41,442 research outputs found

    Pursuing the planet-debris disk connection: Analysis of upper limits from the Anglo-Australian Planet Search

    Get PDF
    Solid material in protoplanetary discs will suffer one of two fates after the epoch of planet formation; either being bound up into planetary bodies, or remaining in smaller planetesimals to be ground into dust. These end states are identified through detection of sub-stellar companions by periodic radial velocity (or transit) variations of the star, and excess emission at mid- and far-infrared wavelengths, respectively. Since the material that goes into producing the observable outcomes of planet formation is the same, we might expect these components to be related both to each other and their host star. Heretofore, our knowledge of planetary systems around other stars has been strongly limited by instrumental sensitivity. In this work, we combine observations at far-infrared wavelengths by IRAS, Spitzer, and Herschel with limits on planetary companions derived from non-detections in the 16-year Anglo-Australian Planet Search to clarify the architectures of these (potential) planetary systems and search for evidence of correlations between their constituent parts. We find no convincing evidence of such correlations, possibly owing to the dynamical history of the disk systems, or the greater distance of the planet-search targets. Our results place robust limits on the presence of Jupiter analogs which, in concert with the debris disk observations, provides insights on the small-body dynamics of these nearby systems.Comment: Accepted for publication in A

    Discovery of a Spin-Down State Change in the LMC Pulsar B0540-69

    Full text link
    We report the discovery of a large, sudden, and persistent increase in the spin-down rate of B0540-69, a young pulsar in the Large Magellanic Cloud, using observations from the Swift and RXTE satellites. The relative increase in the spin-down rate of 36% is unprecedented for B0540-69. No accompanying change in the spin rate is seen, and no change is seen in the pulsed X-ray emission from B0540-69 following the change in the spin-down rate. Such large relative changes in the spin-down rate are seen in the recently discovered class of 'intermittent pulsars', and we compare the properties of B0540-69 to such pulsars. We consider possible changes in the magnetosphere of the pulsar that could cause such a large change in the spin-down rate.Comment: 6 pages, 2 figures, accepted for publication in ApJ Letter

    Switching modalities in a sentence verification task: ERP evidence for embodied language processing

    Get PDF
    In an event related potential (ERP) experiment using written language materials only, we investigated a potential modulation of the N400 by the modality switch effect. The modality switch effect occurs when a first sentence, describing a fact grounded in one modality, is followed by a second sentence describing a second fact grounded in a different modality. For example, "A cellar is dark" (visual), was preceded by either another visual property "Ham is pink" or by a tactile property "A mitten is soft." We also investigated whether the modality switch effect occurs for false sentences ("A cellar is light"). We found that, for true sentences, the ERP at the critical word "dark" elicited a significantly greater frontal, early N400-like effect (270370 ms) when there was a modality mismatch than when there was a modality-match. This pattern was not found for the critical word "light" in false sentences. Results similar to the frontal negativity were obtained in a late time window (500700 ms). The obtained ERP effect is similar to one previously obtained for pictures. We conclude that in this paradigm we obtained fast access to conceptual properties for modality-matched pairs, which leads to embodiment effects similar to those previously obtained with pictorial stimuli

    CP nonconservation in the leptonic sector

    Full text link
    In this paper we use an exact method to impose unitarity on moduli of neutrino PMNS matrix recently determined, and show how one could obtain information on CP nonconservation from a limited experimental information. One suggests a novel type of global fit by expressing all theoretical quantities in terms of convention independent parameters: the Jarlskog invariant JJ and the moduli Uαi|U_{\alpha i}|, able to resolve the positivity problem of Ue3|U_{e 3}|. In this way the fit will directly provide a value for JJ, and if it is different from zero it will prove the existence of CP violation in the available experimental data. If the best fit result, Ue32<0|U_{e3}|^2<0, from M. Maltoni {\em et al}, [New J.Phys. {\bf 6} (2004) 122] is confirmed, it will imply a new physics in the leptonic sector

    A randomised trial evaluating Bevacizumab as adjuvant therapy following resection of AJCC stage IIB, IIC and III cutaneous melanoma : an update

    Get PDF
    At present, there are no standard therapies for the adjuvant treatment of malignant melanoma. Patients with primary tumours with a high-Breslow thickness (stages IIB and IIC) or with resected loco-regional nodal disease (stage III) are at high risk of developing metastasis and subsequent disease-related death. Given this, it is important that novel therapies are investigated in the adjuvant melanoma setting. Since angiogenesis is essential for primary tumour growth and the development of metastasis, anti-angiogenic agents are attractive potential therapeutic candidates for clinical trials in the adjuvant setting. Therefore, we initiated a phase II trial in resected high-risk cutaneous melanoma, assessing the efficacy of bevacizumab versus observation. In the interim safety data analysis, we demonstrate that bevacizumab is a safe therapy in the adjuvant melanoma setting with no apparent increase in the surgical complication rate after either primary tumour resection and/or loco-regional lymphadenectomy

    Reversible Mode Switching in Y coupled Terahertz Lasers

    Full text link
    Electrically independent terahertz (THz) quantum cascade lasers (QCLs) are optically coupled in a Y configuration. Dual frequency, electronically switchable emission is achieved in one QCL using an aperiodic grating, designed using computer-generated hologram techniques, incorporated directly into the QCL waveguide by focussed ion beam milling. Multi-moded emission around 2.9 THz is inhibited, lasing instead occurring at switchable grating-selected frequencies of 2.88 and 2.92 THz. This photonic control and switching behaviour is selectively and reversibly transferred to the second, unmodified QCL via evanescent mode coupling, without the transfer of the inherent grating losses

    Y coupled terahertz quantum cascade lasers

    Full text link
    Here we demonstrate a Y coupled terahertz (THz) quantum cascade laser (QCL) system. The two THz QCLs working around 2.85 THz are driven by independent electrical pulsers. Total peak THz output power of the Y system, with both arms being driven synchronously, is found to be more than the linear sum of the peak powers from the individual arms; 10.4 mW compared with 9.6 mW (4.7 mW + 4.9 mW). Furthermore, we demonstrate that the emission spectra of this coupled system are significantly different to that of either arm alone, or to the linear combination of their individual spectra.Comment: 9 pages, 3 figure
    corecore