133 research outputs found

    Hall effects in Carroll dynamics

    Full text link
    ``Do Carroll particles move?'' The answer depends on the characteristics of the particle such as its mass, spin, electric charge, and magnetic moment. A massive Carroll particle (closely related to fractons) does not move; its immobility follows from Carroll boost symmetry which implies dipole conservation, but not conversely. A massless Carroll particle may propagate by following the Hall law, consistently with the partial breaking of the Carroll boost symmetry. The framework is extended to Carroll field theory. In d=2d=2 space dimensions, the Carroll group has a two-fold central extension which allows us to generalize the dynamics to massive and massless particles, including anyons. The anyonic spin and magnetic moment combine with the doubly-extended structure parameterized by two Casimir invariants interpreted as intrinsic magnetization and non-commutativity parameter. The extended Carroll particle subjected to an electromagnetic background field moves following a generalized Hall law which includes a Zeeman force. This theory is illustrated by massless, uncharged anyons with doubly-centrally extended structure we call exotic photons, which move on the horizon of a Black Hole, giving rise to an anyonic spin-Hall Effect.Comment: Thoroughly revised and extended version. 120 pages,13 figure

    Taxon Appearance From Extraction and Amplification Steps Demonstrates the Value of Multiple Controls in Tick Microbiota Analysis

    Get PDF
    Background: The development of high-throughput sequencing technologies has substantially improved analysis of bacterial community diversity, composition, and functions. Over the last decade, high-throughput sequencing has been used extensively to identify the diversity and composition of tick microbial communities. However, a growing number of studies are warning about the impact of contamination brought along the different steps of the analytical process, from DNA extraction to amplification. In low biomass samples, e.g., individual tick samples, these contaminants may represent a large part of the obtained sequences, and thus generate considerable errors in downstream analyses and in the interpretation of results. Most studies of tick microbiota either do not mention the inclusion of controls during the DNA extraction or amplification steps, or consider the lack of an electrophoresis signal as an absence of contamination. In this context, we aimed to assess the proportion of contaminant sequences resulting from these steps. We analyzed the microbiota of individual Ixodes ricinus ticks by including several categories of controls throughout the analytical process: homogenization, DNA extraction, and DNA amplification. Results: Controls yielded a significant number of sequences (1, 126–13, 198 mean sequences, depending on the control category). Some operational taxonomic units (OTUs) detected in these controls belong to genera reported in previous tick microbiota studies. In this study, these OTUs accounted for 50.9% of the total number of sequences in our samples, and were considered contaminants. Contamination levels (i.e., the percentage of sequences belonging to OTUs identified as contaminants) varied with tick instar and sex: 76.3% of nymphs and 75% of males demonstrated contamination over 50%, while most females (65.7%) had rates lower than 20%. Contamination mainly corresponded to OTUs detected in homogenization and extraction reagent controls, highlighting the importance of carefully controlling these steps. Conclusion: Here, we showed that contaminant OTUs from sample laboratory processing steps can represent more than half the total sequence yield in sequencing runs, and lead to unreliable results when characterizing tick microbial communities. We thus strongly advise the routine use of negative controls in tick microbiota studies, and more generally in studies involving low biomass samples

    Toxicity and Applications of Internalised Magnetite Nanoparticles Within Live Paramecium caudatum Cells

    Get PDF
    © 2017, The Author(s). The nanotechnology revolution has allowed us to speculate on the possibility of hybridising nanoscale materials with live substrates, yet significant doubt still remains pertaining to the effects of nanomaterials on biological matter. In this investigation, we cultivate the ciliated protistic pond-dwelling microorganism Paramecium caudatum in the presence of excessive quantities of magnetite nanoparticles in order to deduce potential beneficial applications for this technique, as well as observe any deleterious effects on the organisms’ health. Our findings indicate that this variety of nanoparticle is well-tolerated by P. caudatum cells, who were observed to consume them in quantities exceeding 5–12% of their body volume: cultivation in the presence of magnetite nanoparticles does not alter P. caudatum cell volume, swimming speed, growth rate or peak colony density and cultures may persist in nanoparticle-contaminated media for many weeks. We demonstrate that P. caudatum cells ingest starch-coated magnetite nanoparticles which facilitates their being magnetically immobilised whilst maintaining apparently normal ciliary dynamics, thus demonstrating that nanoparticle biohybridisation is a viable alternative to conventional forms of ciliate quieting. Ingested magnetite nanoparticle deposits appear to aggregate, suggesting that (a) the process of being internalised concentrates and may therefore detoxify (i.e. render less reactive) nanomaterial suspensions in aquatic environments, and (b) P. caudatum is a candidate organism for programmable nanomaterial manipulation and delivery

