
PHYSICAL REVIEW A 94, 053814 (2016)

Full two-photon down-conversion of a single photon
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We demonstrate, both numerically and analytically, that it is possible to deterministically generate two photons
from one and only one photon. We characterize the output two-photon field and make our calculations close to
reality by including losses. Our proposal relies on real or artificial three-level atoms with a cyclic transition strongly
coupled to a one-dimensional waveguide. We show that almost perfect down-conversion, with efficiency over 99%,
is reachable using state-of-the-art waveguide QED architectures such as photonic crystals or superconducting
circuits. In particular, we sketch an implementation in circuit QED, where the three-level atom is a transmon.
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I. INTRODUCTION

The interaction between the electromagnetic field and
quantum discrete level systems (like atoms) may be enhanced
by confining light in one-dimensional waveguides [1–12]. In
these setups, a key parameter is the ratio between the decay rate
due to coupling to waveguide photons and that due to coupling
to all other channels. Whenever the former dominates, we are
in the strong-coupling regime of light-matter interactions. In
this case, a single two-level system can be used not only
to induce effective photon-photon interactions, but it also
enables minimal and highly efficient optical devices, such as
perfect mirrors [13–15], single-photon lasing [16], and Raman
scattering [17–19].

Another optical process that could strongly benefit from an
enhanced light-matter interaction is photon down-conversion,
where a light beam of a given frequency is split into two
beams whose frequencies add up to the original one. Down-
conversion is routinely used for the generation of entangled
photons and of light at convenient frequencies. This is already
done in atomic and molecular systems and it could also be
useful for energy harvesting, by using photons of high energy
to excite more suitable transitions in a photovoltaic material.
Photon down- and up-conversion are currently realized in
bulk optics with the help of nonlinear noncentrosymmetric
materials [20]. However, due to the smallness of the fine
structure constant, the typical performance of this process in
crystals such as beta barium borate crystals is very small,
with only about one in every 1 × 1012 photons being down-
converted [20].

A cyclic three-level system (C3LS) strongly coupled to
a waveguide is the minimal setup that produces down-
conversion. When classical light is used as input, only a small
part of the incident power is converted into a correlated two-
photon output field [21–23]. In chiral waveguides, however, it
has been argued that two photons can be generated when one
and only one photon is scattered in a C3LS structure [24].
Another down-conversion mechanism at the single-photon
limit, requiring the driving of nonlinear cavities, was recently
proposed [25]. In this paper we generalize the results in the
C3LS, considering full down-conversion efficiency in nonchi-
ral waveguides. More precisely, we consider a waveguide

photon impinging on the C3LS and resonantly populating level
|2〉, as schematically represented in Fig. 1(a). In addition to
the direct relaxation of |2〉 to the ground state, the cascade
|2〉 → |1〉 → |0〉 allows the relaxation to be accompanied by
the emission of two photons [26]. In our study we include
losses, analyze the entanglement of the output field, and
suggest a possible experimental realization.

The rest of the paper is organized as follows. In the
next section, we introduce the model. In Sec. III we sketch
a realization in circuit QED. We continue in Sec. IV by
reporting our numerical results, based on matrix product states
(MPSs). There, we discuss the down-conversion probability
and the dynamics for both the field and the atom. We also
characterize the output field and its entanglement. In Sec. V
we develop an analytical theory, which gives the efficiency
for down-conversion in the presence of losses (Sec. VI).
Section VII is devoted to the conclusions and we develop
some technical issues in four Appendices.

II. MODEL

We consider a cyclic three-level quantum system (C3LS)
strongly coupled to a one-dimensional waveguide where
photons can travel freely. We neglect thermal fluctuations and
losses in the waveguide and, for the moment, in the C3LS, so
the effective Hamiltonian is (� = 1)

H = H0 + Hint, (1)

where

H0 =
∫

dω ω r†ωrω +
∫

dω ω l†ωlω +
2∑

j=0

�j |j 〉 〈j | , (2)

with rω and lω being bosonic operators that, respectively,
annihilate right- and left-moving waveguide photons; r†ω and
l†ω are the corresponding creation operators. Besides, �j

and |j 〉 are the eigenenergies and eigenstates of the isolated
three-level system (3LS). The coupling between the 3LS and
the waveguide photons is represented by Hint = GX, with X

the electromagnetic (EM) displacement given by

X =
∫

dω D(ω) (rω + lω) + H.c., (3)
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FIG. 1. Down-conversion setup. (a) A single incoming photon
interacts with a three-level system. Part of it is elastically trans-
mitted or reflected (�20, blue) and part is down-converted into a
pair of photons with frequencies �21 and �10 (orange and red).
(b) Placing a mirror right after the scatterer at a suitable distance
d , down-conversion can become deterministic: all reflected photons
have down-converted frequencies.

where D(ω) is the density of states. The operator G accounts
for the transitions between levels in the C3LS induced by the
EM field. Its matrix elements are 〈i|G|j 〉 ≡ Gij .

III. A POSSIBLE IMPLEMENTATION

An important point is that a C3LS cannot be realized
in systems (i) that are so small compared to the waveg-
uide that the dipolar interaction dominates (like atoms) and
(ii) whose quantum states are labeled by a spatial parity tag.
The reason is that at least two of the three states in the C3LS
must have the same parity, but the dipole interaction only
couples states with different parity. However, effective C3LSs
may appear in extended quantum systems, where couplings
beyond the dipolar term must be considered. Implementations
of the C3LS are some molecules [27] and flux qubits made
of superconducting circuits [21,22]. Nevertheless, this last
system leads to three quite dissimilar excitation energies. In
order to obtain two down-converted photons of similar (and
possibly equal) frequencies, we consider an alternative design
for an effective C3LS in the microwave range using a transmon
(a charge superconducting qubit shunted by a big capacitor)
[28].

Typically, inductive coupling between the transmon and the
transmission line is negligible. The reason is that the transmon
design is basically that of a one-dimensional electric dipole,
without support for currents. In addition to this, the supercon-
ducting quantum interference device (SQUID) that controls
the transmon frequency is small and shielded away from
any coupling with the transmission line. Inductive couplings
between transmons have been demonstrated, however [29,30].
We make use of similar ideas to envision a different coupling
architecture that allows one to break the parity symmetry in
the transmon setup.

