12,606 research outputs found

    Full two-photon downconversion of just a single photon

    Get PDF
    We demonstrate, both numerically and analytically, that it is possible to generate two photons from one and only one photon. We characterize the output two photon field and make our calculations close to reality by including losses. Our proposal relies on real or artificial three-level atoms with a cyclic transition strongly coupled to a one-dimensional waveguide. We show that close to perfect downconversion with efficiency over 99% is reachable using state-of-the-art Waveguide QED architectures such as photonic crystals or superconducting circuits. In particular, we sketch an implementation in circuit QED, where the three level atom is a transmon

    Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces

    Full text link
    In this work, the scattering of surface plasmons by a finite periodic array of one-dimensional grooves is theoretically analyzed by means of a modal expansion technique. We have found that the geometrical parameters of the array can be properly tuned to achieve optimal performance of the structure either as a Bragg reflector or as a converter of surface plasmons into light. In this last case, the emitted light is collimated within a few degrees cone. Importantly, we also show that a small number of indentations in the array are sufficient to fully achieve its functional capabilities.Comment: 5 pages, 5 figures; changed sign convention in some definition

    Hybrid Nanostructured Porous Silicon-Silver Layers for Wideband Optical Absorption

    Full text link
    As subwavelength nanostructures are receiving increasing attention for photonic and plasmonic applications, we grew nanostructured porous silicon (n-PS) and hybrid n-PS/Ag layers onto silicon substrates and measured their reflection and absorption characteristics as functions of the wavelength, angle of incidence, and polarization state of incident light. The experimental results show that the absorption characteristics of the hybrid n-PS/Ag layer can be controlled by selecting the appropriate combination of its thickness and porosity, together with the density of infiltrant silver nanoparticles. The observed wideband optical absorption characteristics of the hybrid n-PS/Ag layers might be useful in light-harvesting devices and photodetectors, since the overall efficiency will be increased as a result of increased field-of-view for both s- and p-polarization states of incident lightR.J.M.-P. thanks Ministerio de Educación, Cultura y Deporte (Spain) for funding under grant reference number PRX17/00095. P.D.M. and A.L. thank the Charles Godfrey Binder Endowment at Penn State for continued support of their research activities. R.R. thanks the Egyptian Ministry of Higher Education, Missions section, for funding under Joint Supervision grant, call 2015–201

    Field enhancement in subnanometer metallic gaps

    Get PDF
    Motivated by recent experiments [Ward et al., Nature Nanotech. 5, 732 (2010)], we present here a theoretical analysis of the optical response of sharp gold electrodes separated by a subnanometer gap. In particular, we have used classical finite difference time domain simulations to investigate the electric field distribution in these nanojunctions upon illumination. Our results show a strong confinement of the field within the gap region, resulting in a large enhancement compared to the incident field. Enhancement factors exceeding 1000 are found for interelectrode distances on the order of a few angstroms, which are fully compatible with the experimental findings. Such huge enhancements originate from the coupling of the incident light to the evanescent field of hybrid plasmons involving charge density oscillations in both electrodes.Comment: 4 pages, 3 figures, to appear in Physical Review

    Abundant Z-cyanomethanimine in the interstellar medium: paving the way to the synthesis of adenine

    Full text link
    We report the first detection in the interstellar medium of the Z-isomer of cyanomethanimine (HNCHCN), an HCN dimer proposed as precursor of adenine. We identified six transitions of Z-cyanomethanimine, along with five transitions of E-cyanomethanimine, using IRAM 30m observations towards the Galactic Center quiescent molecular cloud G+0.693. The Z-isomer has a column density of (2.0±\pm0.6)×\times1014^{14} cm−2^{-2} and an abundance of 1.5×\times10−9^{-9}. The relative abundance ratio between the isomers is [Z/E]∼\sim6. This value cannot be explained by the two chemical formation routes previously proposed (gas-phase and grain surface), which predicts abundances ratios between 0.9 and 1.5. The observed [Z/E] ratio is in good agreement with thermodynamic equilibrium at the gas kinetic temperature (130−-210 K). Since isomerization is not possible in the ISM, the two species may be formed at high temperature. New chemical models, including surface chemistry on dust grains and gas-phase reactions, should be explored to explain our findings. Whatever the formation mechanism, the high abundance of Z-HNCHCN shows that precursors of adenine are efficiently formed in the ISM.Comment: Accepted in Monthly Notices of the Royal Astronomical Society Letter

    Mechanical systems subjected to generalized nonholonomic constraints

    Full text link
    We study mechanical systems subject to constraint functions that can be dependent at some points and independent at the rest. Such systems are modelled by means of generalized codistributions. We discuss how the constraint force can transmit an impulse to the motion at the points of dependence and derive an explicit formula to obtain the ``post-impact'' momentum in terms of the ``pre-impact'' momentum.Comment: 24 pages, no figure

    Complex organic molecules in the Galactic Centre: the N-bearing family

    Full text link
    We present an unbiased spectral line survey toward the Galactic Centre (GC) quiescent giant molecular cloud (QGMC), G+0.693 using the GBT and IRAM 30 \, telescopes. Our study highlights an extremely rich organic inventory of abundant amounts of nitrogen (N)-bearing species in a source without signatures of star formation. We report the detection of 17 N-bearing species in this source, of which 8 are complex organic molecules (COMs). A comparison of the derived abundances relative to H2_2 is made across various galactic and extragalactic environments. We conclude that the unique chemistry in this source is likely to be dominated by low-velocity shocks with X-rays/cosmic rays also playing an important role in the chemistry. Like previous findings obtained for O-bearing molecules, our results for N-bearing species suggest a more efficient hydrogenation of these species on dust grains in G+0.693 than in hot cores in the Galactic disk, as a consequence of the low dust temperatures coupled with energetic processing by X-ray/cosmic ray radiation in the GC.Comment: 24 pages, 23 figures, 7 tables, accepted for publication in MNRA
    • …
    corecore