ANALYSIS AND TESTING OF TWO-DIMENSIONAL VENTED COANDA EJECTORS WITH ASYMMETRIC VARIABLE AREA MIXING SECTIONS

Lewis A. Maroti, Pbilip G. Hill, Robert L. Armstrong, and David M. Haines

Prepared by
DYNATECH.R/D COMPANY
Cambridge, Mass. 02139
for Ames Research Center
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. - OCTOBER 1976

DO63440

For sale by the National Technical Information Service, Springfield, Virginia 22161

TABLE OF CONTENTS

Section Page
LIST OF FIGURES iv
LIST OF TABLES viii
SUMMARY ix
1 INTRODUCTION 1
1.1 Background 1
1.2 Objectives of the Program 2
2
NOMENCLATURE 3
3 ANALYSIS OF VENTED COANDA FLOWS IN AUGMENTOR DUCTS 7
3.1 Introduction 7
3.2 Equations of Motion 8
3.3 Dimensionless Parameters 9
3.4 Evaluation of the Eddy Viscosity 11
3.5 Finite Difference Procedure 14
3.6 Boundary Conditions 20
3.7 Quasi-Orthogonal Coordinate System 20
3.8 Solution Procedure 21
TEST PROGRAM 23
4.1 Experimental Apparatus 23
4.1.1 Two Dimensional Ejector 23
4.1.2 Facilities for Ejector Tests 25
4.2 Instrumentation and Data Reduction 26
4.2.1 Instrumentation 26
4.2.2 Data Reduction Procedures 27
4.2.3 Experimental Uncertainty 28
4.3 Test Schedule and Results 30
5 COMPARISON OF ANALYTICAL AND TEST RESULTS 31
5.1 Test Conditions and Mass F1ows 31
5.2 Wall Static Pressures 32
5.3 Locus of Maximum Stagnation Pressure 35
5.4 Velocity Profiles 35
6 GENERAL CONCLUSIONS 37

TABLE OF CONTENTS (Concluded)

Page
APPENDIX A - Sample Tabulation of Static Pressures (Tests 7 and 8) 39
APPENDIX B - Finite Difference Equations 40
APPENDIX C - Solution Procedure 47
APPENDIX D - Computer Program 54
REFERENCES 100
TABLES 101
FIGURES 106

LIST OF FIGURES

Figure Page
B-1 Definition of Grid Lines for Finite Difference Solution 40
B-2 Diagrams of Explicit and Implicit Solutions 47^{\prime}
B-3 Implicit Finite Difference Term Definition 42
D-1 Duct Geometry 54
D-2 Flow Chart 57
D-3 Initial Line Geometry 58
D-4 Streamline Locations 59
D-5 Flow Structure 60
D-6 Computer Program 71
1 Initial Line for Flow Calculation 106
2
Assembly Sketch of Two Dimensional Ejector Test Rig 107
3View of Test Facility Showing Plenum, Mixing Section,Manometer Board, and Pressure Sampling Valves115
11 Top View of Mixing Section Shwoing Static and TraversingTap Locations Traversing Probe is Positioned at "A" Locationon Coanda Surface116

LIST OF FIGURES (Continued)

Figure Page
12
Mixing Section Traverse and Static Pressure Tap Locations 117131415161718
Mixing Section Static Pressure Tap Locations 118
Side View of Test Section Showing Extended Inlet, Mixing Section and Suction System Piping and Manifold 119
Comparison of Experimental and Analytical Flow Rates 120Comparison of Wall Static Pressure Distributions in aSymmetrical Mixing Section with a 1.875" Throat Computedwith the Present Streamline Coordinate Program and withthe Program from CR-2251121
Wall Static Pressure Distributions for Tests 1 and 2Nozzle Positioned at 22.5° and 0.020 meters (0.80 inches)spacing122
Wall Static Pressure Distributions for Tests 3 and 4Nozzle Positioned at 45° and 0.020 meters (0.80 inches)spacing123Wall Static Pressure Distributions for Tests 5 and 6Nozzle Positioned at 45° and 0.034 meters (1.32 inches)spacing124
Wall Static Pressure Distributions for Tests 7 and 8Nozzle Positioned at 67.5° and 0.018 meters (0.70 inches)spacing125
Wall Static Pressure Sensitivity to the Richardson Number Coefficient (NR) for Test 6 126
Wall Static Pressure Sensitivity to the Rate of Streamline Curvature Decay (RD) for Test 6 127Locii of Maximum Stagnation Pressures ($\mathrm{P}_{8} \mathrm{max}$) in theMixing Section Nozzle Positioned at 22.5 max 0.020 meters(0.80 inches) spacing128Locii of Maximum Stagnation Pressure ($\mathrm{P}_{\mathrm{O}} \max$) in theMixing Section Nozzle Positioned at 22.5° and 0.020 meters(0.80 inches) spacing129

25 Locii of Maximum Stagnation Pressure (P_{0} max) in the Mixing Section Nozzle Positioned at 45° and 0.020 meters (0.80 inches) spacing

26 Locii of Maximum Stagnation Pressure (P_{0} max) in the Mixing Section Nozzle Positioned at 45° and 0.020 meters (0.80 inches) spacing

27 Locii of Maximum Stagnation Pressure ($\mathrm{P}_{\mathrm{o}} \mathrm{max}_{\mathrm{x}}$) in the $\begin{array}{lll}\text { Mixing Section Nozzle Positioned at } 45^{\circ} \text { and }{ }^{\text {max }} 0.034 \text { meters } & 132\end{array}$

28 Locii of Maximum Stagnation Pressure (P° max) in the Mixing Section Nozzle Positioned at 45° and 0.034 meters (1.32 inches) spacing

29 Locii of Maximum Stagnation Pressure ($\mathrm{P}_{\mathrm{O}_{0}}$ max) in the Mixing Section Nozzle Positioned at 67.5° and 0.018 meters (0.70 inches) spacing134

30

Locii of Maximum Stagnation Pressure (P_{o} max) in the
Mixing Section Nozzle Positioned at 67.5° maxd 0.018 meters
(0.70 inches) spacing

31 Total Pressure Profiles for Run 7 at $\mathrm{x}=+0.013$ meters (+0.50 inches), Nozzle Positioned at $67.5^{\circ}, 0.018$ meters (0.70 inches) spacing

Total Pressure Profile for Run 8 at $\mathrm{x}=+0.013$ meters (+0.50 inches), Nozzle Positioned at $67.5^{\circ}, 0.017$ meters (0.70 inches) spacing

Velocity Profiles for Run 1, Nozzle Positioned at 22.5° and 0.020 meters (0.80 inches) spacing

34 Velocity Profiles for Run 2, Nozzle Positioned at 22.5° and 0.020 meters (0.80 inches) spacing

Velocity Profiles for Run 3, Nozzle Positioned at 45° and 0.020 meters (0.80 inches) spacing

Velocity Profiles for Run 4, Nozzle Positioned at 45° and 0.020 meters (0.80 inches) spacing

Velocity Profiles for Run 5, Nozzle Positioned at 45° and 0.034 meters (1.32 inches) spacing

LIST OF FIGURES (Concluded)

Figure Page
38 Velocity Profiles for Run 6, Nozzle Positioned at 45° and 0.034 meters (1.32 inches) spacing 143
3940Velocity Profiles for Run 8, Nozzle Positioned at 67.5°and 0.017 meters (0.70 inches) spacing145

LIST OF TABLES

Table Page
C-1 Matrix Form of Equation C-1 Designated as Equation C-1 49
C-2 Matrix Form of Equation C-8 with Simplified Terms Designated as Equation C-13 51
D-1 Sample of Input Data 66
1 Mixing Section Dimensions 101
2
Variation of Individual Integrated Traverse Mass Flows for Each Test Run 102
3 Traverse Locations and Data Summary 103
4 Summary of Experimental Test Conditions and Flow Rates 104
5Comparison of Experimental and Analytical Mass Flow Rates105

SUMMARY

The analysis of asymmetric, curved (Coanda) ejector flow has been completed using a finite difference technique and a quasi-orthogonal streamline coordinate system. The boundary=1ayer-type jet mixing analysis accounts for the effect of streamline curvature in pressure gradients normal to the streamlines and on eddy viscosities. The analysis assured perfect gases, free of pressure discontinuities and flow separation. The analysis treats the three compound flows of supersonic and subsonic streams, those are: (1) primary flow of the driving nozzle, (2) secondary flow between the primary nozzle and the Coanda surface, (3) tertiary flow between the primary nozzle and the other surface of the mixing section.

A test program was completed to measure flow parameters and ejector performance in a vented Coanda flow geometry for the verification of the computer analysis. A primary converging nozzle with a discharge geometry of $0.003175 \mathrm{~m} \times 0.2032 \mathrm{~m}$ was supplied with $0.283 \mathrm{~m}^{3} / \mathrm{sec}$ of air at about 241.3 kPa absolute stagnation pressure and $82^{\circ} \mathrm{C}$ stagnation temperature.

One mixing section geometry was used with a 0.127 m constant radius Coanda surface. Eight tests were run at spacings between the Coanda surface and primary nozzle 0.01915 m and 0.318 m and at three angles of Coanda turning: $22.5^{\circ}, 45.0^{\circ}$, and 75.0°.

The wall static pressures, the locii of maximum stagnation pressures, and the stagnation pressure profiles agree well between analytical and experimental results.

Key Words:

Ejector
Coanda
Compressible Flow
Analysis
Finite Difference

Computer Program
Experimental

Section 1

INTRODUCTION

1.1 Background

The augmentor wing concept under investigation by NASA for STOL aircraft lift augmentation is powered by an air to air ejector. The wing boundary layer is drawn into the deflected double flap augmentor channel at the trailing edge of the wing and is pressurized by a high velocity slot jet which is oriented at an angle to the augmentor channel. To predict the performance and to optimize the design of the complete augmentor wing, an analytical method is needed to predict the performance of the air ejector which powers the augmentor flap section.

Under contract NAS2-5845 a computer analysis was developed for single nozzle axisymmetric ejectors with variable area mixing sections using integral techniques, Reference 1. The ejectors of primary interest in that program and earlier programs were high-entrainment devices using small amounts of supersonic primary flow to pump large amounts of low-pressure secondary flow. Good agreement was achieved between analytical and experimental results.

The integral analytical techniques used to analyze the axisymmetric ejector configurations are also valid for the analysis of two-dimensional ejectors. However, the augmentor wing configuration may include asymmetric geometries, inlet flow distortions, wall slots, and primary nozzles that are at large angles to the axis of the augmentor mixing section. The integral techniques are not easily adaptable to these more complex flows. Finite difference techniques can be used to analyze these more complex flow geometries at the expense of increased computer time.

Under contract NAS2-6660 a computer program (Reference 2) was developed for two-dimensional, symmetrical mixing sections using finite difference technique and rectangular coordinate system. When Coanda effect is used in two-dimensional ejectors the geometry is not symmetrical and the use of rectilinear coordinates becomes difficult. Flow computations have to account
for the pressure gradient in the direction normal to the streamlines.
1.2 Objectives of the Program

The following objectives were defined for this investigation:

1. Develop a computer program for two-dimensional vented Coanda ejectors with non-symmetric variable area mixing sections, with variable Coanda turning, and with variable primary nozzle spacing.
2. Obtain test results with a variable nozzle position vented Coanda ejector configuration for the development and checking of the computer program.

Section 2

NOMENCLATURE

${ }^{A} \mathrm{~N}$
Nozzle discharge area (m^{2}; in ${ }^{2}$)
B_{n-1} Coefficient appearing in the finite difference equations (-)
$C_{p} \quad$ Specific heat at constant pressure ($\mathrm{J} / \mathrm{kg} \cdot \mathrm{K} ; \mathrm{Btu} / 1 \mathrm{bm}{ }^{\circ} \mathrm{R}$)
C_{N}
Nozzle discharge coefficient (-)
$C_{n-1} \quad$ Coefficient appearing in the finite difference equations (-) $D_{n}-1 \quad$ Coefficient appearing in the finite difference equations (-)

Nozzle exit height (m; ft)
Dimensionless eddy viscosity, $\nu_{T} / u_{o} d(-)$
Thermal conductivity of fluid (W/mK; Btu/hrft ${ }^{\circ} \mathrm{F}$)
Curvature of streamline, $1 / R(1 / m ; 1 / f t)$
Dimensional constant, ($32.2 \mathrm{lbm}-\mathrm{ft} / \mathrm{lbf}_{\mathrm{f}} \mathrm{sec}^{2}$)
$\ell \quad$ Prandtl mixing length (m; $f t$)
L Dimensionless mixing length, $\ell / \mathrm{d}(-)$
m
n
n
$\mathrm{P}_{\mathrm{b}} \quad$ Barometric pressure (kPa ; psia; inch $\mathrm{H}_{2} 0$)

P	Static pressure (kPa; psig; inch $\mathrm{H}_{2} \mathrm{O}$)
P_{01}	Reference pressure, primary stagnation pressure (kPa; psia)
$\mathrm{P}_{\mathbf{r t}}$	Turbulent Prandtl number, $\nu_{T} / \varepsilon_{H}(-)$
${ }^{P} \mathbf{r}$	Prandtl number, $\mu \mathrm{C}_{\mathrm{p}} / \mathrm{k}$ (-)
$q_{\text {eff }}$	Effective heat transfer (between streamlines) ($\mathrm{W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$; $\mathrm{Btu} / \mathrm{ft}^{2} \mathrm{sec}^{\circ} \mathrm{F}$)
R	Radius of curvature (streamline; wall) (1/m; $1 / \mathrm{ft}$; $1 / \mathrm{in}$)
$\mathrm{R}_{\mathbf{g}}$	Gas constant ($\mathrm{Nm} / \mathrm{kg}{ }^{\circ} \mathrm{K} ; 1 \mathrm{lbf}-\mathrm{ft} / 1 \mathrm{bm}{ }^{\circ} \mathrm{R}$)
R_{1}	Richardson number ($2 u / R$)/($\partial u / \partial n$) (-)
S	Streamwise coordinate (along streamlines) (m; in)
t	Nozzle coanda wall spacing (m; inch)
T_{a}	Atmospheric temperature (${ }^{\circ} \mathrm{C}$; ${ }^{\circ} \mathrm{F}$)
T	Fluid temperature (${ }^{\circ} \mathrm{K}$; ${ }^{\circ} \mathrm{R}$)
$\mathrm{T}_{\max }$	Maximum fluid temperature at an $\mathrm{x}=$ constant cross section (${ }^{\circ} \mathrm{K}$; ${ }^{\circ} \mathrm{R}$)
T_{01}	Reference temperature, primary stagnation temperature (${ }^{\circ} \mathrm{K}$; ${ }^{\circ} \mathrm{R}$)
u	Velocity in s direction (m / s; $\mathrm{ft} / \mathrm{sec}$)
\mathbf{u}_{0}	Reference velocity, $u_{0}=\sqrt{\mathrm{R}_{\mathrm{g}} \mathrm{T}_{01}}(\mathrm{~m} / \mathrm{s} ; \mathrm{ft} / \mathrm{sec})$
$\mathbf{u}_{2, n}$	Unknown velocity at the nth grid point (m/s; $\mathrm{ft} / \mathrm{sec}$)
U	Velocity in x direction (m/s; ft/sec)
$\mathrm{U}_{\text {CL }}$	Centerline velocity (m/s; ft/sec)
$\mathrm{U}_{\max }$	Maximum fluid velocity (m/s; $\mathrm{ft} / \mathrm{sec}$)

$\mathrm{U}_{\mathrm{sec}}$	Secondary velocity (m/sec; ft/sec)
W_{m}	Mixing section total flow (kg/sec m; lbm/sec in)
W_{n}	Nozzle flow rate (kg/sec-m; Ibm/sec in)
$\mathrm{W}_{\mathbf{S}}$	Secondary flow rate (kg/sec-m; $1 \mathrm{lbm} / \mathrm{sec}$ in)
W_{t}	Tertiary flow rate ($\mathrm{kg} / \mathrm{sec}-\mathrm{m}$; $1 \mathrm{bm} / \mathrm{sec}$ in)
X	Space coordinate in the axial direction (m; in)
X	Dimensionless space coordinate in the axial direction, $x / d(-)$
$\Delta \mathrm{X}$; dX	Step size in x - direction (-)
y	Space coordinate perpendicular to axial direction (m; in)
Y	Dimensionless space coordinate perpendicular to axial direction, y / d (-)
Δy	Dimensionless distance from wall (-)
β	Nozzle angle (coanda turning) (degrees)
γ	Ratio of specific heats, $C_{p} / C_{V}(-)$
Ψ	Stream function ($\mathrm{kg} \mathrm{m}^{2} / \mathrm{sec} ; 1 \mathrm{lbm} / \mathrm{ft} \mathrm{sec)}$
ρ	F1uid density ($\mathrm{kg} / \mathrm{m}^{3}$; $1 \mathrm{lbm} / \mathrm{ft}{ }^{3}$)
ρ_{01}	Fluid density evaluated at a reference temperature, T_{01}, and pressure, $P_{01}\left(\mathrm{~kg} / \mathrm{m}^{3} ; ~ \mathrm{lbm} / \mathrm{ft}^{3}\right)$
μ	Dynamic viscosity ($\mathrm{Ns} / \mathrm{m}^{2}$; $1 \mathrm{bm} / \mathrm{ft} \mathrm{sec}$)
$\tau_{\text {eff }}$	Total effective shear stress (Pa; psi)
${ }_{T}{ }_{W}$	Local wall shear stress (Pa; psi)

Turbulent eddy conductivity, $\ell^{2} \partial u / \partial n\left(\mathrm{~m}^{2} / \mathrm{s} ; \mathrm{ft}^{2} / \mathrm{sec}\right)$
Eddy coefficient of heat transfer ($\mathrm{m}^{2} / \mathrm{s} ; \mathrm{ft}^{2} / \mathrm{sec}$) Kinematic viscosity at local temperature ($\mathrm{m}^{2} / \mathrm{s} ; \mathrm{ft}^{2} / \mathrm{sec}$)

Local wall boundary layer thickness or jet half width (m; in) Dissipation function ($N / \mathrm{m}^{2} \mathrm{~s}$; $1 \mathrm{bm} / \mathrm{ft} \mathrm{sec}^{3}$)

Section 3

ANALYSIS OF VENTED COANDA FLOWS IN AUGMENTOR DUCTS

3.1 Introduction

This section presents the analysis of asymmetric curved augmentor flows which are steady two-dimensional and compressible and for which the duct geometry is general. The method extends the work presented in reference (2) but a new analysis has been performed and a new program has been developed. The analysis employs the finite-difference technique for representing the equations of motion for compressible flow. It is essentially a boundary-layer-type jet mixing analysis, written in streamline coordinates for ease of computation of curvature effects. The effects of streamline curvature on pressure gradients normal to streamline and on eddy viscosities are computed. Magnitudes of streamline curvature effects are estimated by using a quasi-orthogonal coordinate system and assumed variation of curvature with distance in the normal coordinate direction.

