102 research outputs found

    Analysis of B and Be Star Populations of the Double Cluster h and chi Persei

    Full text link
    We present blue optical spectra of 92 members of h and chi Per obtained with the WIYN telescope at Kitt Peak National Observatory. From these spectra, several stellar parameters were measured for the B-type stars, including V sin i, T_eff, log g_polar, M_star, and R_star. Stromgren photometry was used to measure T_eff and log g_polar for the Be stars. We also analyze photometric data of cluster members and discuss the near-to-mid IR excesses of Be stars.Comment: 4 pages, to appear in the proceedings of IAU Symposium 266: Star Cluster

    The Distance of the Gamma-ray Binary 1FGL J1018.6-5856

    Full text link
    The recently discovered gamma-ray binary 1FGL J1018.6-5856 has a proposed optical/near-infrared (OIR) counterpart 2MASS 10185560-5856459. We present Stromgren photometry of this star to investigate its photometric variability and measure the reddening and distance to the system. We find that the gamma-ray binary has E(B-V) = 1.34 +/- 0.04 and d = 5.4^+4.6_-2.1 kpc. While E(B-V) is consistent with X-ray observations of the neutral hydrogen column density, the distance is somewhat closer than some previous authors have suggested.Comment: Accepted to PAS

    Association between Pseudonocardia symbionts and Atta leaf-cutting ants suggested by improved isolation methods

    Get PDF
    Fungus-growing ants associate with multiple symbiotic microbes, including Actinobacteria for production of antibiotics.The best studied of these bacteria are within the genus Pseudonocardia, which in most fungus-growing ants are conspicuouslyvisible on the external cuticle of workers. However, given that fungus-growing ants in the genus Atta do not carry visibleActinobacteria on their cuticle, it is unclear if this genus engages in the symbiosis with Pseudonocardia. Here we explore whetherimproving culturing techniques can allow for successful isolation of Pseudonocardia from Atta cephalotes leaf-cutting ants. Weobtained Pseudonocardia from 9 of 11 isolation method/colony component combinations from all 5 colonies intensively sampled.The most efficient technique was bead-beating workers in phosphate buffer solution, then plating the suspension on carboxymethylcellulosemedium. Placing these strains in a fungus-growing ant-associated Pseudonocardia phylogeny revealed that while somestrains grouped with clades of Pseudonocardia associated with other genera of fungus-growing ants, a large portion of the isolatesfell into two novel phylogenetic clades previously not identified from this ant-microbe symbiosis. Our findings suggest thatPseudonocardia may be associated with Atta fungus-growing ants, potentially internalized, and that localizing the symbiont andexploring its role is necessary to shed further light on the association. [Int Microbiol 2013; 16(1):17-25

    Using an agent-based model to analyze the dynamic communication network of the immune response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The immune system behaves like a complex, dynamic network with interacting elements including leukocytes, cytokines, and chemokines. While the immune system is broadly distributed, leukocytes must communicate effectively to respond to a pathological challenge. The Basic Immune Simulator 2010 contains agents representing leukocytes and tissue cells, signals representing cytokines, chemokines, and pathogens, and virtual spaces representing organ tissue, lymphoid tissue, and blood. Agents interact dynamically in the compartments in response to infection of the virtual tissue. Agent behavior is imposed by logical rules derived from the scientific literature. The model captured the agent-to-agent contact history, and from this the network topology and the interactions resulting in successful versus failed viral clearance were identified. This model served to integrate existing knowledge and allowed us to examine the immune response from a novel perspective directed at exploiting complex dynamics, ultimately for the design of therapeutic interventions.</p> <p>Results</p> <p>Analyzing the evolution of agent-agent interactions at incremental time points from identical initial conditions revealed novel features of immune communication associated with successful and failed outcomes. There were fewer contacts between agents for simulations ending in viral elimination (<it>win</it>) versus persistent infection (<it>loss</it>), due to the removal of infected agents. However, early cellular interactions preceded successful clearance of infection. Specifically, more Dendritic Agent interactions with TCell and BCell Agents, and more BCell Agent interactions with TCell Agents early in the simulation were associated with the immune <it>win </it>outcome. The Dendritic Agents greatly influenced the outcome, confirming them as hub agents of the immune network. In addition, unexpectedly high frequencies of Dendritic Agent-self interactions occurred in the lymphoid compartment late in the <it>loss </it>outcomes.</p> <p>Conclusions</p> <p>An agent-based model capturing several key aspects of complex system dynamics was used to study the emergent properties of the immune response to viral infection. Specific patterns of interactions between leukocyte agents occurring early in the response significantly improved outcome. More interactions at later stages correlated with persistent inflammation and infection. These simulation experiments highlight the importance of commonly overlooked aspects of the immune response and provide insight into these processes at a resolution level exceeding the capabilities of current laboratory technologies.</p

