1,083 research outputs found

    Multi-strand coronal loop model and filter-ratio analysis

    Get PDF
    We model a coronal loop as a bundle of seven separate strands or filaments. Each of the loop strands used in this model can independently be heated (near their left footpoints) by Alfv\'en/ion-cyclotron waves via wave-particle interactions. The Alfv\'en waves are assumed to penetrate the strands from their footpoints, at which we consider different wave energy inputs. As a result, the loop strands can have different heating profiles, and the differential heating can lead to a varying cross-field temperature in the total coronal loop. The simulation of TRACE observations by means of this loop model implies two uniform temperatures along the loop length, one inferred from the 171:195 filter ratio and the other from the 171:284 ratio. The reproduced flat temperature profiles are consistent with those inferred from the observed EUV coronal loops. According to our model, the flat temperature profile is a consequence of the coronal loop consisting of filaments, which have different temperatures but almost similar emission measures in the cross-field direction. Furthermore, when we assume certain errors in the simulated loop emissions (e.g., due to photometric uncertainties in the TRACE filters) and use the triple-filter analysis, our simulated loop conditions become consistent with those of an isothermal plasma. This implies that the use of TRACE/EIT triple filters for observation of a warm coronal loop may not help in determining whether the cross-field isothermal assumption is satisfied or not

    Multi-strand coronal loop model and filter-ratio analysis

    Full text link
    We model a coronal loop as a bundle of seven separate strands or filaments. Each of the loop strands used in this model can independently be heated (near their left footpoints) by Alfv\'en/ion-cyclotron waves via wave-particle interactions. The Alfv\'en waves are assumed to penetrate the strands from their footpoints, at which we consider different wave energy inputs. As a result, the loop strands can have different heating profiles, and the differential heating can lead to a varying cross-field temperature in the total coronal loop. The simulation of TRACE observations by means of this loop model implies two uniform temperatures along the loop length, one inferred from the 171:195 filter ratio and the other from the 171:284 ratio. The reproduced flat temperature profiles are consistent with those inferred from the observed EUV coronal loops. According to our model, the flat temperature profile is a consequence of the coronal loop consisting of filaments, which have different temperatures but almost similar emission measures in the cross-field direction. Furthermore, when we assume certain errors in the simulated loop emissions (e.g., due to photometric uncertainties in the TRACE filters) and use the triple-filter analysis, our simulated loop conditions become consistent with those of an isothermal plasma. This implies that the use of TRACE/EIT triple filters for observation of a warm coronal loop may not help in determining whether the cross-field isothermal assumption is satisfied or not

    Ray tracing of ion-cyclotron waves in a coronal funnel

    Full text link
    Remote observations of coronal holes have strongly implicated the kinetic interactions of ion-cyclotron waves with ions as a principal mechanism for plasma heating and acceleration of the fast solar wind. In order to study these waves, a linear perturbation analysis is used in the work frame of the collisionless multi-fluid model. We consider a non-uniform background plasma describing a funnel region and use the ray tracing equations to compute the ray path of the waves as well as the spatial variation of their properties.Comment: 4 pages, 3 figures Modern Solar Facilities, Advanced Solar Science, Universitatsverlag Goettingen 200

    Solar wind and kinetic heliophysics

    Get PDF
    This paper reviews recent aspects of solar wind physics and elucidates the role Alfvén waves play in solar wind acceleration and turbulence, which prevail in the low corona and inner heliosphere. Our understanding of the solar wind has made considerable progress based on remote sensing, in situ measurements, kinetic simulation and fluid modeling. Further insights are expected from such missions as the Parker Solar Probe and Solar Orbiter. The sources of the solar wind have been identified in the chromospheric network, transition region and corona of the Sun. Alfvén waves excited by reconnection in the network contribute to the driving of turbulence and plasma flows in funnels and coronal holes. The dynamic solar magnetic field causes solar wind variations over the solar cycle. Fast and slow solar wind streams, as well as transient coronal mass ejections, are generated by the Sun's magnetic activity. Magnetohydrodynamic turbulence originates at the Sun and evolves into interplanetary space. The major Alfvén waves and minor magnetosonic waves, with an admixture of pressure-balanced structures at various scales, constitute heliophysical turbulence. Its spectra evolve radially and develop anisotropies. Numerical simulations of turbulence spectra have reproduced key observational features. Collisionless dissipation of fluctuations remains a subject of intense research. Detailed measurements of particle velocity distributions have revealed non-Maxwellian electrons, strongly anisotropic protons and heavy ion beams. Besides macroscopic forces in the heliosphere, local wave–particle interactions shape the distribution functions. They can be described by the Boltzmann–Vlasov equation including collisions and waves. Kinetic simulations permit us to better understand the combined evolution of particles and waves in the heliosphere.</p

    Spectroscopic Observations of Propagating Disturbances in a Polar Coronal Hole: Evidence of Slow Magneto-acoustic Waves

