419 research outputs found

    Effect of frequency of static stretching on flexibility, hamstring tightness and electromyographic activity

    Get PDF
    We compared the effect of the number of weekly repetitions of a static stretching program on the flexibility, hamstring tightness and electromyographic activity of the hamstring and of the triceps surae muscles. Thirty-one healthy subjects with hamstring tightness, defined as the inability to perform total knee extension, and shortened triceps surae, defined by a tibiotarsal angle wider than 90° during trunk flexion, were divided into three groups: G1 performed the stretching exercises once a week; G2, three times a week, and G3, five times a week. The parameters were determined before and after the stretching program. Flexibility improved in all groups after intervention, from 7.65 ± 10.38 to 3.67 ± 12.08 in G1, from 10.73 ± 12.07 to 0.77 ± 10.45 in G2, and from 14.20 ± 10.75 to 6.85 ± 12.19 cm in G3 (P < 0.05 for all comparisons). The increase in flexibility was higher in G2 than in G1 (P = 0.018), while G2 and G3 showed no significant difference (G1: 4 ± 2.17, G2: 10 ± 5.27; G3: 7.5 ± 4.77 cm). Hamstring tightness improved in all groups, from 37.90 ± 6.44 to 29 ± 11.65 in G1, from 39.82 ± 9.63 to 21.91 ± 8.40 in G2, and from 37.20 ± 6.63 to 26.10 ± 5.72° in G3 (P < 0.05 for all comparisons). During stretching, a statistically significant difference was observed in electromyographic activity of biceps femoris muscle between G1 and G3 (P = 0.048) and G2 and G3 (P = 0.0009). No significant differences were found in electromyographic activity during maximal isometric contraction. Stretching exercises performed three times a week were sufficient to improve flexibility and range of motion compared to subjects exercising once a week, with results similar to those of subjects who exercised five times a week.FAPES

    Bronchiectasis: A retrospective study of clinical and aetiological investigation in a general respiratory department

    Get PDF
    AbstractBackgroundBronchiectasis can result from many diseases, which makes the aetiological investigation a complex process demanding special resources and experience. The aetiological diagnosis has been proven to be useful for the therapeutic approach.ObjectiveEvaluate how accurately and extensive the clinical and aetiological research was for adult bronchiectasis patients in pulmonology outpatient service which were not following a pre-existing protocol.MethodsWe retrospectively reviewed the records of 202 adult patients with bronchiectasis, including the examinations performed to explain the aetiology.ResultsThe mean age of the patients was 54±15 years, there was a predominance of female (63.9%) and non-smoker (70%) patients. Functional evaluation showed a mild airway obstruction.The sputum microbiological examination was available for 168 patients (43.1% had 3 or more sputum examinations during one year). Immunoglobulins and α1-antitrypsin were measured in around 50% of the patients. The sweat test and the CF genotyping test were performed in 18% and 17% of the patients, respectively.The most commonly identified cause was post-infectious (30.3%), mostly tuberculosis (27.2%). No definitive aetiological diagnosis was established in 57.4% of the patients. We achieved a lower aetiological diagnosis if we compare our series with studies in which a diagnostic algorithm was applied prospectively.ConclusionsThe general characteristics of our patients were similar with other series. Detailed investigation of bronchiectasis is not a standard practice in our outpatient service. These results suggest that the use of a predefined protocol, based on current guidelines, could improve the assessment of these patients and facilitate the achievement of a definitive aetiology

    Plasmodium species mixed infections in two areas of Manhiça District, Mozambique

    Get PDF
    We compared the distribution patterns of individual Plasmodium species and mixed-species infections in two geographically close endemic areas, but showing environmental differences. Comparisons concerned circulating Plasmodium infections in both human and mosquito vector populations in the dry and wet seasons, at a micro-epidemiological level (households). Both areas revealed a very high overall prevalence of infection, all year-round and in all age groups. Plasmodium falciparum was the predominant species, being found in the vast majority of infected individuals regardless of the presence of other species. Plasmodium malariae and Plasmodium ovale occurred almost exclusively in mixed infections. Seasonal variation in P. malariae prevalence was observed in one area but not in the other. A decrease in P. malariae prevalence concurred with a marked increase of P. falciparum prevalence. However this was strongly dependent on age and when analysing infections at the individual level, a different pattern between co-infecting species was unveiled. Regarding transmission patterns, in both areas, P. falciparum gametocytes predominated in single infections regardless of age and P. malariae gametocyte carriage increased when its overall prevalence decreased

    Evaluation of Proanthocyanidin-based dentifrices on dentin-wear after erosion and dental abrasion - In situ study

    Get PDF
    Proanthocyanidin has been considered as a preventive agent against erosion because of its properties, which involves remineralization, reduction of demineralization and matrix metalloproteinases (MMPs) inhibition. Thus, the aim of this in situ study was