    Multiwavelength Observations of the Runaway Binary HD 15137

    Full text link
    HD 15137 is an intriguing runaway O-type binary system that offers a rare opportunity to explore the mechanism by which it was ejected from the open cluster of its birth. Here we present recent blue optical spectra of HD 15137 and derive a new orbital solution for the spectroscopic binary and physical parameters of the O star primary. We also present the first XMM-Newton observations of the system. Fits of the EPIC spectra indicate soft, thermal X-ray emission consistent with an isolated O star. Upper limits on the undetected hard X-ray emission place limits on the emission from a proposed compact companion in the system, and we rule out a quiescent neutron star in the propellor regime or a weakly accreting neutron star. An unevolved secondary companion is also not detected in our optical spectra of the binary, and it is difficult to conclude that a gravitational interaction could have ejected this runaway binary with a low mass optical star. HD 15137 may contain an elusive neutron star in the ejector regime or a quiescent black hole with conditions unfavorable for accretion at the time of our observations.Comment: Accepted to A

    Spectroscopic Hα and Hγ survey of field Be stars: 2004-2009

    Get PDF
    Massive O- and B-type stars are cosmic engines in the Universe and can be the dominant source of luminosity in a galaxy. The class of Be stars are rapidly rotating B-type stars that lose mass in an equatorial, circumstellar disk (Porter & Rivinius 2003) and cause Balmer and other line emission. Currently, we are unsure as to why these stars rotate so quickly but three scenarios are possible: they may have been born as rapid rotators, spun up by binary mass transfer, or spun up during the main-sequence evolution of B stars. In order to investigate these scenarios for this population of massive stars, we have been spectroscopically observing a set of 115 field Be stars with the Kitt Peak Coudè Feed telescope in both the Hα and Hγ wavelength regimes since 2004. This time baseline allows for examination of variability properties of the circumstellar disks as well as determine candidates for closer examination for binarity. We find that 90% of the observed stars show some variability with 8% showing significant variability over the 5-year baseline. Such values may be compared with the significant variability seen in some clusters such as NGC 3766 (McSwain 2008). Also, while ~20% of the sample consists of known binaries, we find that another 15-30% of the sample shows indications of binarity. © International Astronomical Union 2011

    The Orbits of the Gamma-ray Binaries LS I +61 303 and LS 5039

    Get PDF
    LS I +61 303 and LS 5039 are two of only a handful of known high mass X-ray binaries (HMXBs) that exhibit very high energy emission in the MeV-TeV range, and these "gamma-ray binaries" are of renewed interest due to the recent launch of the Fermi Gamma-ray Space Telescope. Here we present new radial velocities of both systems based on recent red and blue optical spectra. Both systems have somewhat discrepant orbital solutions available in the literature, and our new measurements result in improved orbital elements and resolve the disagreements. The improved geometry of each orbit will aid in studies of the high energy emission region near each source.Comment: Accepted to ApJ, 13 pages, preprint2 styl
    corecore