Our starting point is a setup such as the one in Fig. 2(a),
where the transmon SQUID is no longer screened and
the superconducting island couples both capacitively and

FIG. 2. (a) A transmon can be both inductively and capacitively
coupled to an LC resonator. Coupling strength can be increased by
either increasing the SQUID area or (b) sharing a conductor segment,
in the spirit of Ref. [31] and similar proposals.

inductively to the resonator. The circuit Lagrangian (with
inductive and capacitive coupling) is

L =
∫

dx c(∂tφ(x,t))2 − 1

l
(∂xφ(x,t))2

+ 1

2C�

(q − Q)2 − EJ cos(2π�/�0) cos ϕ. (4)

The first line accounts for the transmission line Lagrangian
while the transmon and its coupling are written in the second
line. Here, φ(x,t) is the (quantum) flux field, which in the
interaction picture reads

φ(x,t) =
√

�Z0

4π

∫ ∞

0
dω

1√
ω

(rωe−iω(t−x/v)

+ lωe−iω(t+x/v) + H.c.), (5)

with c (l) being the capacitance (inductance) per unit length
and Z0 = √

l/c being the line impedance. The superconduct-
ing Josephson energy is EJ and C� is the capacitance. Charge
and phase invariant gauge are quantized via [eiϕ,q] = 2e eiϕ .
The transmon is driven and coupled to the line via the charge
Q and the flux � (�0 = h/2e is the flux quantum):

Q = 2eng + c∂tφ(x,t) (6)

� = λ∂xφ(x,t) + �0

2π
ϕext. (7)

We have introduced the coupling factor λ that accounts for
the effective field by the transmon’s SQUID after taking into
account the screening. Inserting the latter in Eq. (4) and ex-
panding the cosine up to first order in the quantum fluctuations
∂xφ around ∂xφ = 0, we get the coupling Hamiltonian,

Hcoupling = c

C�

q∂tφ − λd
π

�0
EJ sin(ϕext) cos(ϕ) ∂xφ. (8)

We still need to show that Eq. (8) provides the cyclic-
coupling structure. We numerically diagonalize Htransmon =

1
2C�

q2 − EJ cos ϕ in the charge basis, retaining the first three

levels Htransmon = ∑2
j=0 �j |j 〉〈j |. In the basis of these three

eigenstates, we can compute the different contributions to G in
H [Eq. (1) in the main text]. In Fig. 3 we plot the contributions
due to the charge operator q in Eq. (8). As already explained
in the literature, 〈i|q|i + 1〉 �= 0 but 〈0|q|2〉 = 0 [28]. A
nonzero G02 value is obtained through the inductive coupling.
Figure 3 also renders the dependence of 〈0| cos(ϕ)|2〉 �= 0
on EC/EJ (notice that 〈i| cos(ϕ)|i + 1〉 = 0 since cos(ϕ) is
an even operator and |i〉 and |i + 1〉 have opposed parity).
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FIG. 3. Nonzero charge 〈i|q|j〉 and flux 〈i| cos ϕ|j〉 matrix
elements contributing to the coupling operator G [see Eq. (8)]. The
vertical line marks the parameters chosen in our simulations with
EC/EJ = 1/20.

Therefore, by combining inductive and capacitive (electric
and magnetic) coupling, the transmon has a cyclic structure.
Through the main text we set EC/EJ = 1/20, which is a
typical experimental value for transmons. This ratio, together
with the density of states of the line, fixes the ratio �

(0)
10 /�

(0)
21 ,

with �
(0)
ij ≡ 2πD2(�ij )G2

ij being the rates between quantum
levels induced by coupling to the waveguide photons. Standard
experimental values are of the order of 1 × 10−3 �10, with
�10 ≡ �1 − �0. Finally, we fix λ and C� for making optimal
for the two-photon generation (see below).

IV. NUMERICAL SOLUTION

We numerically compute the time evolution of an initial
single-photon wave packet. Our simulations assume that the
incident photon was generated via spontaneous emission in
an auxiliary qubit. In two-level systems the emitted wave
packets are exponentially decaying functions in real space
(see Appendix D). Besides, we discretize both space and time
and use the MPS technique, which is a well-known method for
obtaining the ground state and low energy states in interacting
one-dimensional systems [31–35]. The MPS technique has
been applied to photon scattering in waveguides [19,36,37].
This method is especially suited for Hamiltonians like Eq. (1)
that either have a nonlinear dispersion relation or, as in the
considered case, do not conserve the number of excitations. It
is worth emphasizing that the MPS calculations provide both
field and C3LS observables at any time.

The technical details of our simulations, as the effective
model used, its spectral density, and the dispersion relation for
the waveguide can be found in Appendix D. We emphasize
that the physical mechanisms and the consequences of this
paper are given in terms of the different spontaneous emitted
rates, both radiative and nonradiative, of the scatterer.

A. Two-photon generation: Scattering and dynamics

In Fig. 4 we plot the spectrum for the one-
photon transmittance and reflectance, |t (1)(ω)|2 =
limt→∞ |〈�|rωe−iH t |ψin〉/〈�|rω|ψin〉|2 and |r (1)(ω)|2 =
limt→∞ |〈�|lωe−iH t |ψin〉/〈�|rω|ψin〉|2, respectively, and the
probability of emitting two photons, P (2)(ω). The latter is
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FIG. 4. Scattering coefficients in a cyclic three-level system, as a
function of the incident frequency ω. (a) One photon transmittance,
(b) reflectance, and (c) probability of two-photon generation P (2)(ω).
We show both analytical (solid lines) and numerical results obtained
with MPS (dotted lines). The parameters are �10 = 0.53, �20 =
1, �

(0)
10 = 1 × 10−3, �

(0)
20 = 1.4 × 10−3, and �

(0)
21 = 2.2 × 10−3. We

remind that �
(0)
ij = 2πD2(�ij )G2

ij .

given by

P (2)(ω) := lim
t→∞

∣∣∑
s,s ′=r,l

∑′
ω1ω2

〈�|sω1s
′
ω2

e−iH t |in〉
∣∣2

2|〈�|rω|ψin〉|2 ,

(9)

with the summation
∑′

ω1ω2
performed over the values of ω1 and

ω2 such that they fulfill energy conservation: ω1 + ω2 = ω.
In all these expressions, |�〉 is the ground state of Eq. (1).
The first transmission dip occurs when the photon energy is
centered around ω = �10. In this spectral region the |0〉 → |1〉
transition is the only one available. Thus, the C3LS behaves
as an effective two-level system and the photon is fully
reflected at resonance [13–15]. Consequently, P (2)(ω) = 0 in
this frequency range [cf. Fig. 4(c)]. In the second transmission
dip, located at ω = �20, the transmittance presents a finite
minimum value that is close to 0.5. Figures 4(b) and 4(c) show
a remarkable 50% down-conversion efficiency of the incoming
photon into just two (and only two) outgoing photons, with
only a very small amount of light being back-reflected.

