55 research outputs found
Neutrino physics with multi-ton scale liquid xenon detectors
We study the sensitivity of large-scale xenon detectors to low-energy solar
neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double
beta decay. As a concrete example, we consider the xenon part of the proposed
DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform
detailed Monte Carlo simulations of the expected backgrounds, considering
realistic energy resolutions and thresholds in the detector. In a low-energy
window of 2-30 keV, where the sensitivity to solar pp and Be-neutrinos is
highest, an integrated pp-neutrino rate of 5900 events can be reached in a
fiducial mass of 14 tons of natural xenon, after 5 years of data. The
pp-neutrino flux could thus be measured with a statistical uncertainty around
1%, reaching the precision of solar model predictions. These low-energy solar
neutrinos will be the limiting background to the dark matter search channel for
WIMP-nucleon cross sections below 210 cm and WIMP
masses around 50 GeVc, for an assumed 99.5% rejection of
electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils
from coherent scattering of solar neutrinos will limit the sensitivity to WIMP
masses below 6 GeVc to cross sections above
410cm. DARWIN could reach a competitive half-life
sensitivity of 5.610 y to the neutrinoless double beta decay of
Xe after 5 years of data, using 6 tons of natural xenon in the central
detector region.Comment: 17 pages, 4 figure
Fluorescence decay-time constants in organic liquid scintillators
The fluorescence decay-time constants have been measured for several
scintillator mixtures based on phenyl-o-xylylethane (PXE) and linear
alkylbenzene (LAB) solvents. The resulting values are of relevance for the
physics performance of the proposed large-volume liquid scintillator detector
LENA (Low Energy Neutrino Astronomy). In particular, the impact of the measured
values to the search for proton decay via p -> K+ antineutrino is evaluated in
this work.Comment: 7 pages, 5 figure
Spectroscopy of electron-induced fluorescence in organic liquid scintillators
Emission spectra of several organic liquid-scintillator mixtures which are
relevant for the proposed LENA detector have been measured by exciting the
medium with electrons of ~10keV. The results are compared with spectra
resulting from ultraviolet light excitation. Good agreement between spectra
measured by both methods has been found.Comment: 6 pages, 7 figure
Spatially uniform calibration of a liquid xenon detector at low energies using 83m-Kr
A difficult task with many particle detectors focusing on interactions below
~100 keV is to perform a calibration in the appropriate energy range that
adequately probes all regions of the detector. Because detector response can
vary greatly in various locations within the device, a spatially uniform
calibration is important. We present a new method for calibration of liquid
xenon (LXe) detectors, using the short-lived 83m-Kr. This source has
transitions at 9.4 and 32.1 keV, and as a noble gas like Xe, it disperses
uniformly in all regions of the detector. Even for low source activities, the
existence of the two transitions provides a method of identifying the decays
that is free of background. We find that at decreasing energies, the LXe light
yield increases, while the amount of electric field quenching is diminished.
