61 research outputs found

    Thermoelastic investigations for fatigue life assessment

    Get PDF
    An investigation is presented on the suitability and accuracy of a thermoelastic technique for the analysis of fatigue cracks. The stress intensity factor ranges ΔKI and ΔKII are determined from thermoelastic data recorded from around the tip of a sharp slot in a steel specimen under biaxial load, in order to assess the accuracy of the technique. ΔKI and ΔK II are determined to within 4% and 9% of a theoretical prediction, respectively. The results from a similar test on a fatigue crack under biaxial load are also presented. These show that thermoelastic stress analysis is a rapid and accurate way of analyzing mixed-mode fatigue cracks. A discussion is given on the potential of thermoelastic stress analysis of propagating cracks

    A review of using thermoelasticity for structural integrity assessment

    Get PDF
    The advances in the use of thermoelastic stress analysis (TSA) for fracture mechanics assessment are reviewed. The development of techniques to determine stress intensity factor is presented followed by the application of these techniques to fatigue crack growth, crack closure and the study of mixed mode cracks

    A review of using thermoelasticity for structural integrity assessment

    Get PDF
    The advances in the use of thermoelastic stress analysis (TSA) for fracture mechanics assessmentare reviewed. The development of techniques to determine stress intensity factor is presented followed by theapplication of these techniques to fatigue crack growth, crack closure and the study of mixed mode cracks

    A review of using thermoelasticity for structural integrity assessment

    Get PDF
    The advances in the use of thermoelastic stress analysis (TSA) for fracture mechanics assessment are reviewed. The development of techniques to determine stress intensity factor is presented followed by the application of these techniques to fatigue crack growth, crack closure and the study of mixed mode cracks

    Local strain energy density for the fracture assessment of polyurethane specimens weakened by notches of different shape

    Get PDF
    Recent studies on local stress fields in proximity of crack and notch tips have shown that Strain Energy Density (SED), averaged in a circular control volume surrounding the point of stress singularities, represents a reliable engineering approach for assessing the brittle fracture of several brittle materials. It is worthy of notice that the application of SED criterion and the reliability of its results are strictly related to the proper determination of fracture parameters, i.e. the critical value of deformation energy Wc and the radius Rc of the control volume. This work presents an experimental methodology for their determination by means of notched specimens for different polyurethane densities, ranging from 100 to 651 kg/m3. Then, once obtained these critical parameters, the failure load in different types of notches and cracked specimens under mode I have been predicted. Moreover, for cracked specimens under mixed mode and mode II, the authors propose a personal approach that confirms PUR foams can be treated as brittle material

    The notch effect on fracture of polyurethane materials

    Get PDF
    This paper investigates the fracture properties and notch effect of PUR materials with four different densities. The asymmetric semi-circular bend specimen was adapted to perform mixed mode fracture toughness tests. This semi-circular specimen with radius R, which contains an edge crack of length a oriented normal to the specimen edge, loaded with a three point bending fixture, was proved to give wide range of mixed modes from pure mode I to pure mode II, only by changing the position of one support. Different types of notched specimens were considered for notch effect investigations and the Theory of Critical Distances was applied. It could be seen that the critical distances are influenced by the cellular structure of investigated materials

    Caractérisation du comportement mécanique de la sous surface d'un polymère percé, sous une sollicitation de type hertzienne

    Get PDF
    Ce travail s'inscrit dans la compréhension du comportement de la sous-surface d'une pièce présentant des hétérogénéités contrôlées, soumise à un chargement de type hertzien sans affecter l'intégrité de sa surface initiale. Le but est de qualifier le champ de contraintes en sous couche. Pratiquement, des défauts de forme cylindrique sont positionnés là où le champ de contraintes est maximal. Le contact est dimensionné pour pouvoir observer, par photoélasticimétrie, les évolutions du champ de contraintes et développer une modélisation numérique pour étudier le comportement statique puis dynamique. Il ressort que la présence d'un trou sur l'axe de symétrie z (x = 0) est le facteur prépondérant. Les caractéristiques qui permettent de diminuer la contrainte de cisaillement sur l'axe de symétrie sont celles qui conduisent à un renforcement de la contrainte de cisaillement maximale dans le massif. Cette dualité nous conduit à proposer un indicateur qui prend en compte, à la fois, la contrainte de cisaillement, l'aplomb du contact et l"évolution de la contrainte maximale dans le massif. La méthodologie de travail a été mise en oeuvre et validée. Les approches analytiques et expérimentales ont permis de valider les modélisations numériques qui sont seules à même de permettre l'étude de nombreux cas. Les perspectives sont nombreuses, avec des incursions possibles en structuration de sous-surfaces, perçage simple, frittage sélectif par laser. Ce doctorat a permis de traiter le cas des défauts circulaires. Dans un autre domaine, le soudage est également un cas d'intérêt pour l'étude du comportement des cordons de soudure présentant des défauts de type porosités ou inclusions.This research concerns the understanding of the sub-surface behaviour of a component presenting controlled heterogeneities and subjected to a Hertzian type load. The purpose is to qualify the stress field in the subsurface. Practically, defects of cylindrical shape are located where the stress field is maximal in sub surface. The contact is sized to be able to observe, by photoelasticity, the stress field and to develop a numerical model to simulate the behaviour (static and dynamic) of the friction area. It is highlighted that the presence of a hole on the z axis of symmetry (x = 0) is the dominating factor. The characteristics which allow decreasing the shearing stress on the symmetry axis are the ones which lead to a strengthening of the maximal shearing stress in the whole volume. This duality drives us to propose an indicator which takes into account, at the same time, the shearing stress below the contact and the evolution of the maximal stress in the whole volume. The working methodology was implemented and validated. The analytical and experimental approaches allow validating the numeric model which is the only one able to allow the study of numerous configurations. The perspectives are numerous, with possible incursions in structuring of sub-surfaces, simple drilling and selective laser sintering.... In another domain, the welding process is also a case of interest for the study of the behaviour of weld seam presenting defects of porosities or inclusions typesDIJON-BU Doc.électronique (212319901) / SudocSudocFranceF

    Scaling of compression strength in disordered solids: metallic foams

    Get PDF
    The scaling of compression strength with porosity for aluminium foams was investigated. The Al 99.96, AlMg1Si0.6 and AlSi11Mg0.6 foams of various porosity, sample size with and without surface skin were tested in compression. It was observed that the compression strength of aluminium foams scales near the percolation threshold with Tf ? 1.9 - 2.0 almost independently on the matrix alloy, sample size and presence of surface skin. The difference of the obtained values of Tf to the theoretical estimate of Tf = 2.64 ± 0.3 by Arbabi and Sahimi and to Ashby estimate of 1.5 was explained using an analogy with the Daoud and Coniglio approach to the scaling of the free energy of sol-gel transition. It leads to the finding that, there are two different universality classes for the critical exponent Tf: when the stretching forces dominate Tf = f = 2.1, respectively when bending forces prevail Tf = ?.d = 2.64 seems to be valid. Another possibility is the validity of relation Tf ? f which varies only according to the universality class of modulus of elasticity in foam
    • …
    corecore