8,229 research outputs found

    Ab-initio angle and energy resolved photoelectron spectroscopy with time-dependent density-functional theory

    Full text link
    We present a time-dependent density-functional method able to describe the photoelectron spectrum of atoms and molecules when excited by laser pulses. This computationally feasible scheme is based on a geometrical partitioning that efficiently gives access to photoelectron spectroscopy in time-dependent density-functional calculations. By using a geometrical approach, we provide a simple description of momentum-resolved photoe- mission including multi-photon effects. The approach is validated by comparison with results in the literature and exact calculations. Furthermore, we present numerical photoelectron angular distributions for randomly oriented nitrogen molecules in a short near infrared intense laser pulse and helium-(I) angular spectra for aligned carbon monoxide and benzene.Comment: Accepted for publication on Phys. Rev.

    Bone growth as the main determinant of mouse digit tip regeneration after amputation

    Get PDF
    Regeneration is classically demonstrated in mammals using mice digit tip. In this study, we compared different amputation plans and show that distally amputated digits regrow with morphology close to normal but fail to regrow the fat pad. Proximally amputated digits do not regrow the phalangeal bone, but the remaining structures (nail, skin and connective tissue), all with intrinsic regenerative capacity, re-establishing integrity indistinguishably in distally and proximally amputated digits. Thus, we suggest that the bone growth promoted by signals and progenitor cells not removed by distal amputations is responsible for the re-establishment of a drastically different final morphology after distal or proximal digit tip amputations. Despite challenging the use of mouse digit tip as a model system for limb regeneration in mammals, these findings evidence a main role of bone growth in digit tip regeneration and suggest that mechanisms that promote joint structures formation should be the main goal of regenerative medicine for limb and digit regrowth9CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP460664/2014-02012/09602-0; 2019/09870-

    Global fixed point proof of time-dependent density-functional theory

    Full text link
    We reformulate and generalize the uniqueness and existence proofs of time-dependent density-functional theory. The central idea is to restate the fundamental one-to-one correspondence between densities and potentials as a global fixed point question for potentials on a given time-interval. We show that the unique fixed point, i.e. the unique potential generating a given density, is reached as the limiting point of an iterative procedure. The one-to-one correspondence between densities and potentials is a straightforward result provided that the response function of the divergence of the internal forces is bounded. The existence, i.e. the v-representability of a density, can be proven as well provided that the operator norms of the response functions of the members of the iterative sequence of potentials have an upper bound. The densities under consideration have second time-derivatives that are required to satisfy a condition slightly weaker than being square-integrable. This approach avoids the usual restrictions of Taylor-expandability in time of the uniqueness theorem by Runge and Gross [Phys.Rev.Lett.52, 997 (1984)] and of the existence theorem by van Leeuwen [Phys.Rev.Lett. 82, 3863 (1999)]. Owing to its generality, the proof not only answers basic questions in density-functional theory but also has potential implications in other fields of physics.Comment: 4 pages, 1 figur

    On the violation of a local form of the Lieb-Oxford bound

    Full text link
    In the framework of density-functional theory, several popular density functionals for exchange and correlation have been constructed to satisfy a local form of the Lieb-Oxford bound. In its original global expression, the bound represents a rigorous lower limit for the indirect Coulomb interaction energy. Here we employ exact-exchange calculations for the G2 test set to show that the local form of the bound is violated in an extensive range of both the dimensionless gradient and the average electron density. Hence, the results demonstrate the severity in the usage of the local form of the bound in functional development. On the other hand, our results suggest alternative ways to construct accurate density functionals for the exchange energy.Comment: (Submitted on 27 April 2012

    Catching the Bound States in the Continuum of a Phantom Atom in Graphene

    Full text link
    We explore theoretically the formation of bound states in the continuum (BICs) in graphene hosting two collinear adatoms situated at different sides of the sheet and at the center of the hexagonal cell, where a phantom atom of a fictitious lattice emulates the six carbons of the cell. We verify that in this configuration the local density of states (LDOS) near the Dirac points exhibits two characteristic features: i) the cubic dependence on energy instead of the linear one for graphene as found in New J. Phys. 16, 013045 (2014) and ii) formation of BICs as aftermath of a Fano destructive interference assisted by the Coulomb correlations in the adatoms. For the geometry where adatoms are collinear to carbon atoms, we report absence of BICs

    Quantum phase transition triggering magnetic BICs in graphene

    Full text link
    Graphene hosting a pair of collinear adatoms in the phantom atom configuration has pseudogap with cubic scaling on energy, Δε3\Delta\propto|\varepsilon|^{3} which leads to the appearance of spin-degenerate bound states in the continuum (BICs) [Phys. Rev. B 92, 045409 (2015)]. In the case when adatoms are locally coupled to a single carbon atom the pseudogap scales linearly with energy, which prevents the formation of BICs. In this Letter, we explore the effects of non-local coupling characterized by the Fano factor of interference q0,q_{0}, tunable by changing the slope of the Dirac cones in the graphene band-structure. We demonstrate that three distinct regimes can be identified: i) for q0<qc1q_{0}<q_{c1} (critical point) a mixed pseudogap Δε,ε2\Delta\propto|\varepsilon|,|\varepsilon|^{2} appears yielding a phase with spin-degenerate BICs; ii) near q0=qc1q_{0}=q_{c1} when Δε2\Delta\propto|\varepsilon|^{2} the system undergoes a quantum phase transition in which the new phase is characterized by magnetic BICs and iii) at a second critical value q0>qc2q_{0}>q_{c2} the cubic scaling of the pseudogap with energy Δε3\Delta\propto|\varepsilon|^{3} characteristic to the phantom atom configuration is restored and the phase with non-magnetic BICs is recovered. The phase with magnetic BICs can be described in terms of an effective intrinsic exchange field of ferromagnetic nature between the adatoms mediated by graphene monolayer. We thus propose a new type of quantum phase transition resulting from the competition between the states characterized by spin-degenerate and magnetic BICs

    PHENOMENOLOGICAL ANALYSIS OF A CONCEPTUAL WATERJET PROPULSOR BASED ON THE COANDA EFFECT

    Get PDF
    This work is part of a research project conceived at the Federal University of Rio Grande. The project aims to create and develop mechanical devices that use the Coanda effect to enhance their overall efficiency. The focus herein is analyzing the physical phenomenon occurring in a conceptual water-jet propulsor. In the proposed concept, a water-jet propulsor has its impeller replaced by injectors that produce the so-called Coanda effect, increasing thereby the mass flow rate. In order to simulate the flow through the propulsor, a numerical model was developed. In this model the time-averaged conservation equations of mass and momentum were solved numerically by the finite volume method, more precisely with the commercial package ANSYS FLUENT (version 14.0). For the closure of the constitutive equations, the k-ω URANS turbulence model was employed. The simulation was performed for a transient state with a timestep of ∆t = 1×10-3 s and a total physical time of t = 6.0 s. Static pressure fields, streamlines and speed profiles are used to analyze the equipment performance and the phenomenon occurrence. The results show that the Coanda Effect is able to generate thrust in a waterjet propulsion device without impeller. The study suggests that the employment of this principle has promising applicability in marine propulsion and deserves attention on future works
    corecore