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Abstract We use high-resolution ground-penetrating radar (GPR) to assess the continuity of the Blue Ice
Area (BIA) horizontal climate record at Patriot Hills, Horseshoe Valley, West Antarctica. The sequence contains
three pronounced changes in deuterium isotopic values at ~18 cal ka, ~12 cal ka, and ~8 cal ka. GPR surveys
along the climate sequence reveal continuous, conformable dipping isochrones, separated by two
unconformities in the isochrone layers, which correlate with the two older deuterium shifts. We interpret
these unconformities as discontinuities in the sequence, rather than direct measures of climate change. Ice
sheet models and Internal Layer Continuity Index plots suggest that the unconformities represent periods of
erosion occurring, as the former ice surface was scoured by katabatic winds in front of mountains at the head
of Horseshoe Valley. This study demonstrates the importance of high-resolution GPR surveys for investigating
both paleoflow dynamics and interpreting BIA climate records.

1. Introduction

With a capacity to resolve internal layering within ice, ground-penetrating radar (GPR) has transformed our ability
to study and interpret historic changes in ice flow [Paren and Robin, 1975; Daniels et al., 1988; Fujita et al., 1999;
Rippin et al., 2003, 2006;Woodward and King, 2009; Sime et al., 2011; Drews et al., 2013]. Despite this, there is lim-
ited analysis of the detailed internal structure of Blue Ice Areas (BIAs), which are estimated to cover 120,000 km2

(~0.8%) of the Antarctic continent [Winther et al., 2001]. This is perhaps a function of the reduced performance of
conventional snowmobile towed GPR surveys in these areas [Spaulding et al., 2013; Turney et al., 2013], where the
speed of travel results in a reduced scan rate relative to the distance traveled, which reduces the ability to image
the detailed internal strata of BIAs. Defined as regions of exposed ice with a relatively low surface albedo
[Bintanja, 1999], BIAs typically form on the leeward foreground of mountain ranges, where upward ice flow
around the mountains and/or into the mountain front compensates for surface ablation (similar to erosion-
induced bedrock uplift in mountains). This allows deeper, older ice to rise toward the surface where it is exposed,
typically as a rippled blue ice surface [Bintanja, 1999; Sinisalo and Moore, 2010; Fogwill et al., 2012; Campbell et al.,
2013]. This phenomenon enables old ice to be exposed, enabling “ice sequence” climate records to be collected
along the BIA surface [Whillans and Cassidy, 1983; Korotkikh et al., 2011; Fogwill et al., 2012; Spaulding et al., 2012;
Spaulding et al., 2013; Turney et al., 2013]. So-called “horizontal coring” offers considerable logistical benefits over
vertical coring, although such climate records require careful interpretation, as the processes that have brought
packages of ice to the surface may impact upon their continuity and therefore their paleo significance.

Here we use commercial GPR in step-and-collect mode to analyze, in detail, the internal structure of Patriot
Hills BIA, in Horseshoe Valley, West Antarctica (80°18′S, 81°21′W; Figure 1). We compare this high-resolution
BIA GPR data set, capable of recording zones of continuous and discontinuous isochrones and their dip
angles, to deuterium-isotope-derived late Pleistocene/early Holocene climate records [Turney et al., 2013]
to aid climate record interpretations. Model simulations and englacial stratigraphy continuity plots from air-
borne radio echo sounding of the Institute andMöller Ice Streams [Bingham et al., 2015;Winter et al., 2015] are
also used to investigate the history and evolution of ice sheet flow in Horseshoe Valley.
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2. Methods
2.1. Ground-Penetrating Radar