The analysis treats the mixing of three compressible flows of the same perfect gas under the assumption that initial conditions are known and that pressure discontinuities and flow separation are absent. The nozzle exit flow may be supersonic but it is assumed that expansion or recompression outside the nozzle, if needed, will bring the nozzle stream to the local ambient pressure so that shocks and expansion waves at the nozzle exit plane are avoided. Previous work has shown that augmentor performance is little affected by moderate degrees of departure from conditions of correct nozzle expansion. The flows considered include compound flows of supersonic and subsonic streams; however no provision is made for compound choking which may occur with an appropriate transverse distribution of Mach number. Such a condition is amenable to analytical treatment under simplified circumstances, but has not been encountered in experimental tests carried out so far.

To retain the simplicity and speed of the boundary layer approach to augmentor calculation, while incorporating approximate curvature effects, it is necessary to assume an approximate starting line. In the present work the
starting line is comprised of two circular-arcs (See Fig. 1) which are tangent to each other, and perpendicular to the nozzle axis at the nozzle exit plane; one arc is normal to the upper wall and one to the lower wall of the duct. In the absence of detailed experimental information on velocity profiles in the wall boundary layers and in the jet shearing layers at the initial plane, the initialization condition has assumed uniform stagnation pressure in the nozzle flow and, separately, for the secondary and tertiary flows. In addition, for the examples worked out in this report, the secondary and tertiary flows have been assumed to have the same stagnation conditions. In computing initial conditions around the circular arcs, the effect of curvature on normal pressure gradient has been taken into account; the initialization satisfies the continuity equation separately for primary, secondary, and tertiary streams under the constraints of local duct width (along the assumed circular arc starting lines), location of the nozzle centre line, and angle of the jet axis with respect to the coordinate system of the duct walls. This initialization is of course approximate but is reasonable to use in the absence of better information on flow starting conditions. If better information is available the initialization procedure adopted in this analysis may readily be replaced to use more detailed or exact information.

3.2 Equations of Motion

The momentum, normal pressure gradient, and energy equations in streammise coordinates are:

$$
\begin{align*}
& \rho u \frac{\partial u}{\partial s}=-\frac{\partial P}{\partial s}+\frac{\partial}{\partial n}\left(\tau_{\text {eff }}\right) \tag{1}\\
& \rho u^{2} K=\frac{\partial P}{\partial n} \quad K=\frac{1}{R} \tag{2}\\
& \rho u \frac{\partial\left(C_{P} T\right)}{\partial s}=u \frac{\partial P}{\partial s}+\frac{\partial}{\partial n}\left(q_{e f f}\right)+\Phi \tag{3}
\end{align*}
$$

in which

$$
\tau_{e f f}=\left(\mu+\rho \nu_{T}\right) \frac{\partial u}{\partial n}
$$

$$
\begin{aligned}
& q_{e f f}=\left(k+\rho C_{p} \varepsilon_{H}\right) \frac{\partial T}{\partial n} \\
& \Phi=\left(\mu+\rho \nu_{T}\right)\left(\frac{\partial u}{\partial n}\right)^{2}
\end{aligned}
$$

In these equations s and n measure distance along and normal to the streamlines, respectively, and u is the velocity component in the stream direction; p is the static pressure, ρ the density and T the temperature of the fluid, τ eff is the total effective shear stress and ν_{T} the eddy viscosity of the fluid with μ being the dynamic viscosity. Correspondingly, $q_{e f f}$ is the effective heat transfer between streamlines with ε_{H} be. eddy coefficient of heat transfer and k the fluid conductivity. Constant values of laminar and turbulent Prandtil numbers have been assumed in the analysis. The term Φ is the dissipation function, included in the energy equation. The first order effects of curvature on static pressure are included through the normal pressure gradient equation (2).

Stream Function

The stream function Ψ is defined by

$$
\begin{equation*}
\frac{\partial \Psi}{\partial \mathbf{n}}=\rho \mathbf{u} \tag{4}
\end{equation*}
$$

With (4) equations (1), (2), and (3) becore:

$$
\begin{aligned}
& u \frac{\partial u}{\partial s}=-\frac{1}{\rho} \frac{\partial P}{\partial s}+u \frac{\partial}{\partial \Psi}\left[\rho u\left(\mu+\rho \nu_{T}\right) \frac{\partial u}{\partial \Psi}\right] \\
& u K=\frac{\partial P}{\partial \Psi} \\
& u \frac{\partial\left(C_{p} T\right)}{\partial s}=\frac{u}{\rho} \frac{\partial P}{\partial s}+u \frac{\partial}{\partial \Psi}\left[\rho u\left(k+C_{p} \rho \varepsilon_{H}\right) \frac{\partial T}{\partial \Psi}\right]+\left(\frac{\mu+\rho \nu_{T}}{\rho}\right]\left[\rho u \frac{\partial u}{\partial \Psi}\right]^{2}
\end{aligned}
$$

3.3 Dimensionless Parameters

Each variable in the equations of motion is normalized by use of the following reference variables:

$$
u^{*}=\frac{u}{u_{0}} \quad P^{*}=\frac{P}{P_{01}} \quad T^{*}=\frac{T}{T_{01}} \quad \rho^{*}=\frac{\rho}{\rho_{01}}
$$

$s^{*}=\frac{s}{d}$
$\mathrm{n}^{*}=\frac{\mathrm{n}}{\mathrm{d}}$
$R^{*}=\frac{R}{d}$
$K^{*}=\frac{\mathrm{d}}{\mathrm{R}}$
$\mu^{*}=\frac{\mu}{\rho_{01} u_{0} d} \quad E=\frac{\nu_{T}}{u_{0} d^{\prime}} \quad P_{r t}=\frac{\nu_{T}}{\varepsilon_{H}} \quad \quad P_{r}=\frac{\mu C_{p}}{k}$
$\Psi^{*}=\frac{\Psi}{\rho_{01} u_{0} d} \quad \gamma=\frac{C_{p}}{C_{V}}$
in which

$$
\begin{aligned}
u_{0} & =\sqrt{R_{g} T_{01}} \\
\rho_{01} & =P_{01} /\left(R_{01}\right) \\
d & =\text { nozzle exit height (the small dimension) } \\
\mathrm{P}_{01} & =\text { primary stagnation pressure } \\
T_{01} & =\text { primary stagnation temperature }
\end{aligned}
$$

Introducing these dimensionless groups into the equation of motion yields the following results:

$$
\begin{aligned}
u^{*} \frac{\partial u^{*}}{\partial s^{*}} & =-\frac{1}{\rho^{*}} \frac{\partial P^{*}}{\partial s^{*}}+u^{*} \frac{\partial}{\partial \Psi^{*}}\left[\rho^{*} u^{*}\left(\mu^{*}+\rho{ }^{*} \mathrm{E}\right) \frac{\partial u^{*}}{\partial \Psi^{*}}\right] \\
u^{*} \mathrm{~K}^{*}= & \frac{\partial P}{\partial \Psi^{*}} \\
\mathbf{u}^{*} \frac{\partial T^{*}}{\partial s^{*}} & =\left(\frac{\gamma-1}{\gamma}\right) \frac{u^{*}}{\rho^{*}} \frac{\partial P^{*}}{\partial s^{*}}+u^{*} \frac{\partial}{\partial \Psi^{*}}\left[\rho^{*} u^{*}\left(\frac{\mu^{*}}{P_{r}}+\frac{E}{P_{r t}}\right) \frac{\partial T^{*}}{\partial \Psi^{*}}\right] \\
& +\left(\frac{\gamma-1}{\gamma}\right)\left(\frac{\mu^{*}+\rho^{*} E}{\rho^{*}}\right)\left[\rho^{*} u^{*} \frac{\partial u^{*}}{\partial \Psi^{*}}\right]^{2}
\end{aligned}
$$

From henceforth we omit the superscript * for convenience so that the following are the equations of motion in dimensionless form:

$$
\begin{equation*}
u \frac{\partial u}{\partial s}=-\frac{1}{\rho} \frac{\partial P}{\partial s}+u \frac{\partial}{\partial \Psi}\left[\rho u(\mu+\rho E) \frac{\partial u}{\partial \Psi}\right] \tag{5}
\end{equation*}
$$

$$
\begin{align*}
u K= & \frac{\partial P}{\partial \Psi} \tag{6}\\
u \frac{\partial T}{\partial s} & =\left(\frac{\gamma-1}{\gamma}\right) \frac{u}{\rho} \frac{\partial P}{\partial s}+u \frac{\partial}{\partial \Psi}\left[\rho u\left(\frac{\mu}{P_{r}}+\frac{E}{P_{r t}}\right) \frac{\partial T}{\partial \Psi}\right] \\
& +\left(\frac{\gamma-1}{\gamma}\right)\left(\frac{\mu+\rho E}{\rho}\right)\left[\rho u \frac{\partial u}{\partial \Psi}\right]^{2} \tag{7}
\end{align*}
$$

3.4 Evaluation of the Eddy Viscosity

In general the eddy viscosity is defined by:

$$
\begin{equation*}
v_{T}=\ell^{2} \frac{\partial u}{\partial n} \tag{8}
\end{equation*}
$$

Writing this in dimensionless form, using the dimensionless parameters specified previously and the stream function, the eddy viscosity expression becomes:

$$
\begin{equation*}
E=L^{2} \rho u \frac{\partial u}{\partial \Psi} \tag{9}
\end{equation*}
$$

in which

$$
L=\frac{\ell}{d} \text { and } E=\frac{v_{T}}{u_{0} d}
$$

The effect of streamline curvature is taken into account by use of the Richardson Number correction in the following approximate form:

$$
\begin{array}{ll}
L=L_{o} \exp \left(-3 R_{i}\right) & R_{i}>0 \\
L=L_{o}\left[2-\exp \left(3 R_{i}\right)\right] & R_{i}<0 \tag{11}
\end{array}
$$

in which L_{o} is the dimensionless mixing length in the absence of stream curvature and R_{i} is the Richardson Number defined by:

$$
R_{i}=\frac{2 u}{R} / \frac{\partial u}{\partial n}
$$

or $\quad R_{i}=\frac{2 K}{\rho \frac{\partial u}{\partial \Psi}}$

For small values of $\left|R_{i}\right|$ the above dependence of L on R_{i} is approximately in accord with the linear relationship derived by Bradshaw (3). For large values of $\left|R_{i}\right|$ an empirical correlation is not available, and the exponential relationship has been assumed.

In the absence of curvature the mixing lengths L_{o} are defined as follows.

Boundary Layer

In the inner part of the layer the Van Driest approximation is used.

$$
\begin{equation*}
L_{o}=0.41 \Delta y\left[1-\exp \left(-y^{+} / 26\right)\right] \tag{13}
\end{equation*}
$$

in which Δy is the dimensionless distance from the wall. The variable

$$
\begin{equation*}
\mathrm{y}^{+}=\frac{\Delta \mathrm{y}}{\nu} \sqrt{\frac{\tau_{\mathrm{w}}}{\rho}} \tag{14}
\end{equation*}
$$

is evaluated using

$$
\begin{equation*}
\tau_{\mathrm{w}}=\frac{\mu \mathrm{u}_{2}}{\Delta \mathrm{y}_{2}}-\frac{\Delta \mathrm{y}_{2}}{2} \frac{\partial \mathrm{P}}{\partial \mathrm{~s}} \tag{15}
\end{equation*}
$$

in which the subscript 2 denotes the streamline coordinate point closest to the wall.

In the outer part of the layer the mixing length is evaluated by

$$
\begin{equation*}
\mathrm{L}_{\mathrm{o}}=0.09\left(\frac{\delta}{\mathrm{~d}}\right) \tag{16}
\end{equation*}
$$

in which δ is the boundary layer 99% thickness and d is the nozzle exit width.

In the middle part of the layer the smaller of the values of L_{o} provided by Equations (13) and (14) is used.

Jet Shear Layers
In the shear layer adjacent to the potential-core zone of the primary jet the mixing length is evaluated from

$$
\begin{equation*}
\mathrm{L}_{\mathrm{o}}=0.07\left(\frac{\Delta}{\mathrm{~d}}\right)\left(1+0.6 \frac{\mathrm{U}}{\mathrm{sec}}\right) \tag{17}
\end{equation*}
$$

in which Δ is the shear layer width (including the zone between 1% and 99% of the total velocity difference between primary and secondary streams) divided by the nozzle width at its exit plane. The term in parentheses takes approximate account of the effects of the secondary velocity, $U_{s e c}$, of a co-flowing outer stream, on the mixing of a jet whose centerline velocity is $U_{C L}$.

For a "fully-rounded" portion of the jet flowing co-axially with a secondary potential stream, the mixing strength has been calculated from

$$
\begin{equation*}
L_{o}=0.09\left(\frac{\Delta}{d}\right)\left(1+0.6 \frac{\mathrm{U}_{\mathrm{sec}}}{\mathrm{U}_{\mathrm{CL}}}\right) \tag{18}
\end{equation*}
$$

in which Δ is the half-width of the jet (evaluated from centerline to the point at which difference between local and secondary velocity is only 1% of the difference between centerline and secondary velocity), divided by the nozzle width at its exit plane.

Developing Pipe Flow Region

For the region downstream at the point where the jet spreads to intersect the edge of the boundary layer the mixing is evaluated, as a first approximation only, from

$$
\begin{equation*}
L_{o}=\frac{w}{d}\left(0.14-0.08\left[1-\frac{\Delta y}{w}\right]^{2}-0.06\left[1-\frac{\Delta y}{w}\right]^{4}\right) \tag{19}
\end{equation*}
$$

in which w is half the total width, and Δy the distance from the wall. This formula is due to Nikuradse and is cited by Schlichting (3) for fully developed flow in round tubes. Near the wall the mixing length is evaluated by the Van Driest approximation cited earlier, provided the local mixing length so calculated is less than that given by the Nikuradse formula.