For the sake of completeness and to emphasize the fact that
we have access to the time domain too, we plot the C3LS level
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FIG. 5. (a) Population of the first (blue solid line) and second (red
dashed line) excited states as a function of time. Photon occupation in
energy space for (b) right-moving, 〈n(r)

ω 〉, and (c) left-moving photons,
〈n(l)

ω 〉, respectively, as a function of time. The energies are those of
Fig. 4. Just to improve the visibility of the figure, we take larger values
for the decay rates: �

(0)
10 = 0.021, �

(0)
20 = 0.028, and �

(0)
21 = 0.043.

population in Fig. 5(a). We see that the second excited state
gets populated first, since our incident photon is resonant with
the transition |0〉 ↔ |2〉. After the transient period, both levels
decay to the ground state. We also plot the particles in energy
space, 〈n(r)

ω 〉 = 〈r†ωrω〉 and 〈n(l)
ω 〉 = 〈l†ωlω〉 in Figs. 5(b) and

5(c), respectively. In doing so, we can visualize the two-photon
generation in time domain. At the beginning, we have a single
peak around the incident energy for the right-moving photons.
After the interaction has occurred, a peak has appeared for a
left-moving photon at �20, corresponding to the single-photon
reflection [see Fig. 5(c)]. In addition, two peaks emerge
after the scattering for both forward- and backward-traveling
photons centered at �21 and �10, associated to the generation
of the two-photon state.

B. Characterization for the two-photon output

In order to characterize the two-photon wave function
emerging from the down-conversion process, we compute
the two-point wave function, both in position space φout

x1x2
:=

〈�|ax1ax2 |(tout)〉, where ax annihilates a photon at x, ax :=
1/

√
2π (

∫
ω>0 dωrωeiωx + ∫

ω<0 dωlωeiωx), and in energy space
for right-moving photons φ̃out

ω1ω2
:= 〈�|rω1rω2 |(tout)〉. As

shown in Fig. 6, both photons are emitted spatially in a
symmetric way with respect to the position of the scatterer
(x = 0). In energy space, φ̃out

ω1ω2
is centered around (ω1,ω2) =

(�10,�21) and (�21,�10) (white dotted lines), as expected
from emission from a doubly resonant process. However, and
similarly to the phenomena of resonance fluorescence, φ̃out

ω1ω2
is

Ω10

Ω10

Ω21

Ω21

[Ω20]

[Ω
20
]

(b)

(a)

FIG. 6. Square modulus of the two-photon wave function both
in (a) position, |φout

x1x2
|2, and (b) energy space, |φ̃out

ω1ω2
|2. The isoen-

ergetic line, ω1 + ω2 = ω, is shown in the bottom panel (white
line). We normalize both wave functions such that max(|φout

x1x2
|2) =

max(|φ̃out
ω1ω2

|2) = 1. Same parameters as in Fig. 5.

nonzero all along the isoenergetic curve ω1 + ω2 = ω [white
solid line in Fig. 6(b)].

The emitted photons are entangled. The corresponding von
Neumann entropy SVN can be computed after normalizing the
two-photon wave function, such that

∑
x1x2

|φout
x1x2

|2 = 1, and
finding its Schmidt decomposition, φout

x1x2
= ∑

m λmϕx1,mχx2,m,
being {λm} the singular values. Then SVN = −∑

m λ2
m ln(λ2

m)
[38]. In the representative case shown in Fig. 6 we get SVN =
1.44. For a better understanding, we plot the contribution of
each mode to SVN in Fig. 7(a). The entropy is dominated by the
first two singular values, but the contribution from the other
Schmidt modes is non-negligible. In order to quantify how the
entropy is recovered from a given number of singular values,
we define the entanglement entropy of the first m Schmidt
modes,

SVN,m := −
m∑

n=1

λ2
n ln

(
λ2

n

)
, (10)

and show SVN,m/SVN in the inset of Fig. 7.
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FIG. 7. (a) Contribution of each Schmidt mode to SVN,
−λ2

m ln(λ2
m) as a function of m. In the inset, we plot the entropy

of |2,m〉 over the whole entropy, SVN,m/SVN (red circles), and the
overlap between |2〉 and |2,m〉 (blue triangles) as a function of m.
|φ̃out,m

ω1,ω2
|2 for (b) m = 1, (c) m = 2, (d) m = 3, and (e) m = L which

is the exact result [cf. Fig. 6(b)]. L is the number of modes, which
matches with the number of points in the discretized waveguide; see
Appendix D. Same parameters as in Fig. 5.

Another measure of how the wave function can be rep-
resented by a fixed number of modes is the fidelity, i.e.,
the overlap between the actual two-photon state, |2〉 =
1/

√
2

∑
x1,x2

φout
x1,x2

a
†
x1a

†
x2 |�〉 and the state reconstructed with

m modes:

|2,m〉 := 1√
2

∑
x1,x2

φout,m
x1,x2

a†
x1

a†
x2

|�〉, (11)

where φout,m
x1,x2

is the two-photon wave function reconstructed
with the first m Schmidt modes, φout,m

x1,x2
= ∑m

n=1 λnϕ̃x1,nχ̃x2,n.
In Fig. 7(a) (inset) we check that the overlap qualitatively
behaves as SVN,m.

Lastly, we can visualize how the two-photon wave function
is reconstructed by adding modes. In Figs. 7(b)–7(d), we
plot |φ̃out,m

ω1,ω2
|2 for m = 1, 2, and 3, respectively, whereas we

plot |φ̃out
ω1,ω2

| in Fig. 7(e). The white lines, as in Fig. 6,
mark the isoenergetic condition. While the wave-function
reconstruction with m = 1 does not reproduce the bimodal
aspect of the state, already with m = 2 the double-peaked
structure is well defined.

