16,563 research outputs found

    Alignment of velocity fields for video surveillance

    Get PDF
    Velocity fields play an important role in surveillance since they describe typical motion behaviors of video objects (e.g., pedestrians) in the scene. This paper presents an algorithm for the alignment of velocity fields acquired by different cameras, at different time intervals, from different viewpoints. Velocity fields are aligned using a warping function which maps corresponding points and vectors in both fields. The warping parameters are estimated by minimizing a non-linear least squares energy. Experimental tests show that the proposed model is able to compensate significant misalignments, including translation, rotation and scaling

    Excitonic effects in the optical properties of CdSe nanowires

    Full text link
    Using a first-principle approach beyond density functional theory we calculate the electronic and optical properties of small diameter CdSe nanowires.Our results demonstrate how some approximations commonly used in bulk systems fail at this nano-scale level and how indispensable it is to include crystal local fields and excitonic effects to predict the unique optical properties of nanowires. From our results, we then construct a simple model that describes the optical gap as a function of the diameter of the wire, that turns out to be in excellent agreement with experiments for intermediate and large diameters.Comment: submitte

    Renormalization of Optical Excitations in Molecules near a Metal Surface

    Full text link
    The lowest electronic excitations of benzene and a set of donor-acceptor molecular complexes are calculated for the gas phase and on the Al(111) surface using the many-body Bethe-Salpeter equation (BSE). The energy of the charge-transfer excitations obtained for the gas phase complexes are found to be around 10% lower than the experimental values. When the molecules are placed outside the surface, the enhanced screening from the metal reduces the exciton binding energies by several eVs and the transition energies by up to 1 eV depending on the size of the transition-generated dipole. As a striking consequence we find that close to the metal surface the optical gap of benzene can exceed its quasiparticle gap. A classical image charge model for the screened Coulomb interaction can account for all these effects which, on the other hand, are completely missed by standard time-dependent density functional theory.Comment: 4 pages, 3 figures; revised versio

    Construction of the B88 exchange-energy functional in two dimensions

    Get PDF
    We construct a generalized-gradient approximation for the exchange-energy density of finite two-dimensional systems. Guided by non-empirical principles, we include the proper small-gradient limit and the proper tail for the exchange-hole potential. The observed performance is superior to that of the two-dimensional local-density approximation, which underlines the usefulness of the approach in practical applications

    Local correlation functional for electrons in two dimensions

    Full text link
    We derive a local approximation for the correlation energy in two-dimensional electronic systems. In the derivation we follow the scheme originally developed by Colle and Salvetti for three dimensions, and consider a Gaussian approximation for the pair density. Then, we introduce an ad-hoc modification which better accounts for both the long-range correlation, and the kinetic-energy contribution to the correlation energy. The resulting functional is local, and depends parametrically on the number of electrons in the system. We apply this functional to the homogeneous electron gas and to a set of two-dimensional quantum dots covering a wide range of electron densities and thus various amounts of correlation. In all test cases we find an excellent agreement between our results and the exact correlation energies. Our correlation functional has a form that is simple and straightforward to implement, but broadly outperforms the commonly used local-density approximation

    The influence of olfactory marketing on clients` loyalty

    Get PDF
    This study refers to marketing and consumer behaviour trying to analyse the relationship between the Olfactory Marketing and consumer loyalty. The research is based on a sample of 390 people, data collected through an online questionnaire. Respondents are customers of chain store Zara Home where Olfactory Marketing is used. The questionnaire was made available on the website of Zara Home Facebook. To answer the questionnaire a prior requirement was considered – the respondent should have made a purchase in this group of stores and had to have visited the store recently. A convenience sample was then collected. The authors conducted an exploratory data analysis and concluded that Olfactory Marketing induces changes in the emotional state of consumers, captures their attention and is a topic of conversation. In conjunction with other factors it can induce more shopping, have a positive impact on satisfaction and loyalty.info:eu-repo/semantics/submittedVersio
    • …
    corecore