The laminar dynamic viscosity is evaluated from (1):

$$
\begin{equation*}
\mu=\frac{\mu_{\text {ref }}}{P_{0 I} \sqrt{R_{g} \mathrm{~T}_{01}} \mathrm{~d}}\left[\frac{\mathrm{~T}_{01} \mathrm{~T}}{\mathrm{~T}_{\mathrm{ref}}}\right]^{1 / 2}\left[\frac{\mathrm{~T}_{\mathrm{ref}}+198.7^{\circ} \mathrm{R}}{\mathrm{~T}_{01} \mathrm{~T}+198.7^{\circ} \mathrm{R}}\right] \tag{20}
\end{equation*}
$$

in which $\mu_{\text {ref }}$ is the laminar dynamic viscosity at a temperature $T_{\text {ref }}$ and a pressure $P_{\text {ref }}$ and T is the dimensionless temperature (normalized by the inlet stagnation temperature of the primary stream T_{01}.

The wall shear stress (normalized by the inlet stagnation pressure P_{01}) is given by Equation (15). For this equation to be realistic, the grid spacing must be chosen so that y^{+}at node point 2 is not greater than 3 - 4 . The associated wall friction velocity (normalized by the reference velocity u_{0}) is given by:

$$
\begin{equation*}
u^{*}=\sqrt{\left(\frac{u_{2}}{\Delta y}-\frac{\Delta y}{2 \mu} \frac{d P}{d x}\right) \frac{\mu}{P}} \tag{21}
\end{equation*}
$$

3.5 Finite Difference Procedure

By the finite difference technique the derivatives in the differential equations of motion are replaced by differences either along a streamline between two neighboring points X and $X+d X$ or normal to it between two neighboring points Ψ and $\Psi+d \Psi$. The finite difference equivalence of the equations of motion are obtained as follows with reference to the following grid lines:

Writing the velocities in terms of a taylor expansion:

$$
\begin{aligned}
& u_{n+1}=u_{n}+\left.\frac{\partial u}{\partial \Psi}\right|_{n} \Delta \Psi_{1}+\left.\frac{\partial^{2} u}{\partial \Psi^{2}}\right|_{n} \frac{\Delta \Psi_{1}^{2}}{2!} \\
& u_{n-1}=u_{n}-\left.\frac{\partial u}{\partial \Psi}\right|_{n} \Delta \Psi_{2}+\left.\frac{\partial^{2} u}{\partial \Psi^{2}}\right|_{n} \frac{\Delta \Psi_{2}^{2}}{2!}
\end{aligned}
$$

Eliminating $\left.\frac{\partial^{2} u}{\partial \Psi^{2}}\right|_{n}$

$$
\begin{aligned}
\frac{\Delta \Psi_{2}^{2}}{2} u_{n+1}-\frac{\Delta \Psi_{1}^{2}}{2} u_{n-1} & =\frac{\Delta \Psi_{2}^{2}}{2} u_{n}-\frac{\Delta \Psi_{1}^{2}}{2} u_{n} \\
& +\left.\frac{\partial u}{\partial \Psi}\right|_{n}\left[\Delta \Psi_{1} \frac{\Delta \Psi_{2}^{2}}{2}+\Delta \Psi_{2} \frac{\Delta \Psi_{1}^{2}}{2}\right]
\end{aligned}
$$

Dividing by $\Delta \Psi_{1} \Delta \Psi_{2}$

$$
\frac{\Delta \Psi_{2}}{\Delta \Psi_{1}} u_{n+1}-\frac{\Delta \Psi_{1}}{\Delta \Psi_{2}} u_{n}-1=\frac{\Delta \Psi_{2}}{\Delta \Psi_{1}} u_{n}-\frac{\Delta \Psi_{1}}{\Delta \Psi_{2}} u_{n}+\left.\frac{\partial u}{\partial \Psi}\right|_{n}\left[\Delta \Psi_{1}+\Delta \Psi_{2}\right]
$$

This equation leads to:

$$
\left.\frac{\partial u}{\partial \Psi}\right|_{n}=\frac{\Delta \Psi_{2}}{\Delta \Psi_{1}\left(\Delta \Psi_{1}+\Delta \Psi_{2}\right)}\left(u_{n}+1-u_{n}\right)+\frac{\Delta \Psi_{1}}{\Delta \Psi_{2}\left(\Delta \Psi_{1}+\Delta \Psi_{2}\right)}\left(u_{n}-u_{n}-1\right)
$$

or $\left.\frac{\partial u}{\partial \Psi}\right|_{n}=S_{5}\left(u_{n}+1-u_{n}\right)+S_{4}\left(u_{n}-u_{n-1}\right)$
and $\left.\frac{\partial T}{\partial \Psi}\right|_{n}=S_{5}\left(T_{n}+1-T_{n}\right)+S_{4}\left(T_{n}-T_{n-1}\right)$
in which $S_{4}=\frac{\Delta \Psi_{1}}{\Delta \Psi_{2}\left(\Delta \Psi_{1}+\Delta \Psi_{2}\right)} \quad$ and $\quad S_{5}=\frac{\Delta \Psi_{2}}{\Delta \Psi_{1}\left(\Delta \Psi_{1}+\Delta \Psi_{2}\right)}$

Using another Taylor Series expansion with a general coefficient:

$$
\begin{aligned}
& \left.S\left(\frac{\partial u}{\partial \Psi}\right)\right|_{n+1 / 2}=\left.S \frac{\partial u}{\partial \Psi}\right|_{n}+\left.\frac{\partial}{\partial \Psi}\left(S \frac{\partial u}{\partial \Psi}\right)\right|_{n} \frac{\Delta \Psi_{1}}{2}+\ldots \\
& \left.S\left(\frac{\partial u}{\partial \Psi}\right)\right|_{n-1 / 2}=\left.S \frac{\partial u}{\partial \Psi}\right|_{n}-\left.\frac{\partial}{\partial \Psi}\left(S \frac{\partial u}{\partial \Psi}\right)\right|_{n} \frac{\Delta \Psi}{2}+\ldots
\end{aligned}
$$

Solving for $\left.\frac{\partial}{\partial \Psi}\left(S \frac{\partial u}{\partial \Psi}\right)\right|_{n}$ we obtain:

$$
\begin{aligned}
\left.\frac{\partial}{\partial \Psi}\left(S \frac{\partial u}{\partial \Psi}\right)\right|_{n}= & \left(\frac{2}{\Delta \Psi_{1}+\Delta \Psi_{2}}\right)\left[\left.S\left(\frac{\partial u}{\partial \Psi}\right)\right|_{n+1 / 2}-\left.S\left(\frac{\partial u}{\partial \Psi}\right)\right|_{n-1 / 2}\right] \\
= & \frac{1}{\left(\Delta \Psi_{1}+\Delta \Psi_{2}\right)}\left[\left(S_{n+1}+S_{n}\right) \frac{\left(u_{n}+1-u_{n}\right)}{\Delta \Psi_{1}}\right. \\
& \left.-\left(S_{n}+S_{n-1}\right) \frac{\left(u_{n}-u_{n}-1\right)}{\Delta \Psi_{2}}\right]
\end{aligned}
$$

The terms in Equation (5) become:

$$
\begin{aligned}
& \mathrm{u} \frac{\partial \mathrm{u}}{\partial \mathrm{~s}}=\mathrm{u}_{1, \mathrm{n}} \frac{\mathrm{u}_{2, \mathrm{n}}-\mathrm{u}_{1, \mathrm{n}}}{\Delta \mathrm{~S}_{\mathrm{n}}} \\
& -\frac{1}{\rho} \frac{\partial P}{\partial \mathrm{~s}}=-\frac{1}{\rho_{1, \mathrm{n}}}\left[\frac{1}{2}\left(\frac{\partial P}{\partial s}\right)_{\mathrm{m}=1}+\frac{1}{2}\left(\frac{\partial P}{\partial s}\right)_{\mathrm{m}=2}\right]
\end{aligned}
$$

and $u \frac{\partial}{\partial \Psi}\left(S \frac{\partial u}{\partial \Psi}\right)=\frac{u_{1, n}}{\Delta \Psi_{1}+\Delta \Psi_{2}}\left[\left(\frac{S_{n}+1+S_{n}}{\Delta \Psi_{1}}\right) u_{n+1}\right.$

$$
\left.-\left(\frac{S_{n+1}+S_{n}}{\Delta \Psi_{1}}+\frac{S_{n}+S_{n}-1}{\Delta \Psi_{2}}\right) u_{n}+\left(\frac{S_{n}+S_{n}-1}{\Delta \Psi_{2}}\right) u_{n-1}\right]
$$

in which $S=\rho u(\mu+\rho E)$

With these finite-difference equivalents for the derivative terms Equation (5) may be written in the form:

$$
\begin{equation*}
A_{n}-1 u_{2, n}+B_{n}-1^{u_{2}, n}+1+C_{n}-1 u_{2, n-1}=D_{n}-1 \tag{22}
\end{equation*}
$$

in which

$$
\begin{align*}
A_{n-1} & =\frac{u_{1, n}}{\Delta S_{n}}+Y_{8}+Y_{9} \tag{23}\\
B_{n-1} & =-Y_{8} \tag{24}\\
C_{n-1} & =-Y_{9} \tag{25}\\
D_{n-1} & =-\frac{1}{\rho_{1, n}}\left(\frac{\partial P}{\partial x}\right)_{m}+1 / 2 \tag{26}\\
Y_{8} & =\frac{{ }_{1} 1_{1}, n}{\left(\Delta \Psi_{1}+\Delta S_{n}+1\right.}+\frac{u_{1, n}}{\Delta S_{n}} \tag{27}\\
Y_{9} & =\frac{u_{1, n}\left(S_{n}+S_{n}\right.}{\left(\Delta \Psi_{1}+\Delta \Psi_{2}\right)} \tag{28}\\
S & =\rho u(\mu+\rho E) \tag{29}
\end{align*}
$$

Similarly, Equation (7) may be written in the form:

$$
\begin{equation*}
A_{n}-1^{T} 2, n+B_{n}-1_{2, n}^{T}-1+C_{n-1}^{T}, n-1=D_{n}-1 \tag{30}
\end{equation*}
$$

in which

$$
\begin{align*}
& A_{n-1}=\frac{u_{1}, n}{\Delta S_{n}}+Y_{8}^{\prime}+Y_{9}^{\prime} \tag{31}\\
& B_{n-1}=-Y_{8}^{\prime} \tag{32}\\
& C_{n-1}=-Y_{9}^{\prime} \tag{33}
\end{align*}
$$

$$
\begin{align*}
& D_{n-1}=\frac{u_{1, n}}{S_{n}} T_{1, n}+\frac{\gamma-1}{\gamma} \frac{u_{1, n}}{\rho_{1, n}}\left(\frac{\partial P}{\partial x}\right)_{m}+1 / 2 \\
& +\frac{\gamma-1}{\gamma} u_{1, n} S_{n}\left[S_{5}\left(u_{1, n}+1-u_{1, n}\right)\right. \\
& +\mathrm{s}_{4}\left(\mathrm{u}_{1, \mathrm{n}}-\mathrm{u}_{1, \mathrm{n}}-1\right)^{2} \tag{34}\\
& Y_{8}^{\prime}=u_{1, n} \frac{S_{n}^{\prime}+1+S_{n}^{\prime}}{\Delta \Psi_{1}\left(\Delta \Psi_{1}+\Delta \Psi_{2}\right)} \tag{35}\\
& Y_{9}^{\prime}=u_{1, n} \frac{S_{n}^{\prime}+S_{n}^{\prime}-1}{\Delta \Psi_{2}\left(\Delta \Psi_{1}+\Delta \Psi_{2}\right)} \tag{36}\\
& S^{\prime}=\rho u\left(\frac{\mu}{P_{r}}+\frac{\rho E}{P_{r t}}\right) \tag{37}
\end{align*}
$$

Coefficient Matrix

The general equation

$$
A_{n}-1 X_{n}+B_{n-1} X_{n}+1+C_{n-1} X_{n-1}=D_{n-1}
$$

with boundary conditions

$$
\begin{aligned}
& \mathrm{u}_{1}=0 \\
& \mathrm{~T}_{1}=\mathrm{T}_{2} \\
& \mathrm{U}_{\mathrm{n}}=0 \\
& \mathrm{~T}_{\mathrm{n}}=\mathrm{T}_{\mathrm{n}}-1
\end{aligned}
$$

can be written for each of the n grid points with the result:

$$
\left[\begin{array}{llllll}
1 & -\delta & & \\
c_{1} & A_{1} & B_{1} & 0 & 0 & - \\
& C_{2} & A_{2} & B_{2} & 0 & - \\
& & C_{n-3} A_{n-3} B_{n-3} & 0 \\
& & & C_{n-2} A_{n}-2 B_{n}-2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{n}-2 \\
x_{n}-1 \\
x_{n}
\end{array}\right]=\left[\begin{array}{l}
0 \\
D_{1} \\
D_{2} \\
D_{n}-3 \\
D_{n}-2 \\
0
\end{array}\right]
$$

where $\delta=0$ in momentum equation
$\delta=1$ in energy equation
The first and second equations are:

$$
\begin{aligned}
& \mathrm{X}_{1}-\delta \mathrm{X}_{2}=0 \\
& \mathrm{C}_{1} \mathrm{X}_{1}+\mathrm{A}_{1} \mathrm{X}_{2}+\mathrm{B}_{1} \mathrm{X}_{3}=\mathrm{D}_{1} \\
& \mathrm{~A}^{\prime}{ }_{1} \mathrm{X}_{2}+\mathrm{B}_{1} \mathrm{X}_{3}=\mathrm{D}_{1}
\end{aligned}
$$

in which

$$
A_{1}^{\prime}=C_{1} \delta+A_{1}
$$

The last two equations are:

$$
\begin{aligned}
& C_{n}-2_{n} X_{n}+A_{n-2} X_{n-1}+B_{n}-2_{n}=D_{n-1} \\
& -\delta X_{n-1}+X_{n}=0
\end{aligned}
$$

Combining these

$$
\mathrm{C}_{\mathrm{n}}-2^{\mathrm{X}_{\mathrm{n}}-2+A_{n}^{\prime}-2^{X_{n}}-1=D_{n}-1}
$$

in which

$$
A_{n-2}^{\prime}=A_{n-2}+B_{n-2} 2^{\delta}
$$

With these two results the order of the matrix can be reduced to $\mathrm{n}-2$.

$$
\left[\begin{array}{lllll}
A_{1}^{\prime} & B_{1} & 0 & - & - \\
C_{2} & A_{2} & B_{2} & 0 & - \\
& & C_{n-3} A_{n-3} B_{n}-3 \\
& & & C_{n-2}^{A_{n}^{\prime}-2}
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
x_{3} \\
x_{n}-2 \\
x_{n}-1
\end{array}\right]=\left[\begin{array}{l}
D_{1} \\
D_{2} \\
D_{n-3} \\
D_{n}-2
\end{array}\right]
$$

This is solved by the Thomas Algorithm as indicated in References
(2) and (5).
3.6 Boundary Conditions

$$
\begin{aligned}
& \text { The boundary conditions of the walls are: } \\
& y=y_{w}(x) \quad \text { (upper and lower walls) } \\
& K=K_{W}(x) \quad \text { (wall curvature) } \\
& \Psi=\text { const } \\
& u=0 \\
& \frac{\partial T}{\partial \Psi}=0 \quad \text { (adiabatic wall) }
\end{aligned}
$$

In the program provision is made for the calculating wall curvatures from wall coordinates x, y using a least-squares smoothing procedure. Wall coordinates must be specified with sufficient precision to estimate realistic values of wall curvature.

3.7 Quasi-Orthogonal Coordinate System

To preserve orthogonality of the coordinate system the step sizes $\Delta \mathrm{S}$ must be adjusted according to:

$$
\begin{align*}
\frac{\partial \Delta s}{\partial n} & =\frac{\Delta s}{R} \\
\text { or } \quad \frac{\partial \Delta s}{\partial \Psi} & =\frac{\Delta s}{\rho u R} \tag{38}
\end{align*}
$$

Starting with an arbitrarily chosen step size at the nozzle centre line the step size for adjacent streamines is calculated with the finite-difference equivalent of this formula, using mean values of curvature, density, velocity and step size between the neighboring streamlines.

Streamline curvature ($\mathrm{K}=1 / \mathrm{R}$) is assumed to decay exponentially with distance from the wall according to:

$$
\begin{equation*}
K=K_{1}\left(1-\frac{\Delta n_{1}}{w}\right) \exp \left(-\alpha\left|K_{1}\right| \Delta n_{1}\right)+K_{2} \frac{\Delta n_{2}}{w} \exp \left(-\alpha\left|K_{2}\right| \Delta n_{2}\right) \tag{39}
\end{equation*}
$$

in which K_{1} (positive) and K_{2} (negative) are the curvatures of the lower and upper walls, respectively. $\Delta \mathrm{n}_{1}$ and $\Delta \mathrm{n}_{2}$ are the distances along the streamline orthogonal to the lower and upper walls, respectively and w is the sum of the two. The decay constant α appears to have a value 2 for potential flow around a cylinder, but in these boundary layer flows a value of 4 seems more appropriate, from comparisons of measured and calculated pressure distributions. The contribution of the first term to streamline curvature in the vicinity of the upper wall is negligible, and vv.