We have not discussed how to optimize the two-photon
entanglement. Since the two-photon wave packet is created
in the 2 → 1 → 0 transition we can benefit from the studies
on spontaneous emission in cascade systems and argue, as
explained in Ref. [39], that maximally entangled states are
expected in the regime �21/�10 → 0. In our model, this ratio is
fixed by the relation EC/EJ . However, another C3LS or further
engineering in the transmon can tune this ratio and provide a
way of generating a different amount of entanglement. If our
proposal is tried in the laboratory, this point must be tackled
in the future.

V. ANALYTICAL THEORY

Model (1) is not analytically solvable. However, under fair
assumptions we are able to provide rather general expressions
for the down-conversion efficiency. First, we remind that we
have numerically tested that no more than two photons are gen-
erated in the dynamics. Therefore, the two-photon generation
probability can be computed by energy conservation as

P (2)(ω) = 1 − |t (1)(ω)|2 − |r (1)(ω)|2 − A(ω). (12)

Here, t (1)(ω) and r (1)(ω) are the one-photon transmittance and
reflection, respectively. The last term is the energy “absorbed”
by the lossy channels, A(ω). Besides, the C3LS is assumed
punctual. Thus, the photonic wave function is continuous in
the scatterer position, implying r (1)(ω) = t (1)(ω) − 1 [40].

We first summarize the calculation of the single-photon
transmittance. Here, we provide the main results, sending the
full derivation to Appendix A. It turns out that t (1)(ω) can be
calculated as

t (1)(ω) = lim
α→0

〈αω|rout(t)|αω〉
〈αω|rin(t)|αω〉 (13)

with the input and output fields [41] rin(t) :=∫ ∞
0

dω√
2π

rω(t0)e−iω(t−t0) and rout(t) := ∫ ∞
0

dω√
2π

rω(tf )e−iω(t−tf )

with rω(t) = eiHt rωe−iH t . The times t0 and tf must be taken
well before and after the scattering event has occurred.
As we are interested in asymptotic behavior, we can set
t0 → −∞ and tf → ∞. Besides, |αω〉 = eαr

†
in(ω)−H.c.|�〉,

where r
†
in(ω) is the Fourier transform of r

†
in(t). Thus, the

one-photon transmission (reflection) can be obtained by
sending a coherent state through the scatterer and computing
the dynamics for the fields up to first order in the input
amplitude α.

The usefulness of Eq. (13) comes with our second result,

lim
α→0

〈αω|rout(t)|αω〉

= lim
α→0

〈αω|rin(t)|αω〉 − i
√

2πD(ω)αG(ω)e−iωt , (14)

where G(ω) is the linear susceptibility for G(t) when a classical
drive Hdrive = 2α cos(ωt)G is added to Eq. (1). Summarizing,
the single-photon transmittance can be calculated by means
of the C3LS response to a classical drive. This problem is
still hard since the total model, Eq. (1), is a many-body
Hamiltonian. We need to do an approximation. We consider
that the line-C3LS coupling strength can be considered up
to second order. In doing so, the scatterer dynamics is given
by the quantum optical master equation [41] for the reduced
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density matrix of the C3LS:

d�

dt
= −i

⎡
⎣ 2∑

j=0

�j |j 〉 〈j | ,�
⎤
⎦ − i αD(ω)2 cos(ωt)[G(t),�]

+ 2
∑

�ij >0

�ij

(
Lij�L

†
ij − 1

2
{L†

ijLij ,�}
)

+D�D − 1

2
{D2,�}. (15)

The first term is the C3LS Hamiltonian contribution. The sec-
ond stands for the classical driving discussed above. The sec-
ond line contains the Lindblad terms describing both the
hopping to the line and dissipative channels. There, Lij =
|j 〉〈i| and �ij are the transition rates between the discrete
levels in the scatterer. In addition to the transition rates induced
by coupling to the waveguide photons this formulation allows
us to consider the transitions γij induced by coupling to other
baths (as phonons or other components of the EM field). In this
case, the total transition rate is �ij = �

(0)
ij + γij . The third line

stands for pure dephasing, with D being diagonal matrices.
The dephasing rates simply modify the nonradiative losses γij

in the calculation for t (1)(ω).
The calculation is now possible. After some algebra, we get

(cf. Appendix A)

t (1)(ω) = 1 − i�
(0)
10

(ω − �10) + i
(
�10 + �

φ

10

)
− i�

(0)
20

(ω − �20) + i
(
�21 + �20 + �

φ

20

) , (16)

with �
φ

ij = 1
2 (Dii − Djj )2 being the dephasing rates for the

�ij elements. Finally, the energy that does not end up in the
waveguide can be approximated by (see also Appendix A)

A(ω ∼= �20) = 2 γ20 |r (1)(�20)|2/�20. (17)

The validity of this analytical formalism is shown in Fig. 4,
where it is compared to the numerical results for the “lossless”
case γij = 0.

Some final comments may be relevant. In the presented
theory, the main approximation is to assume that the C3LS-line
coupling strength is sufficiently small. This allows the use of
the master equation (15) for computing the scatterer dynamics.
This is a good assumption in (almost) every experiment so far.
Apart from this approximation the theory is rather general,
independent of the actual values for dephasing, nonradiative
losses or spectral function for the waveguide.

VI. EFFICIENCY

Equation (12) allows for the search of optimal parameters
for down-conversion. The first observation is that losses are
detrimental, always reducing P (2)(ω). Even in the absence of
losses (γij = 0), the two-photon generation can be considered
as a loss mechanism for the one-photon channel, which
implies that the fraction of energy down-converted is at
most max P (2)(ω) = 1

2 [occurring when r(ω) = − 1
2 ]. This

fundamental bound is related to the fact that, for a deep

FIG. 8. P (2)(ω = �20) as a function of the atom-mirror distance
kd (see Fig. 1) and the ratio �

(0)
12 /�

(0)
02 . Losses are taken into account.

In the figure, a conservative ratio (γ20 + �
φ

20)/�
(0)
20 = 0.01 is used.

The rest of the parameters are the same as in Fig. 4. Black lines mark
isoefficiency curves, starting at 0.85 and finishing at 0.98.

subwavelength scatterer emitting equally to the left and to
the right, as we have already mentioned, transmittance and
reflection are related: r (1)(ω) = t (1)(ω) − 1. Therefore, in the
absence of losses, Eq. (12) depends just on t (1)(ω) and can be
maximized, giving the aforementioned bound [42]. By simple
inspection of Eq. (16) we see that happens when �

(0)
21 = �

(0)
20 .

