicates a
key function of this protein in the CNS. The mechanisms on how the
loss of WWOX function causes such severe neurological syndromes re-
main to be defined.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbcan.2014.06.001.
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