3.8 Solution Procedure

The first step in the solution is to determine all flow properties on the initial line. First the radii of curvature of the two circular arcs are determined iteratively to satisfy the conditions of mutual tangency at the nozzle centerline, and orthogonality to the nozzle centerline and to the two walls. The initial stagnation conditions are given and assumed the same for secondary and tertiary flows (See Fig. 1). The primary mass flow and the sum of primary and secondary mass flow rates are also given. The initialization then solves iteratively for the split between secondary and tertiary flow rates, and the values of all properties along the initial line under the requirement of mass conservation, and assuming isentropic flow up to the initial line. The solution procedure accommodates substantial effects of streamline curvature, but will not succeed if the total ingested flow rate is so small that the local velocity e.g. at the lower side of the nozzle (Fig. 1) is negative. The
initialization procedure also selects the location of streamline node points, with very close spacing required near the walls, and moderately close spacing in the inittally-thin shear layers of the jet.

For a set of n streamlines and known boundary conditions, equations (22) and (30) each provide a set of $n-2$ conditions to solve for the unknown velocities and temperatures. Each set of equations can be solved simultaneously if the pressures at downstream node points are known or assumed. For calculation of flow between curved channel walls, the pressure gradient along one streamline is assumed and the downstream pressure on that streamline determined from this gradient and the arbitrary step size. Pressures at corresponding node points on adjacent streamlines are determined by use of the finite-difference form of Equation (6). With the downstream pressures determined, equations (22) and (30) are solved to provide downstream velocities and temperatures, and subsequently all other properties at downstream points. If the calculated value of the outer boundary location does not agree satisfactorily with the actual wall geometry, a new value of the pressure gradient is chosen.

Section 4

TEST PROGRAM

A two dimensional experimental rig was designed, fabricated, and installed in our laboratory. The purpose of the experimental work was to obtain test data for verification and adjustment of the computer analysis. The experimental program is described in this section.

4.1 Experimental Apparatus

4.1.1 Two Dimensional Ejector

The two-dimensional ejector consists of a slot type primary nozzle and a two dimensional mixing section. The arrangement of the ejector system for the four nozzle positions tested is shown in Figures 2 and 3 and the positions are listed below.

Test 非	Nozzle Angle (β)	Spacing (t) (inches)
$1 \& 2$	22.5°	0.80
$3 \& 4$	45.0°	0.80
$5 \& 6$	45.0°	1.31
$7 \& 8$	67.5°	0.70

The nozzle angle (β) is defined as the angle measured between the vertical and the line running from the center of the coanda arc to the centerline of the nozzle at the throat while the spacing (t) is defined as the perpendicular distance of closest approach between the nozzle and the coanda surface.

A picture of the primary nozzle is shown in Figure 4. The discharge slot is $0.1215^{\prime \prime} \pm .0005^{\prime \prime}$ by $8.00^{\prime \prime}$ with rounded corners. The side walls are made from one quarter inch carbon steel. Four internal supports prevent substantial widening of the discharge slot when the nozzle is pressurized. Dial indicator measurements performed in previous tests revealed that the slot opened up by about 0.0008 inches in the center of the nozzle, about $0.0004^{\prime \prime}$ at the
quarter width location, and zero near the ends of the slot. This corresponds to an increase in nozzle slot area of 0.33% when pressurized. Stagnation pressure measurements were made with a kiel probe from side to side at two different axial locations and were found to be uniform across the $8^{\prime \prime}$ width of the slot (See Appendix A).

Aluminum pieces on which the nozzle pattern had been cut at the desired angle were bolted to the inside of the side plates to position the nozzle in the inlet to the mixing section (Figs. 6, 7, 8). The nozzle was held firmly in place by threaded rods connectingbrackets on each side of the nozzle to brackets attached to busses welded to the side plates of the mixing section (See Figs. 6, 7, 8).

The mixing section, as shown in Figure 2, consists of a rectangular variable area channel formed by two identically contoured aluminum plates, two flat side plates and two dissimilar curved inlet pieces. The upper bellmouth, the coanda surface, is a constant radius ($r=5.00$ inch). The nozzle is positioned close to this surface and relies upon the coanda effect to turn the primary flow smoothly into the test section. The lower inlet consists of a bellmouth piece and a straight section. The pictures in Figures 6, 7, and 8 show three views of the mixing section. The two contoured plates were positioned in symmetrical locations about the centerline to form the channel tested (throat height of $1.875^{\prime \prime}$). The width of the mixing section is a constant 8.00 inches along the entire length. The variation of channel height with distance from the nozzle discharge is given in Table 1. Three plexiglass windows were installed along each side of the mixing section so that tufts of wool mounted inside could be observed for indications of flow separations and unsteadiness.

The screened mixing section inlet is shown on Figure 9. Earlier tests (Ref. 2) without the extended inlet showed that highly swirling corner vortices were formed in the four corners of the bellmouth and extended into the test section. The extended inlet eliminated the corner vortices and improved the stability of the ejector flow and static pressures. Four sets of screened inlets were used in the testing to accommodate the four nozzle positions.

4.1.2 Facilities for Ejector Tests

Three subsystems are required for the operation, control and measurement of the air flow through the two dimensional ejector (Figure 9). These three subsystems referred to as the primary flow, the mixed flow, and the boundary layer suction systems are discussed below.

The primary air flow is supplied by a 900 scfm non lubricated screw compressor at 100 psig and an equilibrium operating temperature between $100^{\circ} \mathrm{F}$ and $140^{\circ} \mathrm{F}$. The primary air flow rate and pressure are controlled by an automatic pressure regulator capable of maintaining pressure to within $\pm .1$ psi of a set value. The mass flow is measured by a standard 3 inch Danial orifice system. A flexible hose connects the primary orifice system to the nozzle.

The mixed flow system consists of a plenum chamber and an 8 inch orifice system. Two different operating flow rates were achieved by the following equipment combinations.

1. Maximum Flow Rate at Atmospheric Discharge - Mixed flow discharges directly into the laboratory.
2. Reduced Flow Rate at Back Pressure - The plenum and orifice are connected to the mixing section discharge.

Mixed orifice flow rates were obtained only for the reduced flow rate conditions. The plenum is shown connected to the mixing section by flexible hose in Figure 10.

The suction system removes the boundary layer flow from each of the four corners of the mixing section to prevent wall boundary layer separation in the ejector. Figure 11 shows six $3 / 4$ inch tubes connected to the top corners of the mixing section. A total of 12 tubes (top and bottom) collect the boundary layer flow from the four corner suction slots which are 0.060 inches wide and are machined into the sides of the contoured plates (See Figs. 12 and 13). The four tubes at one X location are connected to a single large tube under the mounting table (Fig. 14). The three large tubes are each
connected to a large tank plenum through a separate throttle valve. A Roots blower draws the air through the suction system and through a three inch orifice system. The suction system is capable of removing about 1% and 2% of the mixing section flow rate. During the operation of the ejector rig, the boundary layer suction system was used to prevent flow separation in the mixing section diffuser.

The ejector system was operated by starting the primary air flow at low pressure and flow rate. The primary nozzle pressure was increased to 22 psig and the suction was then turned on. Approximately $1 / 2$ hour of warm up time was allowed before testing.
4.2 Instrumentation and Data Reduction

4.2.1 Instrumentation

The following instrumentation was used in the test facility.

Primary Flow System
Flow Rate - Standard 3" orifice system
Nozzle Pressure - Bourdon Pressure Gage accurate to $\pm .10 \mathrm{psig}$
Nozzle Temperature - Copper Constantan thermocouple with digital readout

Mixed Flow System

Flow Rate - 8" orifice system for reduced flow rate conditions (Tests 2, 3, 6 and 7)

Static Pressures - 77 wall static pressure taps located throughout the mixing section on both top and bottom contoured plates and on both bellmouth pieces (See Figs. 12 and 13). As shown in Figure 10, the static taps were connected to a valving system which permitted easy determination of individual static pressures without the need for a large

> manometer bank. Tygon tubing was used to connect the taps to four pressure sampling valves each capable of handling 24 inputs. These pressure valves were in turn connected through a switching network to any of 3 well type manometers which permitted the accurate determination of pressures over the range of +25 inches of water gage to -75 inches of water gage.

Traverse Data - Stagnation pressure and temperature profiles were measured at up to 11 axial locations using a $1 / 8^{\prime \prime}$ diameter stem kiel pressure-temperature probe. Both a mercury manometer and a pressure transducer coupled with a direct digital readout were used for pressure measurements. A direct digital readout was used to indicate total temperatures.

Suction Flow System

Flow Rate - 3" orifice system
Suction Pressure - Bourdon type pressure gage

4.2.2 Data Reduction Procedures

Three types of data reduction calculations were needed in this program.

1. Standard orifice calculations
2. Velocity profile calculations
3. Integration of velocity profiles to calculate flow rate

All of these calculations were programmed on a time sharing computer. The orifice calculations were programmed as a subroutine to the main data reduction program using standard orifice equations and ASME orifice coefficients. The equations used in the determinations of velocity were included in the main program and are the standard compressible flow relationships which
can be found in most fluid mechanics text books.

The integrated mass flow rate for each traverse was computed by integrating the product of the local velocity and local density over a two dimensional section of unit width. The program also calculated the "mass-momentum" stagnation pressure at each traverse section using the equations presented on pages 52 and 53 of Reference 6. The mass momentum method determines the flow conditions for a uniform velocity profile which has the same integrated values of mass flow rate, momentum, and energy as the non-uniform velocity profile actually present.

4.2.3 Experimental Uncertainty

Orifice Calculations
The techniques presented in Reference 7 were applied to the primary flow orifice calculations and the mixed flow orifice calculations. The following uncertainty results were obtained:

Orifice	Pressure (psig)	Uncertainty
Primary Nozzle	22 psig	$\pm 0.8 \%$
Mixed	slightly above	$\pm 1.3 \%$
	atmospheric	

Static Pressure

Uncertainty in the wall static pressures occur mainly because of fluctuations in the manometer liquid columns caused by unsteadiness in the flow. The degree of these fluctuations may therefore be used as an indication of the uncertainty of the pressure readings. For the unrestricted maximum flow rate condition the wall static pressure fluctuation reached a maximum of ± 1.0 inch of water, while for the reduced flow rate condition the maximum reached only ± 0.4 inch of water.

Integrated Mass Flow Rate

The mass flow rate calculated by integrating the results of the
stagnation pressure and temperature traverses is influenced by many items and is therefore very difficult to estimate. The following items all contribute to the uncertainty in integrated mass flow rate:

1. unsteady wall static pressures
2. unsteady traverse stagnation pressures
3. instrument accuracy of the pressure transducer and digital readout
4. inaccuracies due to the effect of steep velocity gradients on sensed pressure
5. inaccuracies due to probe effect near the mixing section walls
6. inaccuracy in probe position
7. assumptions and inaccuracies associated with the data reduction computer program
8. data recording errors or computer data input errors
9. errors caused by loose connections in the pneumatic sensing tube between the probe and the transducer
10. non-two-dimensional flow distribution across the width of the 8 inch mixing section

A11 of these effects could combine to give both $a \pm$ uncertainty band and a fixed error shift.

One measure of the uncertainty due to these effects is obtained from the limits of individual integrated mass flows for each test run. These values are listed on Table 2 for all of the test runs with traverse data. The results presented on Table 2 show an average variation of +4.4 and -3.0 or a total spread of 7.4%. These values only include the effect of variable uncertainty and exclude the uncertainty due to probe errors in steep gradients and near walls and integration assumptions. Both of the excluded errors probably cause the integrated mass flows to be too large because the probe tends to measure too high near the wall and the integration program neglects wall boundary layers.

4.3 Test Schedule and Results

A total of eight ejector tests were carried out on one mixing section configuration ($1.875^{\prime \prime}$ height) and at one nozzle pressure, 22 psig. Four different nozzle positions were tested each at atmospheric discharge and at a back pressure condition. Figure 3 summarizes the conditions for each of the tests. In each test, readings were taken from the wall static pressure taps, orifice system instruments, and from the total pressure and temperature taps on the traversing probe. The number and location of traverses varied from test to test. The traverse locations and a summary of the data presented for each test is given in Table 3.

The data presented in this report falls into the following categories:

Test Conditions and Mass Flows
Static Pressures
Maximum Local Pressures
Velocity Profiles
Richardson Number Coefficient Sensitivity
Streamline Curvature Decay Sensitivity

A summary of the figures and tables used to present data from each test run is presented in Table 3. Discussion of the data will be taken up in the next section.

A sample of the static pressure data as taken is tabulated in Appendix A for Tests 7 and 8.

Section 5

COMPARISON OF ANALYTICAL AND TEST RESULTS
5.1 Test Conditions and Mass Flows

Table 5 and Figure 15 show a comparison of
a) the total flow rate measured by an orifice downstream of the diffuser
b) total flow rates determined by integration of measured velocity profiles at various sections in the test section
c) flow rates inferred by use of the computer program with best fit to the static pressure in the throat region

In general the flow rates determined by methods (a) and (c) agreed satisfactorily within approximately 6%. Flow rates estimated by integration of experimental velocity profiles at various stations were consistent with one another within approximately 8% but disagreed with the results of (a) and (c) up to 15%. Previous experience (Ref. 2) also showed that integration of experimental velocity profiles yielded too high a mass flow. In that case the discrepancy was of the order of 6%. The velocities were determined experimentally by the use of a Kiel probe to determine a local stagnation pressure coupled with the assumption that the local static pressure was equal to the wall static pressure. The velocities were determined in this way only for stations downstream of high wall curvature. The disagreement between total flows determined by integrating velocity profiles and those obtained from orifice measurements may be due to the effect of high shear and turbulence level in these flows upon the apparent stagnation pressure reading of the Kiel probe. In view of these discrepancies reliance was placed in these tests upon the mass flows determined by methods (a) and (c).

The accuracy of the primary flow measurements determined by orifice readings for the primary flow are of the order of 3%. The secondary flow determinations by orifice have an apparent uncertainty level of + or -1.5%.

Figure 16 shows a comparison between the static pressures predicted using this computer program and those measured with the symmetrical diffuser employed in the NAS-50 program (Reference 2) for which wall curvatures were very small and had little effect upon the axial static pressure profile. This comparison which is included as a check point in this discussion shows that the curvature program predicts the wall static pressures reasonably well when the nozzle is located at the mid-plane of a symmetrical test section.

Figures 17 through 20 show experimental values of the wall static pressures measured for eight experimental cases with the unsymmetrical test section and with the nozzle located at various distances from the curved wall and at various angles with respect to the test section axis. In general there is a considerable difference in static pressure between top and bottom walls with the lowest pressure being near the top wall which had the highest curvature and near which the nozzle was located. These low pressures between the top wall and the nozzle were accompanied by velocities considerably higher than those in the region between the nozzle and the lower wall. Downstream of the region of considerably high wall curvature the measured wall static pressures were nearly the same on top and bottom walls.

Figures 17 through 20 also show the computed static pressure distributions on the top and bottom walls. In general the agreement between analytical measured results is considerably better with high coanda effect, i.e., large turning angle (up to 67.5°) and small spacing between the nozzle and the wall. The greatest discrepancies between analytical and experimental results are associated with those cases where the calculation method indicates that the flow is on the verge of separation, for example, cases 1 and 2 . In cases 5 and 6 the static pressure distribution on the top wall near the nozzle is quite different from the calculated value. Here the spacing between nozzle and wall is large at 1.10 inches. This large venting of the flow between the nozzle and the wall appears to have substantially diminished the Coanda effect lessening the tendency of the flow to cling to the upper wall and increasing the possibility of separation in the region immediately
downstream of the nozzle. In the region of separation the flow calculation becomes somewhat uncertain and experimental details were insufficient to ascertain whether the flow were actually separated in that region. However the degree of agreement between measured and calculated results was substantially poorer for cases 5 and 6 with large venting between the nozzle and the wall.

