43 research outputs found

    Late Pleistocene slip rate along the Owens Valley fault, eastern California

    Get PDF
    The Owens Valley fault zone (OVF) is one of the primary structures accommodating dextral shear across the Eastern California shear zone (ECSZ). Previous estimates of the Holocene slip rate along this structure rely on paleoseismic data and yield rates 2-3 times lower than those implied by geodetic velocities. Using displaced lava flows along the flank of Crater Mountain, we present the first estimate of slip rate along the OVF during the late Pleistocene. Subsurface characterization of the flow margin using a ground-penetrating radar (GPR) allows for relatively precise determination of dextral displacement, and terrestrial cosmogenic 36Cl exposure ages of samples from the flow surface yield slip rates between ∼2.8 - 4.5 mm/yr over the past 55-80 kyr. Our results suggest either that paleoseismic slip-rate estimates underestimate the long-term slip rate or that rates of strain release have not been steady during the latter part of the Quaternary

    Assessing the continuity of the blue ice climate record at Patriot Hills, Horseshoe Valley, West Antarctica

    Get PDF
    We use high resolution Ground Penetrating Radar (GPR) to assess the continuity of the Blue Ice Area (BIA) horizontal climate record at Patriot Hills, Horseshoe Valley, West Antarctica. The sequence contains three pronounced changes in deuterium isotopic values at ~18 cal ka, ~12 cal ka and ~8 cal ka. GPR surveys along the climate sequence reveal continuous, conformable dipping isochrones, separated by two unconformities in the isochrone layers, which correlate with the two older deuterium shifts. We interpret these incursions as discontinuities in the sequence, rather than direct measures of climate change. Ice-sheet models and Internal Layer Continuity Index plots suggest that the unconformities represent periods of erosion occurring as the former ice surface was scoured by katabatic winds in front of mountains at the head of Horseshoe Valley. This study demonstrates the importance of high resolution GPR surveys for investigating both paleo-flow dynamics and interpreting BIA climate records

    Interannual surface evolution of an Antarctic blue-ice moraine using multi-temporal DEMs

    Get PDF
    Multi-temporal and fine resolution topographic data products are increasingly used to quantify surface elevation change in glacial environments. In this study, we employ 3D digital elevation model (DEM) differencing to quantify the topographic evolution of a blue-ice moraine complex in front of Patriot Hills, Heritage Range, Antarctica. Terrestrial laser scanning (TLS) was used to acquire multiple topographic datasets of the moraine surface at the beginning and end of the austral summer season in 2012/2013 and during a resurvey field campaign in 2014. A complementary topographic dataset was acquired at the end of season 1 through the application of Structure-from-Motion with multi-view stereo (SfM-MVS) photogrammetry to a set of aerial photographs acquired from an unmanned aerial vehicle (UAV).Three-dimensional cloud-to-cloud differencing was undertaken using the Multiscale Model to Model Cloud Comparison (M3C2) algorithm. DEM differencing revealed net uplift and lateral movement of the moraine crests within season 1 (mean uplift ~0.10 m), and surface lowering of a similar magnitude in some inter-moraine depressions and close to the current ice margin, although we are unable to validate the latter. Our results indicate net uplift across the site between seasons 1 and 2 (mean 0.07 m). This research demonstrates that it is possible to detect dynamic surface topographical change across glacial moraines over short (annual to intra-annual) timescales through the acquisition and differencing of fine-resolution topographic datasets. Such data offer new opportunities to understand the process linkages between surface ablation, ice flow, and debris supply within moraine ice

    Cosmogenic Exposure Dating (36Cl) of Landforms on Jan Mayen, North Atlantic, and the Effects of Bedrock Formation Age Assumptions on 36Cl Ages

    Get PDF
    Jan Mayen is a small volcanic island situated 550 km north of Iceland. Glacial sediments and landforms are relatively common on the island but, so far, only a few of them have been dated. In this study, we present and discuss 89 36Cl dates of primarily glacial and volcanic events on Jan Mayen. Calculations of sample exposure ages were complicated by young exposure ages, young rock formation age, and high native Cl contents, leading to updates in CRONUScalc to enable accurate exposure age calculations. The samples provide good evidence against an equilibrium assumption when subtracting background production (e.g., 36Cl produced by neutron capture from fission of U or Th) for samples on young bedrock, with younger exposure ages most significantly affected. Exposure ages were calculated with a range of assumptions of bedrock formation ages appropriate for Jan Mayen, including the assumption that the rock formation age equaled the exposure age (i.e., the youngest age it could possibly have), and we found that although the effect on most of the ages was small, the calculated ages of 25 of the samples increased by more than 1 standard deviation from the age calculated assuming equilibrium background production, with a maximum deviation of 6.1 ka. Due to the very young bedrock on Jan Mayen, we consider the nonequilibrium ages to be the most reliable ages from the island and conclude that large-scale deglaciation on the south and central, lower-lying, parts of the island, started around 20 ka and lasted until ~7 ka. On northern Jan Mayen, the slopes of the 2277 m high stratovolcano Beerenberg are currently partly glaciated; however, outside of the Little Ice Age moraines, all but two samples give ages between 14 and 5.7 ka

    Serious Games Cookbook: A beginner's guide to using and designing serious games

    Get PDF
    The Serious Game Cookbook is a resource that aims to support the use and design of serious games with detailed guidance. Each section talks through major topics around the use or design of serious games, supported with tasks, questions, and multiple examples

    Sedimentological characterization of Antarctic moraines using UAVs and Structure-from-Motion photogrammetry

