32 research outputs found

    Healthcare-associated outbreak of meticillin-resistant Staphylococcus aureus bacteraemia: role of a cryptic variant of an epidemic clone

    Get PDF
    BACKGROUND New strains of meticillin-resistant Staphylococcus aureus (MRSA) may be associated with changes in rates of disease or clinical presentation. Conventional typing techniques may not detect new clonal variants that underlie changes in epidemiology or clinical phenotype. AIM To investigate the role of clonal variants of MRSA in an outbreak of MRSA bacteraemia at a hospital in England. METHODS Bacteraemia isolates of the major UK lineages (EMRSA-15 and -16) from before and after the outbreak were analysed by whole-genome sequencing in the context of epidemiological and clinical data. For comparison, EMRSA-15 and -16 isolates from another hospital in England were sequenced. A clonal variant of EMRSA-16 was identified at the outbreak hospital and a molecular signature test designed to distinguish variant isolates among further EMRSA-16 strains. FINDINGS By whole-genome sequencing, EMRSA-16 isolates during the outbreak showed strikingly low genetic diversity (P < 1 × 10(-6), Monte Carlo test), compared with EMRSA-15 and EMRSA-16 isolates from before the outbreak or the comparator hospital, demonstrating the emergence of a clonal variant. The variant was indistinguishable from the ancestral strain by conventional typing. This clonal variant accounted for 64/72 (89%) of EMRSA-16 bacteraemia isolates at the outbreak hospital from 2006. CONCLUSIONS Evolutionary changes in epidemic MRSA strains not detected by conventional typing may be associated with changes in disease epidemiology. Rapid and affordable technologies for whole-genome sequencing are becoming available with the potential to identify and track the emergence of variants of highly clonal organisms

    A radiation-controlled molecular switch for use in gene therapy of cancer

    No full text
    Ionising radiation induces the expression of a number of radiation-responsive genes and there is current interest in exploiting this to regulate the expression of exogenous therapeutic genes in gene therapy strategies for cancer. However, the radiation-responsive promoters used in these approaches are often associated with low and transient levels of therapeutic gene expression. We describe here a novel radiation-triggered molecular switching device based on promoter elements from the radiation-responsive Egr-1 gene and the cre-LoxP site-specific recombination system of the P1 bacteriophage. Using this system, a single, minimally toxic dose of radiation induced cre-mediated excision of a lox-P flanked stop cassette in a silenced expression vector and this resulted in amplified levels of CMV-promoter-driven expression of the exogenous tumour-sensitising gene, HSV-tk. This strategy could be used in combination with targeted delivery and tumour-specific promoters to elicit the tumour-targeted and prolonged expression of a variety of tumour-sensitising genes and provide an unprecedented level of control and tumour selectivity
    corecore