A PulseEKKO 1000 GPR system was used to generate a 200MHz GPR profile along a central BIA transect,
extending perpendicular to Patriot Hills for 800m, along the climate record (Transect A, Figure 1). To obtain
a high-resolution GPR profile, we employed continuous step-and-collect mode with a 7000 ns time window
and an in-field stack of 8. The GPR data were collected at 0.1m intervals with copolarized antennae orientated
perpendicular to the survey line, with their broadsides parallel to each other. This time-intensive method is
described in detail by Woodward et al. [2001]. A further nested grid of high-frequency lines (approximately
7 × 9 km with 1 km×1.5 km grid cells) extending from the BIA margin (Figure 1) was also surveyed in 2014
by towing the sledge-mounted PulseEKKO 1000 system by snowmobile at approximately 12 km/h along each
transect line with no in-field stacking. This mode of operation is much faster than step-and-collect mode,
allowing a larger area to be surveyed, albeit at a reduced resolution. Each line was surveyed for topographic
correction using a Trimble differential GPS unit and corrected to decimeter accuracy using a local base
station. GPR data were processed in Reflexw [Sandmeier Scientific Software, 2012], version 6.1.1., using stan-
dard processing steps [Welch and Jacobel, 2005; Woodward and King, 2009; King, 2011]. These steps include
time-zero correction, background removal, high-pass frequency filtering (Dewow), band-pass filtering, and
diffraction-stack migration. An energy-decay gain was also applied. For display purposes depth and topo-
graphic corrections were applied using an ice velocity of 0.168mns�1. Applying this standard velocity under-
estimates the depth of firn layers away from the BIA.

2.2. Ice Sheet Model Simulations

Preexisting ice sheet model perturbation experiments [Golledge et al., 2012; Fogwill et al., 2014] were used to
investigate ice flux and ice flow direction in Horseshoe Valley during the Holocene. The Parallel Ice Sheet
Model (PISM) is a three-dimensional, thermomechanical, continental ice sheet model that combines
shallow-ice and shallow-shelf approximation equations in order to simulate the dynamic behavior of
grounded ice, floating ice, and ice streams. Model runs used proxy-based interpretations of atmospheric
[Petit et al., 1999] and oceanic [Lisiecki and Raymo, 2005; Imbrie and McIntyre, 2006] changes during the last
glacial cycle and employ boundary conditions from modified Bedmap topography [Le Brocq et al., 2010], as
well as a spatially varying geothermal heat flux interpolation [Shapiro and Ritzwoller, 2004]. Our perturbation
experiments were run at a resolution of 5 km, starting from a Last Glacial Maximum (LGM) (occurring some-
time between 29 and 33 ka in West Antarctica) [Clark et al., 2009] configuration [Golledge et al., 2012].
Additional details on the PISM model runs are available in Fogwill et al. [2014].

Figure 1. (a) Moderate Resolution Imaging Spectroradiometer (MODIS) mosaic [Haran et al., 2006] showing the location of Patriot Hills, Horseshoe Valley (marked
with a star on the wider Antarctic setting). Ice flows from the head of the Horseshoe Valley toward Patriot Hills. (b) Zoom in of the nested ground-penetrating
radar grid (X1–X5 and Y1–Y8) and the climate transect (A), where ice flows up toward the Blue Ice Area surface. Red lines show the location and extent of ground-
penetrating radar profiles used in this paper. Arrows show direction of data collection away from the mountains (A and Y1–Y8) and down valley (X1–X5).
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2.3. Internal Layer Continuity Index Plots

An Internal Layering Continuity Index (ILCI), derived from airborne radio echo sounding (RES) of the upper
Institute Ice Stream catchment [Winter et al., 2015], was employed to characterize the internal stratigraphy
of ice within Horseshoe Valley (using 100 trace moving windows), at predefined depth intervals of 0–20%
(uppermost ice column), 40–60%, and 80–100% ice thickness. Developed by Karlsson et al. [2012] and
recently applied to the Institute Ice Stream catchment by Bingham et al. [2015] and Winter et al. [2015], the
ILCI uses relative changes in reflected radar power to assess the continuity of internal layers within the ice;
this can provide insight into ice-flow history [Bingham et al., 2015]. Areas of high-reflected radar power,
bounded by values of lower reflected relative power are recorded in A-scope plots of each RES trace (where
each trace represents a stack of 10 consecutive raw traces to reduce noise) [Karlsson et al., 2012]. This allows
areas of continuous internal layering to return a high ILCI (0.06–0.10), while absent and disrupted layers
return a low ILCI (>0.06). These low to intermediate ILCI values have been interpreted to represent areas that
have previously encountered or are currently experiencing enhanced flow (defined in this region as
>30ma�1 [Winter et al., 2015]). FollowingWinter et al. [2015], we specify the term “enhanced flow” as distinct
from the term “fast flow,” as the latter term is often equated with more extreme ice speeds in ice streams.

