156 research outputs found

    Photoprotection in intact cells of photosynthetic bacteria: quenching of bacteriochlorophyll fluorescence by carotenoid triplets.

    Get PDF
    Upon high light excitation in photosynthetic bacteria, various triplet states of pigments can accumulate leading to harmful effects. Here, the generation and lifetime of flash-induced carotenoid triplets (3Car) have been studied by observation of the quenching of bacteriochlorophyll (BChl) fluorescence in different strains of photosynthetic bacteria including Rvx. gelatinosus (anaerobic and semianaerobic), Rsp. rubrum, Thio. roseopersicina, Rba. sphaeroides 2.4.1 and carotenoid- and cytochrome-deficient mutants Rba. sphaeroides Ga, R-26, and cycA, respectively. The following results were obtained: (1) 3Car quenching is observed during and not exclusively after the photochemical rise of the fluorescence yield of BChl indicating that the charge separation in the reaction center (RC) and the carotenoid triplet formation are not consecutive but parallel processes. (2) The photoprotective function of 3Car is not limited to the RC only and can be described by a model in which the carotenoids are distributed in the lake of the BChl pigments. (3) The observed lifetime of 3Car in intact cells is the weighted average of the lifetimes of the carotenoids with various numbers of conjugated double bonds in the bacterial strain. (4) The lifetime of 3Car measured in the light is significantly shorter (1-2 mus) than that measured in the dark (2-10 mus). The difference reveals the importance of the dynamics of 3Car before relaxation. The results will be discussed not only in terms of energy levels of the 3Car but also in terms of the kinetics of transitions among different sublevels in the excited triplet state of the carotenoid

    Analysis and testing of two-dimensional vented Coanda ejectors with asymmetric variable area mixing sections

    Get PDF
    The analysis of asymmetric, curved (Coanda) ejector flow has been completed using a finite difference technique and a quasi-orthogonal streamline coordinate system. The boundary layer type jet mixing analysis accounts for the effect of streamline curvature in pressure gradients normal to the streamlines and on eddy viscosities. The analysis assured perfect gases, free of pressure discontinuities and flow separation and treated three compound flows of supersonic and subsonic streams. Flow parameters and ejector performance were measured in a vented Coanda flow geometry for the verification of the computer analysis. A primary converging nozzle with a discharge geometry of 0.003175 m x 0.2032 m was supplied with 0.283 cu m/sec of air at about 241.3 KPa absolute stagnation pressure and 82 C stagnation temperature. One mixing section geometry was used with a 0.127 m constant radius Coanda surface. Eight tests were run at spacing between the Coanda surface and primary nozzle 0.01915 m and 0.318 m and at three angles of Coanda turning: 22.5 deg, 45.0 deg, and 75.0 deg. The wall static pressures, the loci of maximum stagnation pressures, and the stagnation pressure profiles agree well between analytical and experimental results

    Characterization of mercury(II)-induced inhibition of photochemistry in the reaction center of photosynthetic bacteria

    Get PDF
    Mercuric contamination of aqueous cultures results in impairment of viability of photosynthetic bacteria primarily by inhibition of the photochemistry of the reaction center (RC) protein. Isolated reaction centers (RCs) from Rhodobacter sphaeroides were exposed to Hg(2+) ions up to saturation concentration (~ 10(3) [Hg(2+)]/[RC]) and the gradual time- and concentration-dependent loss of the photochemical activity was monitored. The vast majority of Hg(2+) ions (about 500 [Hg(2+)]/[RC]) had low affinity for the RC [binding constant Kb ~ 5 mM(-1)] and only a few (~ 1 [Hg(2+)]/[RC]) exhibited strong binding (Kb ~ 50 muM(-1)). Neither type of binding site had specific and harmful effects on the photochemistry of the RC. The primary charge separation was preserved even at saturation mercury(II) concentration, but essential further steps of stabilization and utilization were blocked already in the 5 < [Hg(2+)]/[RC] < 50 range whose locations were revealed. (1) The proton gate at the cytoplasmic site had the highest affinity for Hg(2+) binding (Kb ~ 0.2 muM(-1)) and blocked the proton uptake. (2) Reduced affinity (Kb ~ 0.05 muM(-1)) was measured for the mercury(II)-binding site close to the secondary quinone that resulted in inhibition of the interquinone electron transfer. (3) A similar affinity was observed close to the bacteriochlorophyll dimer causing slight energetic changes as evidenced by a ~ 30 nm blue shift of the red absorption band, a 47 meV increase in the redox midpoint potential, and a ~ 20 meV drop in free energy gap of the primary charge pair. The primary quinone was not perturbed upon mercury(II) treatment. Although the Hg(2+) ions attack the RC in large number, the exertion of the harmful effect on photochemistry is not through mass action but rather a couple of well-defined targets. Bound to these sites, the Hg(2+) ions can destroy H-bond structures, inhibit protein dynamics, block conformational gating mechanisms, and modify electrostatic profiles essential for electron and proton transfer