But this bound can be exceeded by breaking the left-right
symmetry in the waveguide by, e.g., placing a mirror next to
the C3LS, as sketched in Fig. 1(b).

Both reflectance and (for γij �= 0) absorption can be calcu-
lated in this configuration by summing all multiple-scattering
processes that the waveguide photon has with both the C3LS
and the mirror [43]. The sum can be done analytically (see
Appendix C), resulting in

P (2)(ω) = 1 −
∣∣∣∣ r (1)(ω) − (1 + 2r (1)(ω))�(ω)

1 + r (1)(ω)�(ω)

∣∣∣∣
2

−
∣∣∣∣ 1 − �(ω)

1 + r (1)(ω)�(ω)

∣∣∣∣
2

A(ω), (18)

where �(ω) = e2ik(ω)d , d is the distance between the mirror
and the C3LS, Fig. 1(b), and k(ω) is the waveguide photon
wave vector at frequency ω.

As drawn in Fig. 8, the maximum down-conversion effi-
ciency predicted by Eq. (18) occurs at resonance (ω = �20),
and for �

(0)
21 /�

(0)
20

∼= 2 and kd = π/2, and can be approximated
by

maxP2 = 1 − γ20 + �
φ

20

�20
. (19)

So, remarkably, down-conversion may be perfect in the
considered configuration if losses are negligible. Equation (19)
provides a simple expression for the maximum efficiency as
a function of the ratio between the rates for absorption and
coupling into waveguide photons. This ratio is a key figure of
merit in waveguide QED and values as small as 1 × 10−2 have
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already been reported for effective two-level systems in both
superconducting circuits [8] and photonic crystals [44]. Thus,
two-photon generation with one and only one photon with
an efficiency larger than 0.99 is doable using an appropriate
C3LS.

VII. CONCLUSIONS

We have shown that two photons can be efficiently
generated by sending one and only one photon through a
cyclic three-level atom in a realistic scenario. Remarkably,
the down-conversion process can occur with unit probability,
being only limited by energy leakage to other continua
rather than the line and dephasing in the three-level system.
Based on reported experimental data, we have estimated
that a nearly perfect two-photon generator operating at the
single-photon level is feasible in architectures based on either
photonic crystals or superconducting circuits. Together with
single atomic mirrors [13–15], single-photon lasing [16], or
single-photon Raman scattering [19], this work contributes to
the toolbox of photonics with minimum power, where tasks
usually associated to high intensities are performed at the
one-photon level.

ACKNOWLEDGMENTS

We acknowledge support by the Spanish Ministerio de
Economia y Competitividad within Projects No. MAT2014-
53432-C5-1-R, No. FIS2012-33022, and No. FIS2014-55867-
P, the CAM Research Network QUITEMAD+, and the
Gobierno de Aragón (FENOL group).

APPENDIX A: ONE-PHOTON SCATTERING,
INPUT-OUTPUT, AND LINEAR RESPONSE THEORY

The one-photon transmittance can be written as [45,46]

t (1)(ω) = lim
t→∞

〈�| rωr
†
out(t) |ψin〉

〈�| rωr
†
in(t) |ψin〉

, (A1)

with |�〉 the ground state of Eq. (1), |ψin〉 the initial single-
photon wave packet, and the input-output fields defined in
[41]:

rin(t) :=
∫ ∞

0

dω√
2π

rω(t0)e−iω(t−t0), (A2)

rout(t) :=
∫ ∞

0

dω√
2π

rω(tf )e−iω(t−tf ). (A3)

Here, rω(t) = eiHt rωe−iH t are Heisenberg evolved operators.
The times t0 and tf are times well before, and well after, the
scatterer and the incident photons have interacted, respectively.
If we are interested in asymptotics, we can set t0 → −∞ and
tf → ∞. Below, we find an alternative formula for t (1)(ω).

Instead of a single-photon wave packet, we now consider a
coherent input state,

|αω〉 = eαr
†
in(ω)−H.c.|�〉, (A4)

and we compute the expected value,

fout(ω,ω′,α) := 〈αω|rout(ω
′)|αω〉 , (A5)

with rout(ω) being the Fourier transform of rout(t). Then, we
take a series expansion in α,

fout(ω,ω′,α) = α 〈�|rout(ω
′)r†in(ω)|�〉 + O(α2), (A6)

that, together with 〈�|rout(ω′)r†in(ω)|�〉 = t (1)(ω)δ(ω − ω′),
establishes the relation

fout(ω,ω′,α) = αt (1)(ω)δ(ω − ω′) + O(α2). (A7)

Fourier transforming with respect to ω′,

fout(ω,t,α) := 1√
2π

∫
dω′fout(ω,ω′,α)eiω′t

= α√
2π

t (1)(ω)eiωt + O(α2), (A8)

where fout(ω,t,α) = 〈αω|rout(t)|αω〉. Taking all together, the
desired equivalent way of computing the single-photon trans-
mittance, Eq. (13), is obtained.

APPENDIX B: LINEAR RESPONSE THEORY AND
INPUT-OUTPUT

The input and output fields, Eqs. (A2) and (A3), are related
[41]:

rout(t) = rin(t) − i

∫ ∞

0

dω′
√

2π

∫ tf

t0

dτD(ω′)e−iω′(t−τ )G(τ ).

(B1)

This general relation can be simplified if we are interested in
the single-photon transmittance. As shown above, t (1)(ω) in
Eq. (13) can be computed using a classical driving (a coherent
state) in the limit of zero amplitude. Thus, we can use linear
response theory to compute G:

〈G(τ )〉 = αG(ω)eiωτ + c.c., (B2)

where G(ω) is the linear susceptibility and ω the frequency of
the input state; see Eq. (A4). Replacing the latter in Eq. (B1),
we get

lim
α→0

〈rout(t)〉 = lim
α→0

〈rin(t)〉 − i

∫ ∞

0

dω′
√

2π
e−iω′ tD(ω′)

×
∫ ∞

−∞
dτ (e+i(ω′−ω)τG(ω′) + e+i(ω′+ω)τG∗(ω′))

= 〈rin(t)〉 − i
√

2πD(ω)αG(ω)e−iωt , (B3)

which is a remarkable result, telling that the single-photon
transmittance can be obtained by means of computing the
linear response of G.