3. Results
3.1. Ground-Penetrating Radar

GPR identified the following features in Patriot Hills BIA: blue ice with conformable steeply dipping internal stra-
tigraphy; two pronounced divergent isochrones, associated with truncated layers; and blue ice that lacks strong
internal stratigraphy at the start of transect A and profiles Y1–Y8 (Figures 2 and 3). The radar grid also shows a
variety of features in the firn zone including truncated firn layers, prograding bedding sequences, surface-
conformable stratigraphy, unconformities, firn that exhibits convergence, and surface snow drifts (Figure 3).

GPR Transect A (Figure 2), surveyed in step-and-collect mode, shows continuous, conformable, steeply dip-
ping (inclined by 24°–45° toward Patriot Hills) isochrones from 0m to 246m, 249m to 359m, and 362m to
800m, where the internal reflectors strike from the lower ice column up toward the BIA surface. At 247m
and 360m there are discontinuities in the isochrone layers (labeled D1 and D2, Figure 2b), where divergent
isochrones represent significant changes in isochrone dip angle (Figure 2c). These discontinuities, associated
with the truncation of isochrones, correlate to rapid changes in the trend of the deuterium isotopic record
(δD) at approximately 18 cal ka and 12 cal ka [Turney et al., 2013]. B1 marks the transition from a low average
δD rate to a rising trend in δD concentrations, where δD increases from �380 to �254‰. B2 marks a very
rapid rise in δD concentrations from �300 to �254‰, after which a higher average ratio continues for the
remainder of the profile. It has been suggested by Turney et al. [2013] that these changes, highlighted by
shaded bands B1 and B2 in Figure 2d, could reflect significant changes in temperature and/or precipitation
during both the late Pleistocene and Holocene [Turney et al., 2013]. There is, however, no evidence of diver-
gent or truncated isochrones at any other location along the profile, even at B3 (~8 cal ka), where a depletion
in deuterium isotope content is recorded.

Examples from the snowmobile-towed GPR grid, collected for wider analysis of the BIA and firn, are displayed in
Figure 3 (inline Transects Y5 and Y7). Unlike GPR in step-and collect mode we detect limited internal features
within the BIA using this method. However, numerous internal horizons are identified at the BIA/firn margin
where a net upward ice flow component dominates the radargrams, with compressed isochrones inclined to
a maximum dip angle of 5°. Each inline profile displays sequences of convergent and prograding isochrones
within the firn zone which can be matched laterally between transects. An erosional unconformity is revealed
in profile Y7 (Figure 3) where gently sloping (2° apparent dip toward Patriot Hills) internal horizons are overlain
by younger, near horizontal firn layers between 2690m and 3149m along the transect, which more than double
in thickness with increasing distance from Patriot Hills. A shallow snow drift is also visible in profile Y5 (Figure 3),
near the BIA/firn margin where the 9m thick drift extends 440m along the former, near horizontal firn surface.

3.2. Ice Sheet Model Simulations

Simulated regional ice flux models show the initial response of the LGM ice sheet to ocean and atmospheric for-
cing where high discharge rates are simulated through all the major troughs, although no major ice flux or flow
direction change is modeled in Horseshoe Valley (Figure 4a). With a rapid increase in ice flux in response to ocean
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Figure 2. Ground-penetrating radar Transect A collected along the Blue Ice Area in front of Patriot Hills. (a) Elevation-corrected 200MHz GPR profile recording the
subsurface internal layer structure along a central transect extending from Patriot Hills (arrows indicate vertical noise from boreholes). (b) Picked, prominent internal
GPR reflectors showing two locations where the internal reflectors are disturbed, i.e., showing changes in dip and discontinuity. D1 is at 247m and D2 at 360m along
the transect. (c) Spatial variability of internal reflector dip angles in the along-line direction (averaged over 20m intervals), and (d) Patriot Hills deuterium isotope
record (δD) collected by Turney et al. [2013] in 2012. Shaded bands B1, B2, and B3 are inferred points of correlation with (e) the EPICA EDML δ18O record [EPICA
Community Members et al., 2006] (on the Greenland Ice Core Chronology 2005 time scale) and (f) the North Greenland ice core δ18O [Rasmussen et al., 2006] as shown
in Figure 4 of Turney et al. [2013].