    Oxygen transport in Ce0.8Gd0.2O2 - δ-based composite membranes

    Get PDF
    Gadolinia-doped ceria electrolyte Ce0.8Gd0.2O2 - δ (CGO) and perovskite-type mixed conductor La0.8Sr0.2Fe0.8Co0.2O3 - δ (LSFC), having compatible thermal expansion coefficients (TECs), were combined in dual-phase ceramic membranes for oxygen separation. Oxygen permeability of both LSFC and composite LSFC/CGO membranes at 970-1220 K was found to be limited by the bulk ambipolar conductivity. LSFC exhibits a relatively low ionic conductivity and high activation energy for ionic transport (∼ 200 kJ/mol) in comparison with doped ceria. As a result, oxygen permeation through LSFC/CGO composite membranes, containing similar volume fractions of the phases, is determined by the ionic transport in CGO. The permeation fluxes through LSFC/CGO and La0.7Sr0.3MnO3 - δ/Ce0.8Gd0.2O2 - δ (LSM/CGO) composites have comparable values. An increase in the p-type electronic conductivity of ceria in oxidizing conditions, which can be achieved by co-doping with variable-valence metal cations, such as Pr, leads to a greater permeability. The oxygen ionic conductivity of the composites consisting of CGO and perovskite oxides depends strongly of processing conditions, decreasing with interdiffusion of the phase components, particularly lanthanum and strontium cations from the perovskite into the CGO phase

    Epidermis recreation in spongy-like hydrogels: New opportunities to explore epidermis-like analogues

    Get PDF
    [Excerpt] On the road to successfully achieving skin regeneration, 3D matrices/scaffolds that provide the adequate physico-chemical and biological cues to recreate the ideal healing environment are believed to be a key element [1], [2] and [3]. Numerous polymeric matrices derived from both natural [4] and [5] and synthetic [6], [7] and [8] sources have been used as cellular supports; nowadays, fewer matrices are simple carriers, and more and more are ECM analogues that can actively participate in the healing process. Therefore, the attractive characteristics of hydrogels, such as high water content, tunable elasticity and facilitated mass transportation, have made them excellent materials to mimic cells’ native environment [9]. Moreover, their hygroscopic nature [10] and possibility of attaining soft tissues-like mechanical properties mean they have potential for exploitation as wound healing promoters [11], [12], [13] and [14]. Nonetheless, hydrogels lack natural cell adhesion sites [15], which limits the maximization of their potential in the recreation of the cell niche. This issue has been tackled through the use of a range of sophisticated approaches to decorate the hydrogels with adhesion sequences such as arginine-glycine-aspartic acid (RGD) derived from fibronectin [16], [17] and [18], and tyrosine-isoleucine-glycine-serine-arginine (YIGSR) derived from laminin [18] and [19], which not only aim to modulate cell adhesion, but also influencing cell fate and survival [18]. Nonetheless, its widespread use is still limited by significant costs associated with the use of recombinant bioactive molecules

    A novel enzymatically-mediated drug delivery carrier for bone tissue engineering applications: combining biodegradable starch-based microparticles and differentiation agents

    Get PDF
    In many biomedical applications, the performance of biomaterials depends largely on their degradation behavior. For instance, in drug delivery applications, the polymeric carrier should degrade under physiological conditions slowly releasing the encapsulated drug. The aim of this work was, therefore, to develop an enzymaticmediated degradation carrier system for the delivery of differentiation agents to be used in bone tissue engineering applications. For that, a polymeric blend of starch with polycaprolactone (SPCL) was used to produce a microparticle carrier for the controlled release of dexamethasone (DEX). In order to investigate the effect of enzymes on the degradation behavior of the developed system and release profile of the encapsulated osteogenic agent (DEX), the microparticles were incubated in phosphate buffer solution in the presence of a-amylase and/or lipase enzymes (at physiological concentrations), at 37 C for different periods of time. The degradation was followed by gravimetric measurements, scanning electron microscopy (SEM) and Fourier transformed infrared (FTIR) spectroscopy and the release of DEX was monitored by high performance liquid chromatography (HPLC). The developed microparticles were shown to be susceptible to enzymatic degradation, as observed by an increase in weight loss and porosity with degradation time when compared with control samples (incubation in buffer only). For longer degradation times, the diameter of the microparticles decreased significantly and a highly porous matrix was obtained. The in vitro release studies showed a sustained release pattern with 48% of the encapsulated drug being released for a period of 30 days. As the degradation proceeds, it is expected that the remaining encapsulated drug will be completely released as a consequence of an increasingly permeable matrix and faster diffusion of the drug. Cytocompatibility results indicated the possibility of the developed microparticles to be used as biomaterial due to their reduced cytotoxic effects

    Slow freezing versus vitrification for the cryopreservation of zebrafish (Danio rerio) ovarian tissue.

    Get PDF
    The aim of the present study was to compare the efficiency of vitrification and slow freezing techniques for the cryopreservation of zebrafish ovarian tissue containing immature follicles. In Experiment 1, assessment of cell membrane integrity by trypan blue exclusion staining was used to select the best cryoprotectant solution for each cryopreservation method. Primary growth (PG) oocytes showed the best percentage of membrane integrity (63.5 ± 2.99%) when SF4 solution (2 M methanol + 0.1 M trehalose + 10% egg yolk solution) was employed. The vitrification solution, which presented the highest membrane integrity (V2; 1.5 M methanol + 5.5 M Me2SO + 0.5 M sucrose + 10% egg yolk solution) was selected for Experiment 2. Experiment 2 aimed to compare the vitrification and slow freezing techniques in the following parameters: morphology, oxidative stress, mitochondrial activity, and DNA damage. Frozen ovarian tissue showed higher ROS levels and lower mitochondrial activity than vitrified ovarian tissue. Ultrastructural observations of frozen PG oocytes showed rupture of the plasma membrane, loss of intracellular contents and a large number of damaged mitochondria, while vitrified PG oocytes had intact mitochondria and cell plasma membranes. We conclude that vitrification may be more effective than slow freezing for the cryopreservation of zebrafish ovarian tissue
    • …
    corecore