In general the reasons for differences between the analytical and calculated results are as follows:

1. Flow Separation - The experimental results for cases 1 and 2 and case 6 appear to be on the verge if not actually past the margin of flow separation, as indicated by the calculated values of the wall shear stress or the velocities near the wall for those cases.
2. Initialization Approximations - As explained in the earlier section of the report, the initialization process assumes a circular arc starting line for each of the two regions between the nozzle and the upper and lower walls. The initialization process is assumed to have isentropic flow up to the starting line where the nozzle has zero thickness, so an approximation is used for estimating the decay of streamline curvature with distance away from the wall. In the initialization process it was found that the calculated wall static pressure distribution immediately downstream of the nozzle was very sensitive to the ratio of the flows between nozzle and upper and lower walls respectively. This flow ratio was not available experimentally and was determined in the initialization process by requiring smooth continuity of static pressure along the circular arc starting lines. The initialization process was also sensitively dependent upon decay of wall curvature away from the upper and lower walls, especially in the jet zone.
3. The Use of a Quasi-Orthogonal Coordinate System - In the calculation method curvatures were estimated by the use of
equation 39. In principle this estimation could have been used for a first approximation to determine the entire velocity field then subsequent iterations could have utilized the calculated velocities to determine a second approximation for streamline curvature. However this approach was considered excessively time-consuming for the present problem and not sufficiently justified by the requirements of computing vented Coanda flows where the nozzle spacing is not large and the wall curvature is substantial. The major curvature effects are experienced in a region close to the wall itself.
4. The Effect of Streamline Curvature on Jet Mixing Turbulent Shear Stresses - As pointed out earlier, the first-order effects of curvature on turbulent mixing length have been estimated by Bradshaw. An approximate expression for the dependence of mixing length upon Richardson number is included in the calculation method. However this approximation is not well validated by experimental data and includes curvature effects significant1y larger than those considered by Bradshaw, hence, this adds another element of uncertainty to the flow calculation.

Figure 21 shows the effect of varying the Richardson number coefficient (from 3 to 10) upon a computed static pressure distribution along the wall for case 6. This range of Richardson coefficient may be thought to represent the uncertainty in the magnitude of the effect but suggests very little alteration on computed wall static pressure distributions. Increasing the value of the Richardson number coefficient tends to decrease the turbulent shear stresses in the upper part of the jet mixing zone and to increase them on the lower side.

Figure 22 shows the sensitivity of the calculation of wall static pressures for case 6 upon the assumed value of the streamline curvature decay coefficient used in equation 39. The effects of variation of this coefficient are naturally unimportant in the downstream region where curvatures are small
but can be quite significant in the region for a less than 0 , i.e., close to the zones of high wall curvature.
5.3 Locus of Maximum Stagnation Pressure

Figures 23 through 30 show the computed location of the line of maximum stagnation pressure from the nozzle to a point far downstream in the test section. Also shown are test data points taken from the maximum stagnation pressure in the upstream zone and from the maximum velocity, i.e., maximum stagnation pressure for the downstream region in which curvature effects are negligible.

As with the static pressure comparisons the best agreement between calculated and measured values of the locations of maximum stagnation pressure correspond to those experimental cases in which there was the largest degree of Coanda turning and the smallest spacing between the nozzle and the wall. This is shown particularly by the comparison for cases 7 and 8. In other cases, for example, cases 5 and 6 (with large venting between the large spacing between the nozzle and the wall) the computed location of maximum stagnation pressure shows a substantial deviation from the experimental results. These two cases as pointed out earlier appear to show a substantially diminished Coanda effect. The jet clearly does not cling as closely to the wall as the computer model predicts. In general the differences between computed and experimental results may be ascribed to the reasons mentioned earlier for the static pressure discrepancies.

Figures 31 and 32 show the total pressure profiles across the mixing section. The analytical prediction shown with continuous lines shows a small deviation from the experimental results in the tertiary flow that is near the bottom wall.

5.4 Velocity Profiles

Figures 33 through 40 show comparisons of non-dimensional velocity profiles at various locations throughout the test section for each of the eight cases investigated. Owing to the uncertainty in velocity determination as
evidenced by the integrated mass flow of discrepancy being up to 15% the large uncertainty level must be attached to each velocity determination. Hence, the rather substantial discrepancies between experimental and computed velocities are not conclusive indications of the degree of reliability of the analytical method. The experimental velocity profiles for Runs 5 and 6 show that the maximum velocity region has been shifted towards the bottom wall indicating a reduced coanda effect at large nozzle spacing.

Section 6

GENERAL CONCLUSIONS

1. An approximate method has been developed for calculation of vented Coanda flows in ducts. A method has been confirmed by experimental data with angles of turning up to 67.5° and for close spacing between the nozzle and the curved wall. At larger spacing the model indicated flow separation which limits the availability of the model to represent the flow profile in the downstream zone.
2. A quasi-orthogonal method of computation, which is more rapid than an iterative solution of the elliptic boundary value problem, appears best suited to ducted Coanda flows with low venting and large curvature. It requires approximate specification of streamline curvature decay with distance from the wall, and thus is best suited to cases in which the jet sheet is located close to the wall. It is desirable to extend the use of the method to non-vented Coanda flows.
3. Though the effects of streamline curvature on mixing length are known only for small curvature, and perhaps uncertain within a factor of 3, a simple correction for mixing length in terms of Richardson number appears to provide a reasonable estimate for jet curvatures d / R of the order of 0.02 .
4. The flow model developed provides good agreement with secondary and primary mass flows measured with orifice plates. Integration of velocity profiles failed to provide satisfactory agreement with orifice measurements of mass flow apparently due to the effects of a high turbulence and high shear in the mixing zone on the stagnation pressure readings of a Kiel probe.
5. The flow model predictions were in good agreement with measured wall static pressures except in the immediate region of the nozzle apparently due to upstream boundary layer and nozzle thickness effects, and due to incipient flow separation in certain of the tests.
6. A sensitive measure of the degree of agreement between flow model and experimental results is the location of the maximum stagnation pressure line in these highly curved flows.

Sample Tabulation of Static Pressures (Tests 7 and 8)

Tap Position	Wall Static Pressure - inches of water gage			
	Run 7		Run 8	
	Top Wall	Bottom Wall	Top Wall	Bottom Wall
-5.50	-	- 1.15	-	- 2.10
- 5.00	-	- 1.35	-	- 2.60
- 4.50	-11.60	- 1.50	-12.30	-2.95
- 4.00	-12.90	- 1.80	-13.70	- 3.65
- 3.50	-15.05	- 2.00	-16.10	- 4.15
- 3.00 m	-17.45	- 2.05	-18.95	- 4.30
- 2.50	-19.10	- 2.12	-21.30	- $\overline{4.63}$
- 2.00	-19.90	- 2.20	-22.95	- 4.90
- 1.50	-20.15	- 2.50	-24.30	- 5.85
- 1.00	-19.85	- 2.90	-25.50	- 6.95
- 0.50	-21.75	- 3.35	-28.97	- 8.45
$0.00 \frac{1}{4}$	-26.93	- 4.00	-36.99	-10.45
0.50	-22.63	- 4.85	-33.76	-13.15
1.00	-18.35	- 5.60	-31.62	-15.80
1.50	-15.90	-6.85	-30.80	-19.80
2.00	-15. 20	- 7.85	-32.30	-23.30
2.50	-13.50	- 8.55	-31.96	-25.70
3.00	-11.05	- 8.50	-30.06	-26.59
3.50	-	-8.90	-	-28.29
4.00	-10.90	- 8.65	-32.44	-29.17
4.50	-	- $\overline{8.40}$	-	-30.23
5.00	- 9.40	- 8.30	-32.30	-30.94
5.50	- 8.90	- 8.30	-32.16	-31.62
6.50	$-\overline{8.82}$	- $\overline{8.07}$	-33.15	-32.91
7.50	-10.25	- 9.25	-37.06	-35.43
8.50	-9.80	- 9.35	-37.06	-36.04
10.00	-	- 9.55	-	-36.96
11.50	- 5.75	- 6.00	-31.48	-31.42
12.50	$-\overline{2.85}$	- 2.55	-26.59	-25.88
14.50	$+2.85$	+ 2.85	-17.85	-17.60
16.50	$+7.00$	+ 7.00	-	-11.18
18.50	+9.75	+9.75	- 7.65	- 7.05
20.50	+11.90	+11.90	- 4.10	- 3.75
29.50	+.3. 3.65	+13.65	- 1.95	- 1.30

[^0]
Finite Difference Equations

This Appendix provides the detailed derivations of the finite difference equivalents of the momentum and energy conservation equations (5) and (7) respectively. For convenience the following definitions are introduced:

$$
S=\rho u(\mu+\rho E)
$$

and

$$
S^{\prime}=\rho u\left(\frac{\mu}{P_{r}}+\frac{\rho E}{P_{r t}}\right)
$$

These definitions permit the momentum and energy equations to be expressed as:

$$
\begin{align*}
& u \frac{\partial u}{\partial X}=-\frac{1}{2 \rho} \frac{d P}{d X}+u \frac{\partial}{\partial \psi}\left[S \frac{\partial u}{\partial \psi}\right] \tag{B-1}\\
& u \frac{\partial T}{\partial X}=\frac{\gamma-1}{2 \rho \gamma} u \frac{d P}{d X}+\frac{\gamma-1}{\gamma} u S\left[\frac{\partial u}{\partial \psi}\right]^{2}+u \frac{\partial}{\partial \psi}\left[Q \frac{\partial T}{\partial \psi}\right] \tag{B-2}
\end{align*}
$$

Before approximating these equations with finite difference relations a system of grid lines parallel to the X and ψ axes must be introduced. As illustrated in Figure B-l, a nodal point coincides with each intersection of these lines. Lines parallel to the ψ axis are termed m-lines and those parallel to X axis $\mathrm{n}-1 \mathrm{ines}$. Each node is given a double subscript, the first being the number of the m-1ine passing through it, and the second the n-line number.

Figure B-1 Definition of Grid Lines for Finite Difference Solution

The values of the variables on the $m=1$ line are the known initial conditions. The conservation equations express for each node on the $m=2$ line its interrelation with other nodes on the $m=2$ line and nodes on the $m=1$ line. If $m=2$ line nodes are only related to nodes which lie on the $m=1$ line, the finite difference scheme is termed explicit. If an $m=2$ node is also related to a number of other $m=2$ nodes, the scheme is termed implicit (See Figure B-2).

EXPLICIT

IMPLICIT

Figure B-2
Diagrams of Explicit and Implicit Solutions

The implicit form of finite difference schemes leads to a series of N simultaneous algebraic equations relating the known initial conditions on the $m=1$ line and the unknown variables on each of the N nodes on the $m=2$ line. After solution of these simultaneous equations, the variables on the $m=3$ line are expressed in terms of the known values on the $m=2$ line. Proceeding in this manner, a solution to the complete flow field is marched out. Although simpler to program, the explicit scheme shows unstable characteristics if the m-lines are widely spaced relative to the n-line spacing. Implicit schemes show much more stable characteristics and therefore allow much larger m-line spacings, thus reducing computation times. The computer procedure presented in this report employs a system of implicit finite difference approximations which are defined using the notation described in Figure B-3.

Figure B-3
Implicit Finite Difference Term Definition

The velocity at nodes $n+1$ and $n-1$ can be expressed in terms of a Taylor Series expanded about node n, on the same m-1ine,

$$
\begin{aligned}
& u_{n+1}=u_{n}+\left.\Delta \psi_{1} \frac{\partial u}{\partial \psi}\right|_{n}+\left.\frac{\left(\Delta \psi_{1}\right)^{2}}{2} \frac{\partial^{2} u}{\partial \psi^{2}}\right|_{n}+\text { higher order terms } \\
& u_{n-1}=u_{n}-\left.\Delta \psi_{2} \frac{\partial u}{\partial \psi}\right|_{n}+\left.\frac{\left(\Delta \psi_{2}\right)^{2}}{2} \frac{\partial^{2} u}{\partial \psi^{2}}\right|_{n}+\text { higher order terms }
\end{aligned}
$$

Combining these equations to eliminate $\left.\frac{\partial^{2} u}{\partial \psi^{2}}\right|_{n}$ yields,

$$
\frac{\left(\Delta \psi_{2}\right)^{2}}{2} u_{n+1}-\frac{\left(\Delta \psi_{1}\right)^{2}}{2} u_{n-1}=\frac{u_{n}}{2}\left(\Delta \psi_{2}^{2}-\Delta \psi_{1}^{2}\right)+\left.\frac{\partial u}{\partial \psi}\right|_{n} \frac{1}{2}\left(\Delta \psi_{1} \Delta \psi_{2}^{2}+\Delta \psi_{2} \Delta \psi_{1}^{2}\right)
$$

$$
+ \text { higher order terms }
$$

Neglecting terms of the order $(\Delta \psi)^{3}$ and higher, yields

Defining $S_{5}=\frac{\Lambda \psi_{1}}{\Lambda \psi_{2}\left(\Lambda \psi_{2}+\Lambda \psi_{1}\right)}$
and $S_{4}=\frac{\Lambda \psi_{2}}{\Lambda \psi_{1}\left(\Lambda \psi_{2}+\Lambda \psi_{1}\right)}$
yields

$$
\begin{equation*}
\left.\frac{\partial u}{\partial \psi}\right|_{n}=S_{4}\left(u_{n}+1-u_{n}\right)+S_{5}\left(u_{n}-u_{n}-1\right) \tag{B-5}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left.\frac{\partial T}{\partial \psi}\right|_{n}=S_{4}\left(T_{n}+1-T_{n}\right)+S_{5}\left(T_{n}-T_{n}-1\right) \tag{B-6}
\end{equation*}
$$

The second derivative term in the momentum equation is approximated using the following Taylor Series expansions,

$$
\begin{align*}
\left(s \frac{\partial u}{\partial \psi}\right)_{n+1 / 2}= & s\left(\frac{\partial u}{\partial \psi}\right\}_{n}+\frac{\Lambda \psi_{1}}{2} \frac{\partial}{\partial \psi}\left[\left(s \frac{\partial u}{\partial \psi}\right)_{n}\right]+\frac{\Lambda \psi_{1}^{2}}{4} \frac{\partial^{2}}{\partial \psi^{2}}\left[\left(S \frac{\partial u}{\partial \psi}\right)_{n}\right] \\
& + \text { higher order terms } \tag{B-7}\\
\left(s \frac{\partial u}{\partial \psi}\right\}_{n-1 / 2} & =\left(s \frac{\partial u}{\partial \psi}\right)_{n}-\frac{\Delta \psi_{2}}{2} \frac{\partial}{\partial \psi}\left[\left(S \frac{\partial u}{\partial \psi}\right)_{n}\right]+\frac{\Delta \psi_{1}^{2}}{4} \frac{\partial^{2}}{\Delta \psi^{2}}\left[\left(S \frac{\partial u}{\partial \psi}\right\}_{n}\right]
\end{align*}
$$

$$
\begin{equation*}
+ \text { higher order terms } \tag{B-8}
\end{equation*}
$$

Neglecting terms of the order of $\frac{\Lambda \psi^{2}}{4}$ and higher yields,

$$
\begin{align*}
\frac{\partial}{\partial \psi}\left(S \frac{\partial u}{\partial \psi}\right)_{n} & =\left[\left(S \frac{\partial u}{\partial \psi}\right)_{n}+1 / 2-\left(S \frac{\partial u}{\partial \psi}\right)_{n}-1 / 2\right]\left[\frac{2}{\Lambda \psi_{1}+\Lambda \psi_{2}}\right] \\
& =\frac{1}{\Delta \psi_{1}+\Delta \psi_{2}}\left[\frac{\left(S_{n}+1+S_{n}\right)\left(u_{n}+1-u_{n}\right)}{\Delta \psi_{1}}\right. \\
& \left.-\frac{\left(S_{n}+S_{n-1}\right)\left(u_{n}-u_{n}-1\right)}{\Delta \psi_{2}}\right] \tag{B-9}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\frac{\partial}{\partial \psi}\left[S^{\prime} \frac{\partial T}{\partial \psi}\right]_{n}= & \frac{1}{\Delta \psi_{1}+\Lambda \psi_{2}}\left[\frac{\left(S_{n}^{\prime}+1+S_{n}^{\prime}\right)\left(T_{n}+1-T_{n}\right)}{\Lambda \psi_{1}}\right] \\
& \left.-\frac{\left(S_{n}^{\prime}+S_{n}^{\prime}-1_{1}\right)\left(T_{n}-T_{n-1}\right)}{\Lambda \psi_{2}}\right] \tag{B-10}
\end{align*}
$$

The velocity at a node located at the intersection of the downstream m-line and any n-line u_{2}, n can be expressed in terms of the following Taylor Series,

$$
\begin{equation*}
u_{2, n}=u_{1, n}+\left.\frac{\partial u}{\partial X}\right|_{n} \Delta X+\left.\frac{\partial^{2} u}{\partial X^{2}}\right|_{n}(\Delta X)^{2}+\text { higher order terms } \tag{B-11}
\end{equation*}
$$

Use of the boundary layer equations implies that gradients in the X - direction are much smaller than those in the ψ - direction. Therefore it is permissible to use a simpler approximation of the X - direction derivatives.