    Posteromedial fragment fixation through Lobenhoffer approach in tibial plateau fractures

    Get PDF
    Background: Management of tibial plateau fractures with coronal fractures especially posteromedial fragment is frequent and challenging. This study was conducted to evaluate the functional outcome of patients with tibial plateau fractures having posteromedial fragment treated with open reduction and internal fixation (ORIF) using Lobenhoffer approach.Methods: Thirty two patients with tibial plateau fractures having posteromedial fracture alone or part of bicondylar fracture was operated with ORIF using Lobenhoffer approach. Time to union, maintenance of alignment, rate of complications and functional outcome was assessed using Oxford knee score.Results: The mean time to healing was 16.4 weeks, without any complication in the form of non-union and infection. Malunion with secondary loss of alignment was seen in only one case due to fracture comminution and early weight bearing. Oxford knee score was good to excellent in all the cases. Conclusions: With recent development in understanding these fractures, ORIF gives excellent to good outcome in all patients operated through Lobenhoffer approach. Long term disability can be prevented by maintenance of adequate alignment and reduction through direct visualization of fracture

    The new Dutch timetable: The OR revolution

    Get PDF
    In December 2006, Netherlands Railways introduced a completely new timetable. Its objective was to facilitate the growth of passenger and freight transport on a highly utilized railway network, and improve the robustness of the timetable resulting in less train delays in the operation. Further adjusting the existing timetable constructed in 1970 was not option anymore, because further growth would then require significant investments in the rail infrastructure. Constructing a railway timetable from scratch for about 5,500 daily trains was a complex problem. To support this process, we generated several timetables using sophisticated operations research techniques, and finally selected and implemented one of these timetables. Furthermore, because rolling-stock and crew costs are principal components of the cost of a passenger railway operator, we used innovative operations research tools to devise efficient schedules for these two resources. The new resource schedules and the increased number of passengers resulted in an additional annual profit of 40 million euros (60million)ofwhichabout10millioneuroswerecreatedbyadditionalrevenues.Weexpectthistoincreaseto70millioneuros(60 million) of which about 10 million euros were created by additional revenues. We expect this to increase to 70 million euros (105 million) annually in the coming years. However, the benefits of the new timetable for the Dutch society as a whole are much greater: more trains are transporting more passengers on the same railway infrastructure, and these trains are arriving and departing on schedule more than they ever have in the past. In addition, the rail transport system will be able to handle future transportation demand growth and thus allow cities to remain accessible. Therefore, people can switch from car transport to rail transport, which will reduce the emission of greenhouse gases.

    Performance analysis of DC/DC bidirectional converter with sliding mode and pi controller

    Get PDF
    A sliding mode controller for a non-isolated DC/DC, bidirectional converter is presented and comparative study with PI controller is done along with ISE analysis, in order to do performance analysis. The proposed system can be utilized in many applications such as electrical vehicle, distributed power generation or small grids. Second theorem of Lyapunov is utilized and stability of the closed loop system is mathematically proven. The adopted control strategy achieves effective output voltage regulation and good dynamic stability. Rejection of disturbance is also an inherent characteristic of this technique. Furthermore, it is illustrated that the system can successfully follow changes of load demand and compensates sudden disturbances in operating condition. The design is evaluated and verified using Matlab/Simulink. Results of Matlab simulation are provided to show the feasibility of the proposed system and effectiveness of control method. Simulation results show that this technique can provide a considerable edge over control techniques which are presently available (applied) over this type of converter

    A New Family of Step-up Hybrid Switched-Capacitor Integrated Multilevel Inverter Topologies with Dual Input Voltage Sources

    Get PDF
    In the low voltage based renewable systems like PV and Fuel cell applications, the step-up of the output voltage to drive the loads is essential. For this, the integration of switched-capacitor (SC) units with the dc-ac converters will have the potential advantages like improved efficiency, optimal switching devices, small size of passive elements (L and C) as compared with traditional two-stage conversion system (dc/dc converter and dc/ac converter). This paper focuses on a new family of step-up multilevel inverter topologies with switched capacitor integration with dual input voltage sources. With the flexibility of 2 dc sources and switching capacitor circuits, four different topologies have been suggested in this paper with features of high voltage gain, reduced component count, reduced voltage stress and self-voltage balancing of the capacitor while achieving a higher number of levels. A detailed analysis of proposed multilevel inverters has been analyzed with the symmetrical and asymmetrical mode of operations and the associated gain, the number of levels, and other performance indices are presented. An in-depth study of all the topologies has been accomplished in this paper with several comparative studies in terms of components count, voltage gain and cost. The effectiveness and practicability of the suggested topology with 13 level output voltage has been explained by the experimental results obtained from a scale down prototype.Scopu
    corecore