1. Calculation of the susceptibility

In order to compute G(ω) we split the master equation (15)
as

∂� = L0� + α 2 cos(ωt)L1� (B4)
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with the unperturbed

L0 = −i

⎡
⎣ 2∑

j=0

�j |j 〉 〈j | ,�
⎤
⎦

+ 2
∑

�ij >0

�ij

(
Lij�L

†
ij − 1

2
{L†

ijLij ,�}
)

+ D�D − 1

2
{D2,�} , (B5)

and perturbed part

L1� = −i D(ω)[G(t),�]. (B6)

In the absence of perturbation L1 = 0 the solution of the
master equation can be written as (in the C3LS eigenbasis)

�ij (t) = �ij (0)e−(i�ij +κij )t , (B7)

where κij is in general a sum of some �s and the elements of
D. With this at hand we can use the linear response theory and
write (see Ref. [47], Chap. 6)

G(ω) = Gr (0) + iω

∫ ∞

0
ds Gr (s) eiωs

=
∑
ij

Gijρji(0)

(
1 + iω

∫ ∞

0
ds e−[κji+i(�ji−ω)]s

)

=
∑
ij

Gijρji(0)
κji + i�ji

κji + i(�ji − ω)

∼=
∑

�ji
∼=ω

Gijρji(0)
κji + i�ji

κji + i(�ji − ω)
. (B8)

Here, Gr (s) stands for the unperturbed evolution where the
initial conditions are those computed with the stationary
solution for the master equation: L0 + αL1, i.e., the total
master equation (15) with a constant perturbation (without
the cosine modulation). The last approximation considers that
the main contribution comes from the terms with frequencies
�ij closer to the driven frequency ω.

2. Transmission calculation

In formula (B8) we first need to compute the stationary
solutions �ij (0) with constant perturbation [see our previous
discussion below Eq. (B8)]. Since we are assuming zero
temperature, it is clear that �11 ∼ �22 ∼ O(α) and �00 ∼
1 − O(α). Taking this into account, the solution for the
nondiagonal elements is as follows:

�̇10 = 0 = −i�10�10 − iαG10D(ω)

− (
�10 + 1

2 (D11 − D00)2
)
�10 + O(α2), (B9)

�̇20 = 0 = −i�20�20 − iαG20D(ω)

− (
�20 + �21 + 1

2 (D22 − D00)2
)
�20 + O(α2).

(B10)

Solving these equations and inserting them in the general
expression (B8) together with relation (14) yields Eq. (16)
in the main text.

rin rout

γ
bout

FIG. 9. Schematics for the modeling of nonradiative losses.

3. Leakage

Losses can be modeled as decays to other channels, which
are characterized by input and output fields named here as
bin and bout. Here, we take into account one additional channel
(others will simply sum); see Fig. 9. The input-output relations
(B3) must be generalized now to include this extra channel,

rout(t) = rin(t) − i
√

2πD(ω)G(t), (B11)

bout(t) = bin(t) − i
√

2γG(t). (B12)

The quantity γ parametrizes a phenomenological loss rate,
and the 2 in front is because we do not consider left and right
modes in the nonradiative channel but just b modes. Besides,
bin(t) = 0 and the transmission in the b modes reads

τ (ω) = −i
√

2γ 〈G〉
〈rin〉 . (B13)

APPENDIX C: EFFICIENCY CALCULATIONS

In order to compute the reflection and leakage when the
mirror is placed, we must sum over all the possible reflection,
transmission, and leakage events, as shown in Fig. 10. In
doing so, we define �(ω) = exp(ik(ω)d), which is the phase
accumulated by a photon with quasimomentum k traveling a
distance d (this will be the distance between the mirror and the
atom). Finally, we denote the reflection in the mirror as rM .
Eventually, we set rM = −1; i.e., we neglect losses in the mir-
ror, which is a good assumption in many experimental setups.

With the mirror, P (2)(ω) is written as

P (2)(ω) = 1 − |rtot,1(ω)|2 − |τtot(ω)|2, (C1)

where rtot,1(ω) is the total one-photon reflection. It should
be distinguished from r (1)(ω), which stands for the reflection
occurring in every event. Finally, τtot(ω) is the total leakage.
Summing over all scattering events (see Fig. 10), we finally get

r
(1)
tot (ω) = r (1)(ω) + t (1)(ω)�(ω)rMt (1)(ω)

+t (1)(ω)�(ω)rMt (1)(ω)r (1)(ω)�(ω)rMt (1)(ω)

+ · · ·

= r (1)(ω) + (t (1)(ω))2�(ω)rM

1 − r (1)(ω)�(ω)rM

, (C2)

and

τtot(ω) = τ (ω) + t (1)(ω)�(ω)rMτ (ω)

+ t (1)(ω)�(ω)rMt (1)(ω)r (1)(ω)�(ω)rMτ (ω)

+ · · ·

= τ (ω) + τ (ω)t (1)(ω)�(ω)rM

1 − r (1)(ω)�(ω)rM

. (C3)
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τtotal,1

rtotal,1 =

τ1

r1 r'1

+ +         ...

τ'1

r''1

τ''1

+

FIG. 10. Diagrammatic representation for the possible scattering events giving the total reflection.

Combining Eqs. (C2) and (C3) with Eq. (C1) we can compute
the two-photon generation P (2)(ω), considering rM = −1.
The transmission into the auxiliary modes is the energy loss
from the system, i.e.,

A(ω) ≡ |τ (ω)|2 . (C4)

APPENDIX D: NUMERICAL SIMULATIONS

1. Matrix product states

We are studying the dynamics of a state with one or two
photons flying over the ground state. As this state is expected
to have a small amount of entanglement, we can use the
variational ansatz of matrix product states [34,35] to describe
the discrete wave function for scattering problems as we have
shown recently [19,36]. This ansatz has the form

|ψ〉 =
∑

sx∈{1,dx }
tr
[∏

Asx

x

]
|s1,s2, . . . ,sL〉 . (D1)

It is constructed from L sets of complex matrices Asx
x ∈

M[CD], with L the number of sites, where each set is labeled
by the quantum state sx of the corresponding site. The local
Hilbert space dimension dx is infinity, since we are dealing with
bosonic sites. During the dynamics, processes that create more
than two photons are still highly off resonance. In consequence,
we can truncate the bosonic space and consider states with zero
to nmax photons per cavity. The composite Hilbert space is
H = ⊗

x C
dx , where the dimension is dx = nmax + 1 for the

empty resonators and dx0 = 3(nmax + 1) for the cavity with
the three-level system. We thus expect the composite wave
function of the photon C3LS to consist of a superposition with
a small number of photons.