Additionally, we show that if any long-lived radioactive backgrounds are
introduced by this method, they will present less than 67E-6 events/kg/day in
the next generation of LXe dark matter direct detection searchesComment: 9 pages, 9 figures. Accepted to Review of Scientific Instrument
Qualification Tests of the R11410-21 Photomultiplier Tubes for the XENON1T Detector
The Hamamatsu R11410-21 photomultiplier tube is the photodetector of choice
for the XENON1T dual-phase time projection chamber. The device has been
optimized for a very low intrinsic radioactivity, a high quantum efficiency and
a high sensitivity to single photon detection. A total of 248 tubes are
currently operated in XENON1T, selected out of 321 tested units. In this
article the procedures implemented to evaluate the large number of tubes prior
to their installation in XENON1T are described. The parameter distributions for
all tested tubes are shown, with an emphasis on those selected for XENON1T, of
which the impact on the detector performance is discussed. All photomultipliers
have been tested in a nitrogen atmosphere at cryogenic temperatures, with a
subset of the tubes being tested in gaseous and liquid xenon, simulating their
operating conditions in the dark matter detector. The performance and
evaluation of the tubes in the different environments is reported and the
criteria for rejection of PMTs are outlined and quantified.Comment: 24 pages, 16 figure
Searching for prompt signatures of nearby core-collapse supernovae by a joint analysis of neutrino and gravitational-wave data
We discuss the science motivations and prospects for a joint analysis of
gravitational-wave (GW) and low-energy neutrino data to search for prompt
signals from nearby supernovae (SNe). Both gravitational-wave and low-energy
neutrinos are expected to be produced in the innermost region of a
core-collapse supernova, and a search for coincident signals would probe the
processes which power a supernova explosion. It is estimated that the current
generation of neutrino and gravitational-wave detectors would be sensitive to
Galactic core-collapse supernovae, and would also be able to detect
electromagnetically dark SNe. A joint GW-neutrino search would enable
improvements to searches by way of lower detection thresholds, larger distance
range, better live-time coverage by a network of GW and neutrino detectors, and
increased significance of candidate detections. A close collaboration between
the GW and neutrino communities for such a search will thus go far toward
realizing a much sought-after astrophysics goal of detecting the next nearby
supernova.Comment: 10 pages, 3 figures. To appear in Class. Quantum Gra
The LAGUNA design study- towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches
The feasibility of a next generation neutrino observatory in Europe is being
considered within the LAGUNA design study. To accommodate giant neutrino
detectors and shield them from cosmic rays, a new very large underground
infrastructure is required. Seven potential candidate sites in different parts
of Europe and at several distances from CERN are being studied: Boulby (UK),
Canfranc (Spain), Fr\'ejus (France/Italy), Pyh\"asalmi (Finland),
Polkowice-Sieroszowice (Poland), Slanic (Romania) and Umbria (Italy). The
design study aims at the comprehensive and coordinated technical assessment of
each site, at a coherent cost estimation, and at a prioritization of the sites
within the summer 2010.Comment: 5 pages, contribution to the Workshop "European Strategy for Future
Neutrino Physics", CERN, Oct. 200
Dark Matter Results from 100 Live Days of XENON100 Data
We present results from the direct search for dark matter with the XENON100
detector, installed underground at the Laboratori Nazionali del Gran Sasso of
INFN, Italy. XENON100 is a two-phase time projection chamber with a 62 kg
liquid xenon target. Interaction vertex reconstruction in three dimensions with
millimeter precision allows to select only the innermost 48 kg as ultra-low
background fiducial target. In 100.9 live days of data, acquired between
January and June 2010, no evidence for dark matter is found. Three candidate
events were observed in a pre-defined signal region with an expected background
of 1.8 +/- 0.6 events. This leads to the most stringent limit on dark matter
interactions today, excluding spin-independent elastic WIMP-nucleon scattering
cross-sections above 7.0x10^-45 cm^2 for a WIMP mass of 50 GeV/c^2 at 90%
confidence level.Comment: 5 pages, 5 figures; matches accepted versio
Comment on "On the subtleties of searching for dark matter with liquid xenon detectors"
In a recent manuscript (arXiv:1208.5046) Peter Sorensen claims that
XENON100's upper limits on spin-independent WIMP-nucleon cross sections for
WIMP masses below 10 GeV "may be understated by one order of magnitude or
more". Having performed a similar, though more detailed analysis prior to the
submission of our new result (arXiv:1207.5988), we do not confirm these
findings. We point out the rationale for not considering the described effect
in our final analysis and list several potential problems with his study.Comment: 3 pages, no figure
Development and evaluation of a rapid dipstick assay for serodiagnosis of acute human brucellosis
A dipstick assay for the detection of brucella-specific immunoglobulin M antibodies was evaluated with 707 sera from 247 laboratory-confirmed brucellosis patients and 342 control sera from brucellosis-free individuals. These sera were collected from six different countries. The assay was found to be highly sensitive and specific. In addition, the test is easy to use and does not require specialized training or equipment, and the components are stable without a requirement for refrigeration. All of these factors make the test ideal for developing countries and rural settings
- …