Neglecting terms of $(\Delta X)^{2}$ and higher yields,

$$
\begin{equation*}
\left.\frac{\partial \mathrm{u}}{\partial \mathrm{X}}\right|_{\mathrm{n}}=\frac{\mathrm{u}_{2, \mathrm{n}}-\mathrm{u}_{1, \mathrm{n}}}{\Delta \mathrm{X}} \tag{B-12}
\end{equation*}
$$

This approximation is termed "backward-difference".

Similarly,

$$
\begin{equation*}
\left.\frac{\partial T}{\partial \mathrm{X}}\right|_{\mathrm{n}}=\frac{\mathrm{T}_{2, \mathrm{n}}-\mathrm{T}_{1, \mathrm{n}}}{\Lambda \mathrm{X}} \tag{B-13}
\end{equation*}
$$

The only terms in the energy and momentum equations which cannot be approximated using the preceding equations are those containing the pressure gradient $d P / d X$. Assuming this gradient varies linearly throughout the ΔX interval yields:

$$
\begin{equation*}
\frac{d P}{d X}=\frac{1}{2}\left(\left.\frac{d P}{d X}\right|_{m=1}+\left.\frac{d P}{d X}\right|_{m=2}\right) \tag{B-14}
\end{equation*}
$$

Momentum Equation

$$
\begin{align*}
& \text { Combining equations (B-1), (B-9), (B-12) and (B-14) yie1ds: } \\
& u_{1, n} \frac{\left(u_{2, n}-u_{1, n}\right)}{\Delta X}=-\frac{1}{4 \rho_{1, n}}\left[\left.\frac{d P}{d X}\right|_{m=1}+\left.\frac{d P}{d X}\right|_{m=2}\right]+\frac{u_{1, n}}{2 \psi_{n}}\left(\frac{1}{\Delta \psi_{1}+\Delta \psi_{2}}\right) \\
& {\left[\frac{\left(S_{n}+1+S_{n}\right)\left(u_{2, n}+1-u_{2, n}\right)}{\Delta \psi_{1}}-\frac{\left(S_{n}+S_{n-1}\right)\left(u_{2, n}-u_{2, n-1}\right.}{\Delta \psi_{2}}\right]} \tag{B-15}
\end{align*}
$$

This equation can be expressed in the form

$$
\begin{equation*}
A_{n-1} u_{2, n}+B_{n}-1_{2, n}^{u_{2}}+1+C_{n-1}^{u_{2}, n-1}=D_{n-1} \tag{B-16}
\end{equation*}
$$

in which the coefficients are defined by equations (23) through (28) of the main text.

Energy Equation

Combining equations ($B-2$), ($B-5$), ($B-10$), ($B-13$) and ($B-14$) yields

$$
\begin{aligned}
& \frac{u_{1, n}\left(T_{2, n}-T_{1, n}\right)}{\Delta X}=\frac{\gamma-1}{\gamma} u_{1, n} S_{1, n}\left[S_{4}\left(u_{2, n}+1-u_{2, n}\right)\right. \\
& +\mathrm{S}_{5}\left(\mathrm{u}_{2, \mathrm{n}}-\mathrm{u}_{2, \mathrm{n}}-1\right)^{2} \\
& +u_{1, n}\left[\frac{1}{\Delta \psi_{1}+\Delta \psi_{2}}\right]\left[\frac{\left(S_{n+1}^{\prime}+S_{n}^{\prime}\right)\left(T_{2, n+1}-T_{2, n}\right)}{\Delta \psi_{1}}\right] \\
& \left.-\frac{\left(S_{n}^{\prime}+S_{n-1}^{\prime}\right)\left(T_{2, n}-T_{2, n-1}\right)}{\Delta \psi_{2}}\right]+\left(\frac{\frac{\gamma-1}{\gamma} u_{1, n}}{4 \rho_{1, n}}\right]\left[\left.\frac{d P}{d X}\right|_{m=1}+\left.\frac{\mathrm{dP}}{\mathrm{dX}}\right|_{m=2}\right]
\end{aligned}
$$

This equation can be expressed in the form:

$$
\begin{equation*}
A_{n-1} \cdot T_{2, n}+B_{n-1} \cdot T_{2, n+1}+C_{n-1} \cdot T_{2, n-1}=D_{n-1} \tag{B-18}
\end{equation*}
$$

in which the coefficients are defined by equations (31) through (36) of the main text.

APPENDIX C

Solution Procedure

The calculation procedure starts at the upstream flow boundary, where the values of all flow variables must be known or assumed. Specification of the velocity and temperature distribution, dimensionless eddy viscosity, duct and nozzle inlet dimensions, and working fluid, defines all initial conditions.

The known initial conditions, $m=1$ line, are related to the unknown conditions, $m=2$ line, by the previously derived equations, and assumed boundary conditions. These inter-relations form a set of $n-2$ simultaneous algebraic equations, where n is the number of n-lines, and the equations are shown in Appendix B. The resultant matrix of coefficients is tridiagonal in form except for the initial and final rows which only contain two terms. Rapid, exact solutions to this type of matrix are obtained using the Thomas Algorithm, a successive elimination technique, which is described in this Appendix.

The solution for the variables on the $m=2$ line is iterative, because of the presence of the unknown pressure in the momentum equation. The procedure adopted was to estimate the pressure gradient, and solve the equations, using the algorithm. The equations automatically satisfy conservation of mass, momentum, and energy, but only one pressure gradient yields the correct wall geometry. The duct dimension corresponding to the estimated pressure gradient was calculated from the $m=2$ line variables. The pressure gradient was then incremented by a small percentage of its initial estimated value, and the calculation process repeated for a new duct dimension. A third estimate of the pressure gradient was obtained by interpolation between the two calculated, and the actual duct dimension. In almost all the calculations performed to date, this value has been acceptably close, within 0.001%, to the actual duct dimension. If this criterion is not met, a further iteration is applied, and a fourth solution obtained.

The now known variables on the $m=2$ line become the new $m=1$ line variables and the procedure is repeated for another set of $m=2$ line variables. Thus a solution to the complete flow field is marched out.

The difference form of the momentum and energy equation is:

$$
\begin{equation*}
A_{n-1} X_{n}+B_{n-1} X_{n}+1+C_{n-1} X_{n-1}=D_{n-1} \tag{C-1}
\end{equation*}
$$

where X is either u or T. If the number of $n-1 i n e s$ is n, there are $n-2$ equations of the form (1) and two equations expressing the boundary conditions. The first and the last equations represent the boundary conditions, which are:

$$
\begin{equation*}
u_{1}=u_{n}=0 \tag{C-2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\frac{\partial T}{\partial \psi}\right|_{1}=\left.\frac{\partial T}{\partial \psi}\right|_{\mathrm{n}}=0 \tag{C-3}
\end{equation*}
$$

Equation ($\mathrm{C}-2$) can be written in terms of X as follows:

$$
\begin{equation*}
X_{1}=X_{2}=0 \tag{C-4}
\end{equation*}
$$

Equation (C-3) correspondingly becomes:

$$
\begin{equation*}
X_{1}=X_{2} \tag{C-5}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{n-1}=x_{n} \tag{C-6}
\end{equation*}
$$

Equations ($\mathrm{C}-4$), $(\mathrm{C}-5)$ and $(\mathrm{C}-6)$ can be written in terms of X as follows:

$$
\begin{align*}
& X_{n}=K X_{n}-1 \tag{C-7}\\
& X_{1}=K X_{2} \tag{C-8}
\end{align*}
$$

where K is 0 for the momentum equation and unity for the energy equation. Thus, the matrix form of the equation ($\mathrm{C}-1$) is shown on the following page (Table $\mathrm{C}-1$).

Table C-1

Matrix Form of Equation C-1 Designated as Equation C-1

$$
\left[\begin{array}{lllllllllllll}
1 & -K & 0 & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 \\
C_{1} & A_{1} & B_{1} & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 \\
0 & C_{2} & A_{2} & B_{2} & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 \\
0 & 0 & C_{3} & A_{3} & B_{3} & - & 0 & 0 & 0 & - & 0 & 0 & 0 \\
- & - & - & - & - & - & - & - & - & - & - & - & - \\
0 & 0 & 0 & 0 & 0 & - & C_{n-1} & A_{n-1} & B_{n-1} & - & 0 & 0 & 0 \\
- & - & - & - & - & - & - & - & - & - & - & - & - \\
0 & 0 & 0 & 0 & 0 & - & 0 & 0 & 0 & - & C_{n-2} & A_{n-2} & B_{n-2} \\
0 & 0 & 0 & 0 & 0 & - & 0 & 0 & 0 & - & 0 & -K & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{n-1} \\
x_{n} \\
x_{n+1} \\
x_{n-1} \\
x_{n}
\end{array}\right]=\left[\begin{array}{l}
0 \\
D_{1} \\
D_{2} \\
D_{3} \\
D_{n-2} \\
D_{n-1} \\
D_{n} \\
D_{n-2} \\
0
\end{array}\right]
$$

The second equation is:

$$
\begin{equation*}
C_{1} X_{1}+A_{1} X_{2}+B_{1} X_{3}=D_{1} \tag{C-9}
\end{equation*}
$$

Substituting equation (C-4) into this equation yields:

$$
\begin{equation*}
A_{1}^{\prime} X_{2}+B_{1} X_{3}=D_{1} \tag{C-10}
\end{equation*}
$$

where $A_{1}^{\prime}=C_{1}+A_{1}$
The $n^{\text {th }}-1$ equation is:

$$
\begin{equation*}
C_{n}-2_{n-2}+A_{n}-2_{n-1} X_{n-1}+B_{n}-X_{n}=D_{n-2} \tag{C-11}
\end{equation*}
$$

Substituting equation ($C-7$) into this equation yields:

$$
\begin{equation*}
C_{n}-2_{n} X_{n}-2+A_{n}^{\prime}-2_{n} X_{n}-1=D_{n}-2 \tag{C-12}
\end{equation*}
$$

where $A_{n-2}^{\prime}=A_{n-2}+K B_{n-2}$
Thus the n equations ($C-8$) can be reduced to the $n-2$ equations shown on Table C-2.

The Thomas Algorithm
Starting with the first equation, X_{2} can be expressed in terms of X_{3}. The second equation gives X_{3} in terms of X_{4}. Continuing through all the equations until the $n^{\text {th }}-3$ equation gives X_{n-2} in terms of X_{n-1}. Combining this with the last equation gives X_{n-1}. Working backwards through the equations then allows the remaining unknowns to be found. This procedure is most easily applied by defining the following:

$$
\begin{array}{ll}
W_{1}=A_{1}^{\prime} & g_{1}=\frac{D_{1}}{W_{1}} \\
Q_{n}-1=\frac{B_{n}-1}{W_{n}-1} & n=2,3 \cdots(n-2) \\
W_{n}=A_{n}-C_{n} Q_{n-1} & n=2,3 \cdots(n-2) \tag{C-14}\\
g_{n}=D_{n}-\frac{C_{n} g_{n}-1}{W_{n}} & n=2,3 \cdots(n-2)
\end{array}
$$

Table C-2
Matrix Form of Equation C-8 with Simplified Terms Designated as Equation C-13

$$
\left[\begin{array}{llllllllllll}
A_{1} & B_{1} & 0 & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 \\
C_{2} & A_{2} & B_{2} & 0 & - & 0 & 0 & 0 & - & 0 & 0 & 0 \\
0 & C_{3} & A_{3} & B_{3} & - & 0 & 0 & 0 & - & 0 & 0 & 0 \\
- & - & - & - & - & - & - & - & - & - & - & - \\
0 & 0 & 0 & 0 & - & C_{n-1} & A_{n-1} & B_{n-1} & - & 0 & 0 & 0 \\
- & - & - & - & - & - & - & - & - & - & - & - \\
0 & 0 & 0 & 0 & - & 0 & 0 & 0 & - & C_{n-3} & A_{n-3} & B_{n-3} \\
0 & 0 & 0 & 0 & - & 0 & 0 & 0 & - & 0 & C_{n-2} & A_{n-2}^{\prime}
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
x_{3} \\
x_{4} \\
x_{n-1} \\
x_{n} \\
x_{n+1} \\
x_{n-2} \\
x_{n-1}
\end{array}\right]=\left[\begin{array}{l}
D_{1} \\
D_{2} \\
D_{3} \\
D_{n-2} \\
D_{n-1} \\
D_{n} \\
D_{n-3} \\
D_{n-2}
\end{array}\right]
$$

Equations ($C-13$) then reduce to:
$X_{n-1}=g_{n-2}$ and $X_{n}=g_{n-1}-Q_{n-1} X_{n}+I^{n=(n-2),(n-3),-12}$
If the values of W, Q and g are calculated in order of increasing n using euqations ($C-14$), then equations ($C-15$) can be used to calculate the values of X in order of decreasing X starting with X_{n-1}. To clarify this procedure, the method is now used to solve the following four simultaneous equations:

$$
\begin{align*}
& {\left[\begin{array}{llll}
A_{1}^{\prime} & B_{1} & 0 & 0 \\
C_{2} & A_{2} & B_{2} & 0 \\
0 & C_{3} & A_{3} & B_{3} \\
0 & 0 & C_{4} & A_{4}^{\prime}
\end{array}\right]\left[\begin{array}{l}
X_{2} \\
X_{3} \\
X_{4} \\
X_{5}
\end{array}\right]} \\
& A_{1}^{\prime} X_{2}+B_{1} X_{3}=D_{1} \\
& W_{1}=A_{1}^{\prime} \\
& Q_{1}=\frac{B_{1}}{W_{1}} \\
& g_{1}=\frac{D_{1}}{W_{1}} \\
& D_{3} \\
& \text { hence }_{2} \\
& X_{2}=g_{1}-Q_{1} X_{3} \\
& A_{2} X_{3}+B_{2} X_{4}+C_{2} X_{2}=D_{2} \\
& W_{2}=A_{2}-C_{2} Q_{1} \\
& Q_{2}=\frac{B_{2}}{W_{2}} \tag{C-16}\\
& g_{2}=\frac{D_{2}-C_{2} g_{1}}{W_{1}} \\
& \text { hence } X_{3}=g_{2}-X_{4} Q_{2} \\
& D_{2}
\end{align*}
$$

$A_{3} X_{4}+B_{3} X_{5}+C_{3} X_{3}=D_{3}$
$W_{2}=A_{3}-C_{3} Q_{2}$
$Q_{3}=\frac{B_{3}}{W_{3}}$
$g_{3}=\frac{D_{3}-C_{3} g_{2}}{W_{3}}$
hence $X_{4}=g_{3}-Q_{3} X_{5}$
$\mathrm{A}^{\prime} \mathrm{X}_{5}+\mathrm{C}_{4} \mathrm{X}_{4}=\mathrm{D}_{4}$
$W_{4}=A_{4}-C_{4} Q_{3}$
$g_{4}=\frac{D_{4}-C_{4} g_{3}}{W_{4}}$
hence $X_{5}=g_{4}$
Substituting in equation ($\mathrm{C}-16$) yields X_{3}. Equations ($\mathrm{C}-17$) and ($\mathrm{C}-18$) are special forms of equations ($C-15$) for $n=6$ and $n=4$.

Appendix D
 COMPUTER PROGRAM

The computer program is designed to analyze the flow in a duct where geometry is shown in Figure D-1.

The computation proceeds from the initial line by moving along the lower and upper wall a specified distance and then defining two arcs from the new wall locations to the duct midpoint. Since only a rough approximation is available for the wall slopes the two arcs do not necessarily meet resulting in the wall points becoming slightly unsynchronized as the computation proceeds.

The program organization consists of a main program (NAS) and sixteen subroutines and function subroutines. The functions of the main program and subroutines are:

PROGRAM NAS

The main program is divided as follows: Input and Data Initialization: Cards \$NA10to \$NA2200

This section initializes the constants of the program, reads and prints the computation conditions and duct geometry, and puts this data in nondimensional form.