The total number of variational parameters is (L −
1)D2(nmax + 1) + 3D2(nmax + 1) and depends on the size of
the matrices, D. The key point is that, for describing a general
state, D increases exponentially with L, whereas it increases
only polynomially with L if the entanglement is small enough.

The computation of scattering matrices with MPSs uses
four different algorithms. The most basic one is to create
product state such as a vacuum state with the deexcited
C3LS: |ψ〉 = |0〉 |vac〉. These states can be reproduced using
matrices of bond dimension D = 1, so each matrix is just a
coefficient Asx

x = δsx1. The second algorithm is to compute
expectation values from MPSs. This amounts to a contraction
of tensors that can be performed efficiently [34] and allows

one to compute single-site operators 〈a†
xax〉, 〈σz〉, correlators

as 〈a†
xay〉, or even projections as 〈�|ax1ax2 |ψ〉. The third

operation we need to perform is to apply operators on a state,
O |ψ〉, such as introducing or removing excitations a

†
x |ψ〉. We

do this in an efficient fashion by interpreting the operator O

as a matrix product operator (MPO) [48]. A MPO is a matrix
product representation of an operator:

O =
∑

sx ,s
′
x∈{1,dx }

tr
[∏

B
sx,s

′
x

x

]
|s1,s2, . . . ,sL〉 〈s ′

1,s
′
2, . . . ,s

′
L| .

(D2)

So, now we have L sets of complex matrices B
sx,s

′
x

x ∈ M[CDO ],
where each set is labeled by two indices sx,s

′
x of the

corresponding site.
We just need to apply sums of one-body operators:

O = a
†
φ =

∑
x

φxa
†
x. (D3)

In such a case, an efficient representation of the MPO is
obtained with DO = 2:

B
sx,s

′
x

x =
(

δsx ,s
′
x

0

φx(a†
x)sx ,s

′
x

δsx ,s
′
x

)
, x = 2,3, . . . ,L − 1,

(D4)

whereas B
s1,s

′
1

1 = (φ1(a†
1)s1,s

′
1
,δs1,s

′
1
) and B

sL,s ′
L

L =
(δsL,s ′

L
,φL(a†

L)sL,s ′
L
)T , with (a†

x)sx ,s
′
x
=: 〈sx | a†

x |s ′
x〉.

Finally, we can also evaluate the time evolution by repeat-
edly contracting the state with an MPO approximation of the
unitary operator exp(−iH�t) for short times, and truncating
it to an ansatz MPS with a fixed D. Since our problem does
not contain long-range interactions and since the state is well
approximated by MPS, it is sufficient to rely on a third-order
Suzuki-Trotter formula [49]. We can also take imaginary time
evolution to obtain the ground state by solving the equa-
tion d

dt
|ψ〉 = −H |ψ〉 for finite time steps while constantly

normalizing the state. Provided a suitable initial state, the
algorithm converges to the lowest-energy state of H . Notice
that the ground state is totally necessary in order to study
the dynamics, since the initial state is obtained by applying a
single-body operator as that of Eq. (D3) over the ground state.
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2. Simulated model: Input state and parameters used

To simulate the waveguide, we consider a one-dimensional
array of coupled cavities:

H = ε
∑

x

a†
xax − J

∑
x

(a†
xax+1 + H.c.)

+
∑

i

ωi |i〉〈i| +
∑
ij

(Gij |i〉 〈j | + H.c.)(a0 + a
†
0),

(D5)

where ε are the bare frequencies of the cavities, J is the
hopping between nearest neighbors, and Gij is the coupling
constant for the |i〉 ↔ |j 〉 transition. The lattice spacing
d is fixed to 1. The photonic part can be diagonalized
in momentum space, giving the dispersion relation ω(k) =
ε − 2J cos k. The density of electromagnetic modes will be
D(ω) = 1/

√
2J | sin(k(ω))|.

We fix ε = 1, J = 1/π , ω0 = 0, ω1 = 0.59, and ω2 = 1.10
(these energies were obtained from the model introduced in
the main part of the text). We take L = 1000 cavities and

we place the scatterer at the center, which we define as
x0 = 0. The couplings used in the simulations to compute the
full spectrum are G01 = −0.0225, and G12 = G02 = 0.03. In
the simulations in which we computed the two-photon wave
function, in order to get a cleaner scattering state and due to
limitations in the time of simulation, we artificially increased
the couplings: G01 = −0.10, G12 = G02 = 0.13.

We work in position space. The input state is

|in〉 =
∑

x

eik0xe(x−x̄)/2σ θ (x̄ − x)a†
x |�〉, (D6)

up to a normalization constant, with x̄ the position of the
wave front, σ the width, k0 the mean momentum, and θ (x)
the Heaviside function. We fix x̄ = 420 and k0 = 1.73 (on
resonance with �20). We take σ = 2 for the simulations to
get the full spectrum and σ = 20 for the simulation in which
we compute dynamical properties, Fig. 5, and the two-photon
wave function [Figs. 6 and 7(b)–7(e)]. The results reported
used bond dimension D = 10 and the cutoff for the cavities
is nmax = 3. We checked that these sizes are already sufficient
for achieving convergence.
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[30] É. Dumur, B. Küng, A. K. Feofanov, T. Weissl, N. Roch, C.
Naud, W. Guichard, and O. Buisson, Phys. Rev. B 92, 020515
(2015).

[31] B. Peropadre, D. Zueco, D. Porras, and J. J. Garcı́a-Ripoll,
Phys. Rev. Lett. 111, 243602 (2013).

[32] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).