    Get PDF
    In glacial environments particle-size analysis of moraines provides insights into clast origin, transport history, depositional mechanism and processes of reworking. Traditional methods for grain-size classification are labour-intensive, physically intrusive and are limited to patch-scale (1m2) observation. We develop emerging, high-resolution ground- and unmanned aerial vehicle-based ‘Structure-from-Motion’ (UAV-SfM) photogrammetry to recover grain-size information across an moraine surface in the Heritage Range, Antarctica. SfM data products were benchmarked against equivalent datasets acquired using terrestrial laser scanning, and were found to be accurate to within 1.7 and 50mm for patch- and site-scale modelling, respectively. Grain-size distributions were obtained through digital grain classification, or ‘photo-sieving’, of patch-scale SfM orthoimagery. Photo-sieved distributions were accurate to <2mm compared to control distributions derived from dry sieving. A relationship between patch-scale median grain size and the standard deviation of local surface elevations was applied to a site-scale UAV-SfM model to facilitate upscaling and the production of a spatially continuous map of the median grain size across a 0.3 km2 area of moraine. This highly automated workflow for site scale sedimentological characterization eliminates much of the subjectivity associated with traditional methods and forms a sound basis for subsequent glaciological process interpretation and analysis

    Blue-ice moraines formation in the Heritage Range, West Antarctica: implications for ice sheet history and climate reconstruction

    Get PDF
    Blue ice is found in areas of Antarctica where katabatic winds, focussed by steep surface slopes or by topography around nunataks, cause enhanced surface ablation. This process draws up deeper, older ice to the ice sheet surface, often bringing with it englacial sediment. Prevailing theories for dynamically stable moraine surfaces in East Antarctica suggest that: (i) it is this material, once concentrated, that forms blue-ice moraines (BIM), (ii) that the moraine formation can be dated using cosmogenic isotope approaches, and that, (iii) since we expect an increase in exposure age moving away from the ice margin towards bedrock, dating across the moraine can be used to constrain ice-sheet history. To test this lateral accretion model for BIM formation we visited Patriot, Marble and Independence Hills in the southern Heritage Range, West Antarctica. Detailed field surveys of surface form, sediment and moraine dynamics were combined with geophysical surveys of the englacial structure of the moraines and cosmogenic nuclide analysis of surface clasts. Results suggest sediment is supplied mainly by basal entrainment, supplemented by debris-covered valley glaciers transferring material onto the ice sheet surface, direct deposition from rock-fall and slope processes from nunataks. We find that once sediment coalesces in BIM, significant reworking occurs through differential ablation, slope and periglacial processes. We bring these processes together in a conceptual model, concluding that many BIM in West Antarctica are dynamic and, whilst they persist through glacial cycles, they do not always neatly record ice sheet retreat patterns since linear distance from the ice margin does not always relate to increased clast exposure age. Understanding the dynamic processes involved in moraine formation is critical to the effective interpretation of the typically large scatter of cosmogenic nuclide exposure ages, opening a deep window into the million-year history of the West Antarctic Ice Sheet

    Cosmogenic Nuclide Systematics and the CRONUScalc Program

    Get PDF
    As cosmogenic nuclide applications continue to expand, the need for a common basis for calculation becomes increasingly important. In order to accurately compare between results from different nuclides, a single method of calculation is necessary. Calculators exist in numerous forms with none matching the needs of the CRONUS-Earth project to provide a simple and consistent method to interpret data from most commonly used cosmogenic nuclides. A new program written for this purpose, CRONUScalc, is presented here. This unified code presents a method applicable to 10Be, 26Al, 36Cl, 3He, and 14C, with 21Ne in testing. The base code predicts the concentration of a sample at a particular depth for a particular time in the past, which can be used for many applications. The multi-purpose code already includes functions for performing production rate calibrations as well as calculating erosion rates and surface exposure ages for single samples and depth profiles. The code is available under the GNU General Public License agreement and can be downloaded and modified to deal with specific atypical scenarios

    Modeling the ecological impact of phosphorus in catchments with multiple environmental stressors

    Get PDF
    The broken phosphorus (P) cycle has led to widespread eutrophication of freshwaters. Despite reductions in anthropogenic nutrient inputs that have led to improvement in the chemical status of running waters, corresponding improvements in their ecological status are often not observed. We tested a novel combination of complementary statistical modeling approaches, including random-effect regression trees and compositional and ordinary linear mixed models, to examine the potential reasons for this disparity, using low-frequency regulatory data available to catchment managers. A benthic Trophic Diatom Index (TDI) was linked to potential stressors, including nutrient concentrations, soluble reactive P (SRP) loads from different sources, land cover, and catchment hydrological characteristics. Modeling suggested that SRP, traditionally considered the bioavailable component, may not be the best indicator of ecological impacts of P, as shown by a stronger and spatially more variable negative relationship between total P (TP) concentrations and TDI. Nitrate-N (p < 0.001) and TP (p = 0.002) also showed negative relationship with TDI in models where land cover was not included. Land cover had the strongest influence on the ecological response. The positive effect of seminatural land cover (p < 0.001) and negative effect of urban land cover (p = 0.030) may be related to differentiated bioavailability of P fractions in catchments with different characteristics (e.g., P loads from point vs. diffuse sources) as well as resilience factors such as hydro-morphology and habitat condition, supporting the need for further research into factors affecting this stressor–response relationship in different catchment types. Advanced statistical modeling indicated that to achieve desired ecological status, future catchment-specific mitigation should target P impacts alongside multiple stressors
    corecore