Geophysical Research Letters 10.1002/2015GL066476

WINTER ET AL. GPR ASSESSMENT OF PATRIOT HILLS BIA 4



forcing, modeled ice flowing into Institute Ice Stream continues to discharge through Rutford Trough (Figure 4b),
even when flow accelerates at the ice margins. Continued oceanic forcing and grounding line retreat have no
direct impact on the flow of ice around Patriot Hills, even when ice discharging into Institute Ice Stream is
diverted in a more east-south-easterly direction toward the Thiel Trough (Figure 4c, bottom panel).

Figure 3. Snowmobile-towed 200MHz ground-penetrating radar cross lines. (a) Elevation-corrected profile Y5. (b) Elevation-corrected profile Y7. (c) Picked, promi-
nent internal GPR reflectors along Y5 show prograding (P) and convergent (C) isochrone sequences on approach to Patriot Hills Blue Ice Area (BIA), as well as a snow
drift (SD). (d) Picked, prominent internal GPR reflectors along Y7 show prograding (P) and convergent (C) isochrone sequences as well as a stratigraphic unconformity
(UC), where shallow dipping (2° apparent dip toward Patriot Hills) internal reflectors are overlain by younger near-horizontal firn layers.

Figure 4. Simulated regional ice flux, generated from Parallel Ice Sheet Model simulations, capturing configurations representative of (a) post-LGM, (b) 15,000 model
years, and (c) the Middle- to Late-Holocene response of the ice sheet to ocean and atmospheric forcing. Model results show that continued forcings do not impact
the flow direction of ice around Patriot andMarble Hills, even when ice discharging into Institute Ice Stream is diverted in amore east-south-easterly direction toward
Thiel Trough during the Middle to Late-Holocene (bottom panel of Figure 4c).

Geophysical Research Letters 10.1002/2015GL066476

WINTER ET AL. GPR ASSESSMENT OF PATRIOT HILLS BIA 5



3.3. Internal Layer Continuity Index Plots

ILCI plots demonstrate that the uppermost ice in Horseshoe Valley (0–20% of the ice column) is dominated by
continuous internal layering, indicative of slow flow, while older ice at 40–60% ice thickness and then 80–
100% of the ice column return progressively higher ILCI values. Following Winter et al. [2015], these high
ILCI values provide evidence for previously enhanced ice flow in Horseshoe Valley.

4. Discussion

Our GPR transects, ice sheet model simulations, and ILCI analyses each contribute to our understanding of ice
sheet flow history in Horseshoe Valley and help to constrain the evolution of Patriot Hills BIA. Analysis of high-
resolution GPR-detected internal stratigraphy reveals largely conformable isochrones which are inclined
toward Patriot Hills BIA surface. Minor changes in the dip angle of the predominantly parallel internal hori-
zons within the BIA do occur and are expected as a result of differential snow deposition, burial, and subse-
quent ice flow over time, but the pronounced changes in dip angles at D1 and D2 (Figure 2) represent larger
scale change. These discontinuities correspond to abrupt shifts in the local climate record between ~18 cal ka
(B1) and ~12 cal ka (B2) (Figure 2) and therefore represent breaks in an otherwise largely unbroken
30,000 year climate record. These breaks, given new context by the unconformities in GPR Transect A could
have formed by one of two mechanisms: (1) changes in ice flowline trajectory or (2) local interaction of topo-
graphy, snow accumulation, and wind.