053814-10

https://doi.org/10.1126/science.1181918
https://doi.org/10.1126/science.1181918
https://doi.org/10.1126/science.1181918
https://doi.org/10.1126/science.1181918
https://doi.org/10.1103/PhysRevLett.107.073601
https://doi.org/10.1103/PhysRevLett.107.073601
https://doi.org/10.1103/PhysRevLett.107.073601
https://doi.org/10.1103/PhysRevLett.107.073601
https://doi.org/10.1103/PhysRevLett.111.053601
https://doi.org/10.1103/PhysRevLett.111.053601
https://doi.org/10.1103/PhysRevLett.111.053601
https://doi.org/10.1103/PhysRevLett.111.053601
https://doi.org/10.1126/science.1244324
https://doi.org/10.1126/science.1244324
https://doi.org/10.1126/science.1244324
https://doi.org/10.1126/science.1244324
https://doi.org/10.1088/1367-2630/15/2/025011
https://doi.org/10.1088/1367-2630/15/2/025011
https://doi.org/10.1088/1367-2630/15/2/025011
https://doi.org/10.1088/1367-2630/15/2/025011
https://doi.org/10.1103/PhysRevLett.110.243603
https://doi.org/10.1103/PhysRevLett.110.243603
https://doi.org/10.1103/PhysRevLett.110.243603
https://doi.org/10.1103/PhysRevLett.110.243603
https://doi.org/10.1126/science.1237125
https://doi.org/10.1126/science.1237125
https://doi.org/10.1126/science.1237125
https://doi.org/10.1126/science.1237125
https://doi.org/10.1103/PhysRevLett.113.093603
https://doi.org/10.1103/PhysRevLett.113.093603
https://doi.org/10.1103/PhysRevLett.113.093603
https://doi.org/10.1103/PhysRevLett.113.093603
https://doi.org/10.1103/PhysRevLett.113.143601
https://doi.org/10.1103/PhysRevLett.113.143601
https://doi.org/10.1103/PhysRevLett.113.143601
https://doi.org/10.1103/PhysRevLett.113.143601
https://doi.org/10.1038/ncomms4808
https://doi.org/10.1038/ncomms4808
https://doi.org/10.1038/ncomms4808
https://doi.org/10.1038/ncomms4808
https://doi.org/10.1103/RevModPhys.87.347
https://doi.org/10.1103/RevModPhys.87.347
https://doi.org/10.1103/RevModPhys.87.347
https://doi.org/10.1103/RevModPhys.87.347
https://doi.org/10.1038/ncomms9655
https://doi.org/10.1038/ncomms9655
https://doi.org/10.1038/ncomms9655
https://doi.org/10.1038/ncomms9655
https://doi.org/10.1364/OL.30.002001
https://doi.org/10.1364/OL.30.002001
https://doi.org/10.1364/OL.30.002001
https://doi.org/10.1364/OL.30.002001
https://doi.org/10.1103/PhysRevLett.95.213001
https://doi.org/10.1103/PhysRevLett.95.213001
https://doi.org/10.1103/PhysRevLett.95.213001
https://doi.org/10.1103/PhysRevLett.95.213001
https://doi.org/10.1103/PhysRevLett.101.100501
https://doi.org/10.1103/PhysRevLett.101.100501
https://doi.org/10.1103/PhysRevLett.101.100501
https://doi.org/10.1103/PhysRevLett.101.100501
https://doi.org/10.1103/PhysRevLett.108.143602
https://doi.org/10.1103/PhysRevLett.108.143602
https://doi.org/10.1103/PhysRevLett.108.143602
https://doi.org/10.1103/PhysRevLett.108.143602
https://doi.org/10.1103/PhysRevLett.111.153601
https://doi.org/10.1103/PhysRevLett.111.153601
https://doi.org/10.1103/PhysRevLett.111.153601
https://doi.org/10.1103/PhysRevLett.111.153601
https://doi.org/10.1103/PhysRevLett.113.063604
https://doi.org/10.1103/PhysRevLett.113.063604
https://doi.org/10.1103/PhysRevLett.113.063604
https://doi.org/10.1103/PhysRevLett.113.063604
https://doi.org/10.1103/PhysRevLett.113.263604
https://doi.org/10.1103/PhysRevLett.113.263604
https://doi.org/10.1103/PhysRevLett.113.263604
https://doi.org/10.1103/PhysRevLett.113.263604
https://doi.org/10.1103/PhysRevLett.95.087001
https://doi.org/10.1103/PhysRevLett.95.087001
https://doi.org/10.1103/PhysRevLett.95.087001
https://doi.org/10.1103/PhysRevLett.95.087001
https://doi.org/10.1038/srep07289
https://doi.org/10.1038/srep07289
https://doi.org/10.1038/srep07289
https://doi.org/10.1038/srep07289
https://doi.org/10.1103/PhysRevA.93.063823
https://doi.org/10.1103/PhysRevA.93.063823
https://doi.org/10.1103/PhysRevA.93.063823
https://doi.org/10.1103/PhysRevA.93.063823
https://doi.org/10.1103/PhysRevA.79.013804
https://doi.org/10.1103/PhysRevA.79.013804
https://doi.org/10.1103/PhysRevA.79.013804
https://doi.org/10.1103/PhysRevA.79.013804
http://arxiv.org/abs/arXiv:1510.07307
https://doi.org/10.1103/PhysRevLett.87.183002
https://doi.org/10.1103/PhysRevLett.87.183002
https://doi.org/10.1103/PhysRevLett.87.183002
https://doi.org/10.1103/PhysRevLett.87.183002
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevLett.113.220502
https://doi.org/10.1103/PhysRevLett.113.220502
https://doi.org/10.1103/PhysRevLett.113.220502
https://doi.org/10.1103/PhysRevLett.113.220502
https://doi.org/10.1103/PhysRevB.92.020515
https://doi.org/10.1103/PhysRevB.92.020515
https://doi.org/10.1103/PhysRevB.92.020515
https://doi.org/10.1103/PhysRevB.92.020515
https://doi.org/10.1103/PhysRevLett.111.243602
https://doi.org/10.1103/PhysRevLett.111.243602
https://doi.org/10.1103/PhysRevLett.111.243602
https://doi.org/10.1103/PhysRevLett.111.243602
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902


FULL TWO-PHOTON DOWN-CONVERSION OF A SINGLE . . . PHYSICAL REVIEW A 94, 053814 (2016)

[33] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
[34] J. J. Garcı́a-Ripoll, New J. Phys. 8, 305 (2006).
[35] F. Verstraete, V. Murg, and J. I. Cirac, Adv. Phys. 57, 143 (2008).
[36] E. Sánchez-Burillo, J. Garcı́a-Ripoll, L. Martı́n-Moreno, and

D. Zueco, Faraday Discuss. 178, 335 (2015).
[37] T. Ramos, B. Vermersch, P. Hauke, H. Pichler, and P. Zoller,

Phys. Rev. A 93, 062104 (2016).
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