We focus on detecting and studying quasi-periodic propagating features that
have been interpreted both in terms of slow magneto-acoustic waves and of high
speed upflows. We analyze long duration spectroscopic observations of the
on-disk part of the south polar coronal hole taken on 1997 February 25 by the
SUMER spectrometer aboard SOHO. We calibrated the velocity with respect to the
off-limb region and obtain time--distance maps in intensity, Doppler velocity
and line width. We also perform a cross correlation analysis on different time
series curves at different latitudes. We study average spectral line profiles
at the roots of propagating disturbances and along the propagating ridges, and
perform a red-blue asymmetry analysis. We find the clear presence of
propagating disturbances in intensity and Doppler velocity with a projected
propagation speed of about 60±4.8 km s−1 and a periodicity of
≈14.5 min. To our knowledge, this is the first simultaneous detection
of propagating disturbances in intensity as well as in Doppler velocity in a
coronal hole. During the propagation, an intensity enhancement is associated
with a blue-shifted Doppler velocity. These disturbances are clearly seen in
intensity also at higher latitudes (i.e. closer to the limb), while
disturbances in Doppler velocity becomes faint there. The spectral line
profiles averaged along the propagating ridges are found to be symmetric, to be
well fitted by a single Gaussian, and have no noticeable red-blue asymmetry.
Based on our analysis, we interpret these disturbances in terms of propagating
slow magneto-acoustic waves.Comment: accepted for publication by A&