Initial Conditions: Cards \$NA2210 to \$NA2810

The subroutine INCOND is called to define the starting conditions. The initial flow conditions are then put in dimensional form and printed. Main Body of Program: Cards \$NA2820 to \$NA4810

The computation proceeds down the duct in a sequence of steps. Values of pressure, temperature, velocity, density etc. are computed which are consistent with the previous step values and the geometry of the duct. The process stops when the end of the duct is reached.

Eddy Viscosity: Card \$NA3010
The dimensionless eddy viscosity is calculated in subroutine EDDY using data from the preceding step.

Stream1ine Step Size: Cards \$NA3100 to \$NA3400

An appropriate step size along the duct is determined for the streamline of maximum velocity. Consistent step sizes are then determined for all other streamlines.

Pressure Gradient Approximation: Cards \$NA3730 to \$NA4540

The pressure gradient is determined by selecting a value such that the computed duct widths minus the actual duct width equals $0 \pm$.0001.

Flow Boundaries: Cards \$NA4550 to \$NA4700

At each step the boundaries of the flow regions are checked to determine when shear layers vanish.

Output Section: Cards \$NA4820 to \$NA5750

The flow variables are presented in dimensional form at preselected intervals.

Figure $D-2$ is a flow chart of the main progran NAS.

Figure D-2
Flow Chart

SUBROUTINES

INCOND

This subroutine contains the computation which defines the flow conditions at the initial station (Fig. D-3). The steps used in the process are:

1. Points on the boundaries $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ are defined such that two circular arcs are normal to the wall at $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ and pass through the nozzle $\left(x_{n o z}, y_{\text {noz }}\right)$.
2. A flow split is determined.
3. The subroutine OMGSET is called to set the streamline locations.
4. The subroutine TMPSET is called to determine the temperature distribution.
5. The remaining flow variables are calculated.
6. The location of the nozzle streamline checked to see if it is within tolerance of its specified location. If it is then the computation is returned, if not a new flow split is determined

This subroutine sets the distribution of streamlines. The flow is divided into regions of width DOMG1, DOMG2, DOMG3 (Fig. D-4 and D-5). Given an initial spacing at each flow edge (DMWALL and DMJET) and a specific number of points (KWALL, KJET) the subroutine fills in the spaces close to the edges.

TMPSET

An initial value of static temperature at the nozzle, TS (NM1D), is selected. Values of the temperature are then computed at the outer wall con-
sistent with the wall curvature. The distance between the wall and nozzle consistent with TS (NM1D) is returned to the calling program.

WALLS

Wall curvatures are calculated from the wall geometry data. This data is then used to interpolate values of wall location slope and curvature for specific axial locations. The computer calculates curvatures assuming the data is segmented with at least three points per segment. When five or more points are available a least squares parabola using the data points and the two points to either side is used to smooth the data. Subsequent interpolations are parabolic.

LSQ

This subroutine calculates the least squares parabolas for walls.

EDDY

This subroutine contains the eddy viscosity calculation.

DSMOVE

This subroutine contains the calculation of the distance moved along the walls in each step.

SDWE

This subroutine contains the calculation of temperatures and velocities at a computing station.

CALC

This is a simultaneous linear equation solution subroutine.

CORDS

The distance between streamlines and the x, y coordinates of the
streamlines are computed in this subroutine. The value DDIST, the difference between the y coordinates of the two arcs at the middle duct point, is returned. LOOK

The algorithm identifies an edge of a core region and then checks to see if a core region that existed in the previous step has disappeared. If this has occurred that core width is set to 0.0 . Core regions may disappear in any order.

REMOVE

This subroutine is used to remove grid points as the computation proceeds in order to reduce computing time. This is accomplished by every tenth step scanning the velocity array to see if the velocity gradients in the shear regions are less than a tolerance.

ARCDIS

This subroutine defines wall coordinates such that the arc is normal to the wall and nozzle.

FUNCTION SUBROUTINES

CENTRE

This is used in conjunction with ARCDIS. Given a nozzle and wall location it projects the two tangents, finds their intersection and returns the difference in length.

CURVDS

Used in DSMOVE to calculate distances along an arc.

SERIES

Used in OMGSET to determine streamline spacing in the boundary and shear layers.

INPUT DATA

Card 1 - Format II, 18A4

$$
\begin{aligned}
& \text { NUNIT - units indicator } \\
& \text { NUNIT }=0 \text { English units } \\
& \text { NUNIT } \neq 0 \text { S.I. units }
\end{aligned}
$$

TITLE (I) - title, printed at start of first output page

Card 2 - Format 6F10. 0

> P01 - primary stagnation pressure - psia or pascal
> T01 - primary stagnation temperature - Rankine or Kelvin
> P02 - secondary stagnation pressure - psia or pascal
> T02 - secondary stagnation temperature - Rankine or Kelvin
> MASS1 - primary mass flow rate - $1 \mathrm{bm} / \mathrm{sec}-\mathrm{in}$ or $\mathrm{kg} / \mathrm{sec}-\mathrm{m}$
> MASS2 - secondary + tertiary flow - lbm/sec-in or $\mathrm{kg} / \mathrm{sec}-\mathrm{m}$

Card 3 - Format $5 I 5$

```
    Kl - no. of grid points in primary flow (even)
    K2 - no. of grid points in secondary flow (even)
    K3 - no. of grid points in tertiary flow (even)
NPCYCL - print cycle, (e.g. NPCYCL = 10 causes print every ten
            steps)
NQUICK - 0= full print; 1 = partial printout
```

Card 4 - Format 4F10.0

XNOZ - x coordinate of nozzle center - in. or meters
YNOZ - y coordinate of nozzle center - in. or meters
TNOZ - nozzle angle - degrees
N - nozzle slot width - in. or meters

Card 5 - Format 1115

MST - number of segments used to describe lower wall geometry,
$10 \geq \mathrm{MST} \geq \mathrm{I}$
NDI (I, 1) - MST values of the data point number of the segment end point. NDI (MST, 1) = NPAIR1, the total number of points needed to describe the wall.
$\operatorname{NDI}(I+1,1)-\operatorname{NDI}(I, 1) \geq 2$

Cards 6 - Format 2F10.0 - NPAIR1 Cards
XW(I, 1) - x lower wall coordinate
YW(I, 1) - y lower wall coordinate
Card 7 - Format 1115
MSS - number of segments used to describe upper wall geometry $10 \geq$ MSS ≥ 1
$\operatorname{NDI}(1,2)$ - MSS values of the data point number of the segment end point, NDI (MSS, 1) $=$ NPAIR2 the total number of points needed to describe the wall.
$\operatorname{NDI}(I+1,2)-\operatorname{NDI}(I, 2) \geq 2$
Cards 8 - Format 2F10.0 - NPAIR2 Cards

XW ($I, 2$) - x upper wall coordinate
YW(I, 2) - y upper wall coordinate

Card 9 - Format I5,10F5. 0

NFULL - number of values of x for which full output is required XPR $\emptyset F(I)$ - NFULL values of x for which full output is required

The input data K1, K2, and K3 (Card 3) denote the number of grid points in the primary, secondary and tertiary flow. These are arbitrary numbers chosen so as to give the desired spacing of output data in the three regions. A total $\mathrm{K} 1+\mathrm{K} 2+\mathrm{K} 3$ of between 20 and 30 should give good results.

The data numbers MST, MSS (Cards 5 and 7) denote the number of segments needed to describe the wall geometry. For walls with continuous
curvature values, a value of 1 is sufficient. Values of MST and MSS greater than 1 allow the user to describe walls with discontinuous slopes and curvatures. The data $\operatorname{NDI}(I, 2)$ and $\operatorname{NDI}(I, 1)$ are the data point numbers at the boundary segment ends.

A sample of input data is shown in Table $D-1$.

Table D-1

Sample of Input Data

Table D-1 (Concluded)

$\begin{gathered} 5 \\ -.0845 \end{gathered}$	$\begin{gathered} 26 \\ .156410 \end{gathered}$	31	35
-. 0838	.143230		
-. 0826	-134200		
-. 0794	. 120680		
-. 0762	. 111240		
. .0699	. 097190		
-. 0635	.096450		
-. 0572	. 077670		
-. 0508	. 070240		
-. 0381	. 058260		
-. 0254	.049090		
-.0127	.042030		
0.0000	.036730		
. 01270	. 032960		
.01588	.032240		
.01905	.03160		
.02032	.03137		
.02159	.0 .3115		
. 02549	.03048		
.03810	.02870		
. 05080	.02736		
.06350	.02647		
.07620	.02596		
.08636	. 02564		
.08763	.02560		
.08890	. 02558		
.10160	.02536		
.12700	. 02492		
.15240	. 02448		
.17780	. 02404		
.19050	. 02383		
.20320	. 02383		
. 22860	. 02383		
. 25400	. 02383		
. 26670	. 02383		
.27940	. 02449		
. 30480	. 02582		
. 35560	.02848		
.40640	. 03115		
. 45720	. 03381		
. 50800	. 03649		
. 55880	.03913		
.58420	.04038		

The program printed output consists of:

1. Title
2. Input flow and geometry (Cards 2, 3, and 4)
3. Wall Geometry

X, Y - wall coordinates (smoothed)
CURV - negative of wall curvature
4. Values of X at which full output is required (values of XPROF(I) from Card 9)
5. Flow split SPLIT - ratio of tertiary flow to the sum of secondary and tertiary flow
6. Initial conditions along the computing station through the nozzle
ISENTROPIC NOZZLE THRUST PER UNIT WIDTH - lb/in or N/m
AMASS1, AMASS2, AMASS3 - primary, secondary and tertiary flow rates - lb/s/in or $\mathrm{kg} / \mathrm{s} / \mathrm{m}$
J - station number
X, Y - coordinates of computing station streamline intersection - in or m

DN - distance from lower wall - in or m
THETA - streamline angle - degrees
K - negative of streamline curvature - $1 /$ in or $1 / \mathrm{m}$
OMG - streamline function
PO, PS - total and static pressure - psi or pascal
TS - static temperature - degrees Rankine or Kelvin
RHO - density - lb/f** 3 or $\mathrm{kg} / \mathrm{m} * * 3$
U - speed - f / s or m / s
M - Mach number
7. Flow description downstream - partial output

> NSTEP - step number
> XI(XO) - coordinate along lower (upper) wall - in or m PI(PO) - static pressure at lower (upper) wall - in of $\mathrm{H}_{2} \mathrm{O}$ or pascal
> USTARI(USTAR \emptyset) - friction velocity at lower (upper) wall - f/s or m/s
> $\mathrm{KI}(\mathrm{KO})$ - negative of wall curvature at $\mathrm{XI}(\mathrm{XO})-1 /$ in or 1/m
> RNI (RNØ) - Richardson number at lower (upper) wall
> UMAX - maximum velocity, f / s or m / s

NUMBER OF ITERATIONS
DELTA X - step size at lower wall - in or m
DELTASI(DELTASO) - distance increment of lower (upper) wall - in or m

SI(SO) - cumulative distance along lower (upper) wall in or m

SHRIN(SHROR) - shear stress at lower (upper) wall - psi or pascal
TOTAL AXIAL MOMENTUM PER UNIT WIDTH - lbf/in or N/m
THRUST RATIO -
8. Flow description downstream - full output Same as partial output plus

N1 ... N6 - streamline numbers at edges of boundary and shear layers

CORE1, CORE2, CORE3 - widths of primary, secondary, and tertiary regions - in or m

DEL1, DEL2, DEL3, DEL4 - widths of boundary and shear layers - in or m
J - streamline number
$1 / \mathrm{R}$ - negative of curvature - $1 /$ in or $1 / \mathrm{m}$ THETA - angle of streamline - degrees X, Y - computing mode location - in or m YREL - relative y coordinate

```
            UREL - relative velocity (UMAX is normalizing quan- tity)
POREL - relative total pressure
PS - static pressure - psia or pascal
E - Eddy viscosity
TOTEMP - total temperature - degrees Rankine or Kelvin
```

9. In addition several warnings may be printed.

NO CONVERGENCE, DPDSA $=\ldots$ DPDSB $=\ldots$ DDISTB \ldots STEP 4
Convergence was not achieved in establishing the pressure gradient. The criteria for convergence is that \mid DDISTB| the distance between the computed and actual will location be <. 0001 . DPDSA and DPDSB are pressure gradient increments.

NEGATIVE SHEAR STRESS AT THIS STATION. THIS INDICATES POSSIbLE SEPARATION. SUBSEQUENT RESULTS SHOULD BE USED WITH CAUTION.

The message is self-explanatory. When this occurs the calculation may be unstable and may stop for a variety of reasons. When this occurs the full output at that station is printed.

Figure D-6

COMPUTER PROGRAM LISTING


```
        TREF=295. SNA1290
        RHOREF=1.201 SNA1300
        TW=295. 
        NUREF=1-3E-5
    Al=1.
    A2=110.
    A 3=1.0
    WRITE(6,903) K1,K2,K3,NPCYCL
    WRITE(6,904)
    CALL WALLS(XW,YW,1000.,0.,T1,R1,NPAIR1,1)
    CALL WALLS(XW,YW,1000.00.0TZ,RZ,NPAIR2,2)
    NPAIR= NPAIRI
    IF (NPAIRI .GT. NPAIR2) NPAIR= NPAIR2
        WRITE(6,905) (J,XW(J,1),Y'W(J,1),CURV(J,1),XW(J,P),YW(J,2),
    1 CURV (J,2),J=1,NPAIR)
    WRITE(6,906) (XPROF (1),Im1,NFULL)
    FORMAT(1H1,39X,43(1H*)/40X,1H*,41X,1H*/40X,1H*,2X*
    1 4OHCOANDA EFFECTS IN A PLANE CURVEU DUCT */
    2 40X,1H*,41X,1H*/40X,43(1H*)//18A4//)
    FORMAT (25X,29HPRIMARY STAGNATION PRESSURE =,F6.2,5H PSIA/
    1 25X.26HPRIMARY STAGNATION TEMP. =,F7.2.16H DEGREES RANKINE
    2/ 25X.31HSECONDARY STAGNATION PRESSURE =,F6.2.5H PSIA/
    3 25X,28HSECONDARY STAGNATION TEMP. = F F7.2,16H DEGREES RANKI
    4NE// 25X.24HPRTMARY MASS FLOW RATE =,F8.5,12H LBM/SEC-IN./
    5 25X,44HTOTAL OF SECONDARY PLUS TERTIARY FLOW RATE = FFB.5.
    612H LBM/SEC-IN.//25X,19HNOZZLE SLOT WIDTH =.F6.3.4H 1N./I
    FORMAT(25X,2IHNOTZLE X COORDINATE =,F10.4,4H IN.I
    1 25X,2IHNOZZLE Y COORDINATE =,FlO.4,4H IN./
    2 25X,14HNOZZLE ANGLE =,F10.3.8H DEGREES/)
903
    FORMAT(25X,39HNUMBER OF GRIO POINTS IN PRIMARY FLOW =,I4/
    1 25X,41HNUMBER OF GRID POINTS IN SECONDARY FLOW =,I4/
    2 25X,4OHNUMBER OF GRID POINTS IN TERTIARY FLOW =,14%
    3 25X,I2HPRINT CYCLE ,I4)
904
    1 17X,10HLOWER WALL,35X,10HUPPER WALL/
    2 6X,1HJ,10X,1HX,9X1HY,11X,4HCURV,19X,1HX,9X,1HY,11X,4HCURV
    3/)
    FORMAT(17,3X,2F10.4,F15.5.10X,2F10.4,F15.5)
    FORMAT (/7X,12HPROFILES AT,IOF10.5/)
    FORMAT(25X,29HPRIMARY STAGNATION PRESSURE =,E12.5,7H PASCAL/
    1 25X,26HPKIMARY STAGNATION TEMP =,F7.2,15H OEGGEES KELVIN/
    3 25X,28HSECONDARY STAGNATION TEMP. =,F7.2,15H DEGREES KELYI
    4N// 25X,24HPRIMARY MASS FLOW RATE =,F8.5, 9H KG/SEC-M/
    5 25x,44HTOTAL OF SECONDARY PLUS TERTIARY FLOW RATE =,F8.5,
    69H KG/SEC-M //P5X,I9HNOZZLE SLOT WIDTH =,F9.6.7H METERS/)
    FORMAT(Z5X,2IHNOZZLE X COORDINATE =,F10.0,7H METERS/
    1 25X,21HINOZZLE Y COORDINATE =,F10.0,7H METERS/
    2 25X,14HNOZZLE ANGLE =,F10.3,8H DEGREES/)
    XNOZ= XNOZ/D
    YNOZ= YNOZ/D
    TNOZ= TNOZ / 180.0 * 3.1416
    DO 601 J=l,NPAIRI
    XW(J,1)= XW(J,1) & D
    YW(J.1)= YW(J.1) / D
    CuRV (J,1)=CURV (J,1)=0
    CONTINUE
    DO 602 J=1,NPAIR?
    XW(J,2)= XW(J,2) / D
    YW(J,2)= YW(J,2) / D
    CuRV(J,2)=CURV(J.2)*D
6 0 2
    CONTINUE
    RHOOI=Al*PO1/RG/TOL
    UREFP=SQRT( GC*RG*TO1)
C
    K.IFT IS NUMAFR OF POINTS RLOSE TO .IET NOZZI.E WAILS
    SNA1310
    SNA1320
    SNA1330
    $NA1340
    SNA1350
    SNA1360
    $NA1370
    $NA1370
    $NA1390
    $NA1400
    SNA1410
    gNA1420
    SNA1430
    $NA1440
    SNA1450
    $NA1460
    SNA1470
    $NA1480
    $NA1490
    gNA1500
    $NA1510
    GNA1520
    $NA1530
    $NA1540
    SNA1550
    SNA156O
    $NA1570
    ENA1580
    $NA1590
    SNA1600
    SNA1610
    FORMATIIHI,1OX,25HMIXING SECTION DIMENSIONS////
SNAIGRG
$NA1630
SNA1640
$NA1650
SNA1660
SNA1670
SNA1680
906
914
$NA1690
$NAS700
gNA:710
$NA1720
$NA1730
SNA1740
$NA1750
$NA1760
SNA1770
SNAI780
$NA1790
$NA180O
$NA1810
$NA1820
$NA1830
$NA1840
$NA1850
$NA1860
SNA1870
SNA1870
$NA1890
$NA1900
SNA1910
$NA1920
$NA1930
$NA1940
```

```
KWALL IS NUMBER OF POINTS CLOSE TO DUCT WALLS
$NA1950
    KJET=6
    KWALL= 20
    N=K3 +KI +KZ +2*KWALL + 4*KJET + 1 SNOL
    N=K3 +KL +K2 + 2 KWALL + 4*KJET + 1 
NX1=1
NX2=K3+KWALL+KJET+1
N\times3=NX2
NX4=N-K2-KWALLL-KJET
NX5=NX4
NX6=N
NX(1)=NX1
NX(2)=NX2
NX(3)=NX3
NX(4) =NX4
NX(5) =NX5
NX(6)=NX6
    Ll=NX(3)
    L2= NX(4)
    NMAX= (L1 + L?) / 2
    NF=1
        P03=P02
        T03=T02
    MASS1=A1*MASS1/RHO01/UREFP/D
    MASS?=A1*MASS2/RH001/UREFP/D
        $NA1960
    $NA1970
    N= K3 +KL +K2 +2*KWALL + 4*KJET + 1 
    $NA2010
    $NA2020
    $NAZ030
    $NA2040
    $NA2050
    $NA2.060
    $NA2070
    $NA2080
    $NA2090
    $NA2100
    $NA2110
    $NA2120
    $NA2130
    $NA2140
    $NA2150
    SNAZ160
    SNAC170
    $NA2180
    MASS?=A1*MASS2/RYOOI/UREFP/D SNA
```