    Variable expressivity of FGF3 mutations associated with deafness and LAMM syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recessive mutations of fibroblast growth factor 3 (FGF3) can cause LAMM syndrome (OMIM 610706), characterized by fully penetrant complete labyrinthine aplasia, microtia and microdontia.</p> <p>Methods</p> <p>We performed a prospective molecular genetic and clinical study of families segregating hearing loss linked to <it>FGF3 </it>mutations. Ten affected individuals from three large Pakistani families segregating <it>FGF3 </it>mutations were imaged with CT, MRI, or both to detect inner ear abnormalities. We also modeled the three dimensional structure of FGF3 to better understand the structural consequences of the three missense mutations.</p> <p>Results</p> <p>Two families segregated reported mutations (p.R104X and p.R95W) and one family segregated a novel mutation (p.R132GfsX26) of <it>FGF3</it>. All individuals homozygous for p.R104X or p.R132GfsX26 had fully penetrant features of LAMM syndrome. However, recessive p.R95W mutations were associated with nearly normal looking auricles and variable inner ear structural phenotypes, similar to that reported for a Somali family also segregating p.R95W. This suggests that the mild phenotype is not entirely due to genetic background. Molecular modeling result suggests a less drastic effect of p.R95W on FGF3 function compared with known missense mutations detected in fully penetrant LAMM syndrome. Since we detected significant intrafamilial variability of the inner ear structural phenotype in the family segregating p.R95W, we also sequenced <it>FGF10 </it>as a likely candidate for a modifier. However, we did not find any sequence variation, pointing out that a larger sample size will be needed to map and identify a modifier. We also observed a mild to moderate bilateral conductive hearing loss in three carriers of p.R95W, suggesting either a semi-dominant effect of this mutant allele of <it>FGF3</it>, otitis media, or a consequence of genetic background in these three family members.</p> <p>Conclusions</p> <p>We noted a less prominent dental and external ear phenotype in association with the homozygous p.R95W. Therefore, we conclude that the manifestations of recessive <it>FGF3 </it>mutations range from fully penetrant LAMM syndrome to deafness with residual inner ear structures and, by extension, with minimal syndromic features, an observation with implications for cochlear implantation candidacy.</p

    Large bolometer arrays with superconducting NbSi sensors for future space experiments

    Get PDF
    International audienceNew techniques in microelectronics allow to build large arrays of bolometers filling the focal plane of submillimeter and millimeter telescopes. The expected sensitivity increase is the key for the next generation of space experiments in this wavelength range. Superconducting bolometers offer currently the best prospects in terms of sensitivity and multiplexed readout. We present here the developments led in France based on NbSi alloy thermometers. The manufacturing process of a 23 pixel array and the test setup are described

    Habitat properties are key drivers of Borrelia burgdorferi (s.l.) prevalence in Ixodes ricinus populations of deciduous forest fragments

    Get PDF
    Background: The tick Ixodes ricinus has considerable impact on the health of humans and other terrestrial animals because it transmits several tick-borne pathogens (TBPs) such as B. burgdorferi (sensu lato), which causes Lyme borreliosis (LB). Small forest patches of agricultural landscapes provide many ecosystem services and also the disservice of LB risk. Biotic interactions and environmental filtering shape tick host communities distinctively between specific regions of Europe, which makes evaluating the dilution effect hypothesis and its influence across various scales challenging. Latitude, macroclimate, landscape and habitat properties drive both hosts and ticks and are comparable metrics across Europe. Therefore, we instead assess these environmental drivers as indicators and determine their respective roles for the prevalence of B. burgdorferi in I. ricinus. Methods: We sampled I. ricinus and measured environmental properties of macroclimate, landscape and habitat quality of forest patches in agricultural landscapes along a European macroclimatic gradient. We used linear mixed models to determine significant drivers and their relative importance for nymphal and adult B. burgdorferi prevalence. We suggest a new prevalence index, which is pool-size independent. Results: During summer months, our prevalence index varied between 0 and 0.4 per forest patch, indicating a low to moderate disservice. Habitat properties exerted a fourfold larger influence on B. burgdorferi prevalence than macroclimate and landscape properties combined. Increasingly available ecotone habitat of focal forest patches diluted and edge density at landscape scale amplified B. burgdorferi prevalence. Indicators of habitat attractiveness for tick hosts (food resources and shelter) were the most important predictors within habitat patches. More diverse and abundant macro- and microhabitat had a diluting effect, as it presumably diversifies the niches for tick-hosts and decreases the probability of contact between ticks and their hosts and hence the transmission likelihood.[br/] Conclusions: Diluting effects of more diverse habitat patches would pose another reason to maintain or restore high biodiversity in forest patches of rural landscapes. We suggest classifying habitat patches by their regulating services as dilution and amplification habitat, which predominantly either decrease or increase B. burgdorferi prevalence at local and landscape scale and hence LB risk. Particular emphasis on promoting LB-diluting properties should be put on the management of those habitats that are frequently used by humans. In the light of these findings, climate change may be of little concern for LB risk at local scales, but this should be evaluated further

    Integration of Ergonomics Into Hand Tool Design: Principle and Presentation of an Example

    No full text
    The development of ergonomic tools responds to health protection needs on the part of workers, especially the work related musculoskeletal disorders of the upper limbs and to the development of ergonomic tools to take into account the needs of the factories. Only an ergonomic design process can enable tool manufacturers to meet these requirements. Three factors are involved: integration of ergonomics into the design process, definition of the different ergonomic stages involved, and finally knowledge of the different factors involved in hand tool design. This document examines these 3 elements in more detail and presents briefly a project of research whose main purpose is to integrate ergonomic criteria into a design process
    • 

    corecore