58 research outputs found

    A black hole x-ray binary at ∼100 Hz : multiwavelength timing of MAXI J1820+070 with HiPERCAM and NICER

    Get PDF
    We report on simultaneous sub-second optical and X-ray timing observations of the low mass X-ray binary black hole candidate MAXI J1820+070. The bright 2018 outburst rise allowed simultaneous photometry in five optical bands (ugrizs) with HiPERCAM/GTC (Optical) at frame rates over 100 Hz, together with NICER/ISS observations (X-rays). Intense (factor of two) red flaring activity in the optical is seen over a broad range of timescales down to ∼ 10 ms. Cross-correlating the bands reveals a prominent anti-correlation on timescales of ∼ seconds, and a narrow sub-second correlation at a lag of ≈ +165 ms (optical lagging X-rays). This lag increases with optical wavelength, and is approximately constant over Fourier frequencies of ∼ 0.3–10 Hz. These features are consistent with an origin in the inner accretion flow and jet base within ∼ 5000 Gravitational radii. An additional ∼ +5 s lag feature may be ascribable to disc reprocessing. MAXI J1820+070 is the third black hole transient to display a clear ∼ 0.1 s optical lag, which may be common feature in such objects. The sub-second lag variation with wavelength is novel, and may allow constraints on internal shock jet stratification models

    A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses

    Get PDF
    We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants

    Bio-analytical Assay Methods used in Therapeutic Drug Monitoring of Antiretroviral Drugs-A Review

    Get PDF

    The Amino Terminus of Gα z

    No full text
    • …
    corecore