    Full text link
    We focus on detecting and studying quasi-periodic propagating features that have been interpreted both in terms of slow magneto-acoustic waves and of high speed upflows. We analyze long duration spectroscopic observations of the on-disk part of the south polar coronal hole taken on 1997 February 25 by the SUMER spectrometer aboard SOHO. We calibrated the velocity with respect to the off-limb region and obtain time--distance maps in intensity, Doppler velocity and line width. We also perform a cross correlation analysis on different time series curves at different latitudes. We study average spectral line profiles at the roots of propagating disturbances and along the propagating ridges, and perform a red-blue asymmetry analysis. We find the clear presence of propagating disturbances in intensity and Doppler velocity with a projected propagation speed of about 60±4.860\pm 4.8 km s1^{-1} and a periodicity of \approx14.5 min. To our knowledge, this is the first simultaneous detection of propagating disturbances in intensity as well as in Doppler velocity in a coronal hole. During the propagation, an intensity enhancement is associated with a blue-shifted Doppler velocity. These disturbances are clearly seen in intensity also at higher latitudes (i.e. closer to the limb), while disturbances in Doppler velocity becomes faint there. The spectral line profiles averaged along the propagating ridges are found to be symmetric, to be well fitted by a single Gaussian, and have no noticeable red-blue asymmetry. Based on our analysis, we interpret these disturbances in terms of propagating slow magneto-acoustic waves.Comment: accepted for publication by A&

    Upflows in the upper transition region of the quiet Sun

    Full text link
    We investigate the physical meaning of the prominent blue shifts of Ne VIII, which is observed to be associated with quiet-Sun network junctions (boundary intersections), through data analyses combining force-free-field extrapolations with EUV spectroscopic observations. For a middle-latitude region, we reconstruct the magnetic funnel structure in a sub-region showing faint emission in EIT-Fe 195. This funnel appears to consist of several smaller funnels that originate from network lanes, expand with height and finally merge into a single wide open-field region. However, the large blue shifts of Ne VIII are generally not associated with open fields, but seem to be associated with the legs of closed magnetic loops. Moreover, in most cases significant upflows are found in both of the funnel-shaped loop legs. These quasi-steady upflows are regarded as signatures of mass supply to the coronal loops rather than the solar wind. Our observational result also reveals that in many cases the upflows in the upper transition region (TR) and the downflows in the middle TR are not fully cospatial. Based on these new observational results, we suggest different TR structures in coronal holes and in the quiet Sun.Comment: 4 pages, 4 figures, will appear in the Proceedings of the Solar wind 12 conferenc

    Apparent temperature anisotropies due to wave activity in the solar wind

    Get PDF
    The fast solar wind is a collisionless plasma permeated by plasma waves on many different scales. A plasma wave represents the natural interplay between the periodic changes of the electromagnetic field and the associated coherent motions of the plasma particles. In this paper, a model velocity distribution function is derived for a plasma in a single, coherent, large-amplitude wave. This model allows one to study the kinetic effects of wave motions on particle distributions. They are by in-situ spacecraft measured by counting, over a certain sampling time, the particles coming from various directions and having different energies. We compare our results with the measurements by the Helios spacecraft, and thus find that by assuming high wave activity we are able to explain key observed features of the measured distributions within the framework of our model. We also address the recent discussions on nonresonant wave--particle interactions and apparent heating. The applied time-averaging procedure leads to an apparent ion temperature anisotropy which is connected but not identical to the intrinsic temperature of the underlying distribution function.Comment: 9 pages, 4 figures, publisher version under http://www.ann-geophys.net/29/909/2011/angeo-29-909-2011.htm

    Links between magnetic fields and plasma flows in a coronal hole

    Full text link
    We compare the small-scale features visible in the Ne viii Doppler-shift map of an equatorial coronal hole (CH) as observed by SUMER with the small-scale structures of the magnetic field as constructed from a simultaneous photospheric magnetogram by a potential magnetic-field extrapolation. The combined data set is analysed with respect to the small-scale flows of coronal matter, which means that the Ne viii Doppler-shift used as tracer of the plasma flow is investigated in close connection with the ambient magnetic field. Some small closed-field regions in this largely open CH are also found in the coronal volume considered. The Doppler-shift patterns are found to be clearly linked with the field topology.Comment: 4 pages, 3 figure

    Coronal ion-cyclotron beam instabilities within the multi-fluid description

    Full text link
    Spectroscopic observations and theoretical models suggest resonant wave-particle interactions, involving high-frequency ion-cyclotron waves, as the principal mechanism for heating and accelerating ions in the open coronal holes. However, the mechanism responsible for the generation of the ion-cyclotron waves remains unclear. One possible scenario is that ion beams originating from small-scale reconnection events can drive micro-instabilities that constitute a possible source for the excitation of ion-cyclotron waves. In order to study ion beam-driven electromagnetic instabilities, the multi-fluid model in the low-beta coronal plasma is used. While neglecting the electron inertia this model allows one to take into account ion-cyclotron wave effects that are absent from the one-fluid MHD model. Realistic models of density and temperature as well as a 2-D analytical magnetic field model are used to define the background plasma in the open-field funnel region of a polar coronal hole. Considering the WKB approximation, a Fourier plane-wave linear mode analysis is employed in order to derive the dispersion relation. Ray-tracing theory is used to compute the ray path of the unstable wave as well as the evolution of the growth rate of the wave while propagating in the coronal funnel. We demonstrate that, in typical coronal holes conditions and assuming realistic values of the beam velocity, the free energy provided by the ion beam propagating parallel the ambient field can drive micro-instabilities through resonant ion-cyclotron excitation.Comment: 8 pages, 6 figures, submitted to A&
    corecore