Ice sheet model simulations and ILCI analysis suggest that ice in Horseshoe Valley has not experienced direc-
tional change (Figure 4) and has remained slow flowing (Figure 5) since the mid-Holocene. These findings
eliminate the possibility that discontinuities D1 and D2 were formed by changes in ice flow-line trajectory
but do not rule out significant periods of erosion. Periods of erosion could have resulted from the interaction
of topography, snow accumulation, and wind as the ice flowed from the head of Horseshoe Valley toward
Patriot Hills (Figure 6). We therefore expect that discontinuities D1 and D2, corresponding to changes in deu-
terium isotope concentrations at B1 and B2, were created by localized katabatic wind scour of the former
snow and ice surface, as ice flowed through BIAs in front of Liberty and Marble Hills (Figure 6).
Consequently, it seems probable that B1 and B2 do not directly represent abrupt climatic changes. As no
other erosional events are found in the GPR record, it is assumed that other inferred depletions in the deu-
terium isotopes, such as that at B3, could reflect direct climatic changes during the early Holocene and
indeed may correlate with changes in other ice cores [Turney et al., 2013].

Our findings from the extended radar grid are in close agreement with the high-resolution BIA transect. Here the
inline profiles show more recent periods of BIA stability and instability, reflected by convergent and prograding
isochrones in the firn zone. Prograding isochrones in the GPR record (Figure 3) can be attributed to increased
katabatic wind scour, and subsequent BIA expansion since the LGM. This is likely the result of surface lowering
in Horseshoe Valley of up to ~480m since the LGM [Bentley et al., 2010], which would have revealed more of

Figure 5. ILCI results from airborne RES flight lines across Horseshoe Valley (using 100 trace moving windows) at various depth intervals (a) % layer 0–20 reveals high
ILCI values indicative of continuous layering in the uppermost ice column, (b) % layer 40–60 in the central ice column shows both continuous and disrupted internal
layering, while (c) % layer 80–100 shows the most disrupted and discontinuous layering at depth. These plots, superimposed onto RADARSAT mosaic [Haran et al.,
2006], reveal that ice flow in Horseshoe Valley has been stable and slow flowing in recent years.

Geophysical Research Letters 10.1002/2015GL066476

WINTER ET AL. GPR ASSESSMENT OF PATRIOT HILLS BIA 6



the nunataks in the Southern Heritage Range, capable of promoting stronger katabatic wind scour. In contrast,
younger convergent isochrones in the GPR record (Figure 3) represent more stable meteorological conditions,
where katabatic winds of consistent velocity and direction have produced a transition zone between all annual
snowfalls to no snowfall scoured. If these transition zones are in the same location annually, convergent layering
will result. This also requires slow and stable ice sheet flow. These sequences of BIA growth and stabilization com-
bine to identify an evolving BIA over the past ~1000years, which is consistent with the previously analyzed
30,000 year ice flow records. The unconformable surface firn in profile Y7 and the snow drift in profile Y5
(Figure 3) have anthropogenic origins which are attributed to the recent movement of snow to create Patriot
Hills Antarctic Logistics and Expeditions Base Camp (seasonally occupied between 1987 and 2010).

5. Conclusions

Radar-detected stratigraphic relationships analyzed in conjunction with deuterium isotope records, ice sheet
model simulations, and internal layer continuity analysis at the Patriot Hills Blue Ice Area (BIA), West
Antarctica, indicate the following: (1) stable periods of snow accumulation and ice flow have been inter-
rupted by episodes of significant erosion, which have resulted in unconformities within the otherwise con-
formable stratigraphic record and (2) the current trajectory of ice flowing toward Patriot Hills BIA is, in
essence, unchanged over the historical record. We conclude that deuterium isotope records from Patriot
Hills BIA reflect conditions in Horseshoe Valley (and the West Antarctic Ice Sheet) over at least the last
30,000 years, though due consideration must be taken around the two periods of differential wind scour.

Importantly, this study also demonstrates the considerable value of using GPR in step-and-collect-mode to
interpret ice sheet history from BIAs, as conventional snowmobile towed GPR cannot resolve the detailed
internal structure of these ice features. This finding is particularly relevant to the climate community, as
low-cost and portable GPR surveys in step-and-collect mode can greatly improve the reliability of relatively
easily accessible horizontal climate records.
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