SUBROUTINE INCOND IS USED TO CALCULATE THE INITIAL CONDITIONS
\qquad 2

AMA2 = AMASS2*UREFP*D*RHOO1/A1
AMA $3=A M A S S 3 * U R E F D * D * R H O O I / A 1 ~$
WRITE (6,921)
G2=G/(G-1.)
VNOZI =UREFP*SQRT(2.*G2*(1•-(P02/P01)**(1•/G2)))
TNOZI =AMAI *VNOZI
WRITE(G•927) TNOTI
WRITE $(6,922)$ AMA1, AHA2, AMA3
WRITE 16,923)
DO $28 \quad J=1, N$
$x S=x(J) \# 0$
DNS = ON(J)*D
$Y S=Y(J) \# 0$
$T X=T H E T A(J, 1) * 57.2958$
$X R=R(J, 1) / 0$
WRITE $(6,924) \mathrm{J}, \mathrm{XS}, \mathrm{YS}$, DNS, TX, XR,PSI(J)
WRITE $(6,925)$
$0029 \mathrm{~J}=1 \mathrm{I} \mathrm{N}$
$P O D=P D(J) * P O 1$
PSD=PS(J, 1)*POl
$T 0=T S(J, 1) * T 01$
RHOD=RHO $(J, 1)$ \# PHOOL
UV $=U(J, 1)$ UREFP
WRITE(6, 26) J,PCD,PSO,TO,RHOD,UV,M(J)
FOFMAT ($1 H 1 \cdot / / /, 25 x, 1$ BHINITIAL CONDITIONS//)
FORMAT(7X, BHAMASS1 =F10.5,5X,BHAMASS2 =F10.5,5X, RHAMASS3 $=F 10.5 /)$ FORMAT $7 \mathrm{TX}, 1 \mathrm{HJ}, 9 \mathrm{Q}, 1 \mathrm{HX}, 9 \mathrm{X}, 1 \mathrm{HY}, 8 \mathrm{X}, 2 \mathrm{HDN}, 6 \mathrm{~K}, 5 \mathrm{HTHETA,8X,1HK,7X,3HOMG/)}$
FORMAT (5x, 13, 2x.4F10.3,F10.6.F10.4)
FORMAT (///7X,1HJ, $8 \mathrm{X}, 2 \mathrm{HPO}, 8 \mathrm{X}, 2 \mathrm{HPS}, 8 \mathrm{X}, 2 \mathrm{HTS}, 7 \mathrm{X}, 3 \mathrm{HR}_{\mathrm{R}} \mathrm{H}, 9 \mathrm{X}, 1 \mathrm{HU}, 9 \mathrm{X}, 1 \mathrm{HM} / \mathrm{I}$
FORMAT $(5 X, I 3,2 X, 2 E 10.3, F 10.1, F 10.5, F 10.1, F 10.3)$
FORMAT (7X.41HISENTROPIC NOZZLE THRISST PER UNIT WIDTH =9E10.3)
DO. $30 \mathrm{~J}=1, \mathrm{~N}$
THETA $\left(J\right.$, ? $\left.{ }^{\prime}\right)=$ THETA $(J, 1)$
PS(J,2)=PS(J,1)
$T S(J, 2)=T S(J\}$,
RHO (J,2) =RHO(J,1)
$U(J, 2)=U(J, 1)$
$R(J, 2)=R(J, 1)$

SNAZ210 SNA2220 \$NA2230 \$NA2240
SNA2250
\$NA2260
\$NA2270
SNAZ280
SNA2290
SNA2300
SNAZ301
SNA2302
SNA2303
sNAC304
SNA2310
\$NA2320
SNAZ330
SNA2340
\$NAZ350
SNA2360
SNA2370
SNA2380
\$NA2390 SNAP400 SNA2410 \$NA2420 SNA2430 SNA2440 SNA2450 \$NA2460 \$VA2470 \$NA2480 \$NA?490 SNA2500 \$NA2510 \$NA2520 \$NA2530 SNA2531 \$NA2540 \$NA2550 SNA2560 \$NA2570 SNA2580 \$NA2590 SNA2600
E(J) = 0.
DELI=0.0
DEL2=0.0
DEL3=0.
DEL4=0.
CORE3=DN(NX2)-DN(NX1)
CORE1=ON(NX4)-DN(NX3)
CORE2=DN(NX6)-DN(NX5)
DPDSA= -0.001
USTARI =0.0
USTARO = 0.0
UGO=0.
OGI=0.0
NGRID=0
NPRINT= 0
DSA= .02 *DN(N)
CCx .07
NCORE=1
NSEP=0
RDECAY=4.
ICOUNT=0
EDOY(N,NN,NX,U,PS,CC,DS,E,EI,RHO,VIS,R,DN,
S4, S5, DEL1,DEL2,DEL3,DEL4,CORE1,CORE2,CORE3)
CONTINUE
El(1)=0.
DO 40 J=2.NN
El(J)= RHO(J.1)*U(J.1)
Continue
El(N)=0.
MOVE TO NEXT POINT ON WALL.....
DS(NMAX)= DSA * (1.04) ** (NSTEP-1)
IF (DS(NMAX).LT. .02 * DN(N)) DS(NMAX)= .02 * DN(N)
Calculate ds(i) values
MMIDDLE DS VALUE CALCULATED FIRST
THEN DS VALUES CALCULATED OUT TO BOTH WALLS
NPRR=NMAX+1
DO 50 J=NPRR,N
JM= J-I
Cl=RHO(J,2) +RHO(JM,2)
C2=U(J,2)+U(JM,2)
C3=R(J,2)+R(JM,2)
C4= PSI(J) - PSI(J-1)
rameramem/(c)*r?)
\$NA2610
\$NA2620
SNA2630
\$NA2640
9NA2650
\$NA2660
\$NA2670
\$NA2680
\$NA2690
\$NA2700
\$NA2710
\$NA2720
\$NA2730
\$NA2740
SNA2750
\$NA2760
SNA2770
SNA278O
\$NA2790
\$NA2800
SNAZBIO
\$NA2820
\$NA2B30
\$NA2840
\$NA2850
\$NA2860
\$NA2B70
\$NA2880
SNA2890
\$NA2900
SNA2910
SNA2920
\$NA2930
\$NA2940
\$NA2950
\$NA2960
\$NA2970
\$NA2980
SNA2990
SNA3000
SNA3010
\$NA3020
\$NA3030
SNA3040
SNA3050
SNA3060
SNA3070
\$NA3080
ENA3090
SNA3100
SNA3110
\$NA3120
gNA3130
\$NA3140
SNA3150
\$NA3160
SNA3170
SNA3180
SNA3190
\$NA3200
\$NA3210
\$NA32ZO
SNA3230
SNA3240
SNA3250
\$NA3260

```
```

CONTINUE

```
NPRR \(=\) NMAX-1
DO 52 MMEI,NPRR
    \(J=\) NMAX - MM
    \(J_{M}=J+1\)
        \(C l=R H O(J, 2)+R H O(J M, 2)\)
        \(C_{2}=U(J, 2)+U(J M, 2)\)
            C3= R(J,2) \(+R(J M, 2)\)
            C4 = PSI (J) - PSI (JM)
            \(\mathrm{C5}=\quad \mathrm{C} 4 * \mathrm{C} 3 /(\mathrm{C} 1 * \mathrm{C} 2)\)
        \(D S(J)=(1 .+C 5) /(1 .-C 5) * U S(J M)\)
    CONTINUE
    MOVE TO NEW POINT \(X(1)\) AND \(X(N)\) ALUNG WALL SURFACES
        AT A DISTANCE SPECIFIED BY DS VALUES
    \(D \times 1=X(1)\)
    CALL DSMOVE (XW,YW,X(1),Y(1), DS(1),THETA(1,1), R(1,1), NPAIR1,1)
    CALL DSMOVE (XW,YW,X(N),Y(N), DS(N), THETA(NP1), R(N,I), NPAIR2,2)
    IF(X(I).GT. XW(NPAIR1 •I) STOP
    IF (X(N) GT. XW(NPAIR2, , Z) STOP
    DX1= X(1) - DX1
    COMPUTE \(Y\). THETA, AND R VALUES CORRESPONDING TO NEW \(X\) VALUES
    CALL WALLS \((X W, Y W, X(1), Y(1)\), THETAl, RI, NPAIR1, 1\()\)
    CALL WALLS(XW,YW, \(X(N), Y(N), T H E T A Z, R 2, N P A I R 2,2)\)
        \(Y 2=Y(N)\)
    COMPUTE CURVATURE R(J,2)
    \(00400 \mathrm{~J}=1 \mathrm{~N}\)
    OWI = DN(J)
    OW2= \(D N(N)\) - DN(J)
    R(J, 2) =R1*(1.-DW1/DN(N))*EXP(-RDECAY*DW1*ABS(R1)) +R2*DW1/ON(N)*
        1 EXP(-RDECAY*DW2*ABS(R2))
    CONTINUE
    COMPUTE THETA(J,2)
    DO \(51 \mathrm{~J}=2\), NN
    THETA \((J, 2)=\) THETA1 + (THETAZ-THETAI) * DN(J)/DN(N)
    Continue
    THETA(1,2) = THETAI
    THETA \((N, Z)=\) THETAZ

    THIS SECTION ATTEMPTS TO SATISFY CONTINUITY
LOOKS FOR A PS(I, 2 I SUCH THAT YZ - Y(N) \(=0.0\)
DPDSA, DPDSB ARE PRESSURE GRADIENTS

    IF (ABS (DPDSA) .LT. 1.E-0B) DPDSA=-.001
    DPDSB= DPOSA * 0.9
    DDISTE= 1.0
    DO 650 ITER=1.40
    IF (ITER EEQ. 1) PS(1,2) = PS(1,1) DPDSA
    AT THIRD ITERATION GUESS NEW DPDSB
        USING EXTRAPOLATION THROUGH DPDSA AND PREVIOUS DPDSB
    IF (ITER .GE. 3)
1 DPDSB= (DDISTB*DPDSA - DDISTA*DPDSB) / (DDISIB-DDISTA)

\$NA3270
SNA3280
\$NA3290
SNA3300
SNA3310
\$NA3320
\$NA3330
\$NA3340
sNA 3350
\$NA3360
\$NA3370
SNA3380
SNA3390
- SNA 3400

SNA3410
SNA 3420
SNA 3430
SNA3440
\$NA3450
SNA 3460
\$NA3470
SNA 3480
\$NA3490
SNA3500
SNA3510
\$NA3520
\$NA3530
\$NA3540
SNA3550
\$NA3560
SNA3570
\$NA3580
\$NA3590
SNA3600
\$NA 3610
SNA 3620
SNA3630
SNA3640
SNA 3650
\$NA 3660
SNA 3670
SNA 3680
SNA 3690
SNA 3700
SNA3710
\$NA3720
SNA 3730
SNA 3740
\$NA 3750
SNA 3760
\$NA3770
\$NA3780
\$NA3790
\$NA3800
SNA 3810
\$NA3820
SNA 3830
\$NA 3840
SNA 3850
\$NA3860
SNA3870
SNA 3880
SNA3890
SNA 3900
SNA3910
\$NA3920
\begin{tabular}{|c|c|c|}
\hline & \[
\begin{aligned}
& D O 60 J=2 \cdot N \\
& J M=J-1
\end{aligned}
\] & SNA 3930 SNA3940 \\
\hline & \(C 2=U(J, 2)+U(J M, 2)\) & SNA3950 \\
\hline & \(C 3=R(J, 2)+R(J \times+2)\) & SNA 3960 \\
\hline & C4= PSI (J) - PSI (J-1) & SNA3970 \\
\hline & PS (J,2) \(=\) PS (JM, 2) + C2*C3*C4/4.0 & \$NA3980 \\
\hline 60 & CONTINUE & SNA3990 \\
\hline C & & SNA4000 \\
\hline c & SUbroutine solv is used to solve uet on maz line & SNA4010 \\
\hline C & & SNA4020 \\
\hline & CALL SOLV(DS,N,NN,PRI, PRT1,G) & \$NA4030 \\
\hline & \(u(1,2)=0\). & SNA4040 \\
\hline & 00 \(70 \mathrm{~J}=2\), NN & SNA4050 \\
\hline & \(U(J, 2)=H(J-1)\) & SNA4060 \\
\hline 70 & Continue & SNA4070 \\
\hline & \(U(N, 2)=0\). & SNA4080 \\
\hline & CALL SOLVIDS, \(N, N \mathrm{~N}\), PR,PRT, G) & SNA4090 \\
\hline & DO BOJ \(=2\), NN & SNA4100 \\
\hline & TS \((J, 2)=H(J-1)\) & SNA4110 \\
\hline 80 & continue & SNA4120 \\
\hline & TS(1,2) \(=\) TS(?,2) & SNA4130 \\
\hline & TS(N,2) \(=\) TS (N-1,2) & \$NA4140 \\
\hline & DO \(901=1 . N\) & SNA4150 \\
\hline & RHO (I,2) \(=\operatorname{PS}(1,2) / T S(1,2)\) & SNA4160 \\
\hline & - RHO (I, 1) =RHO 1 (1,2) & \$NA4170 \\
\hline & \(V I S(I)=(T R E F+A Z) /(T 01 * T S(I, 2)+A Z)\) & SNA4180 \\
\hline & VIS(I)=VIS(I)*(T01*TS(I, 2)/TREF)**0.5 & \$NA4190 \\
\hline & VIS(I)=VIS(I)*RHOREF*NUREF/(P01*SORT (GC/RG/TO\#) & SNA4200 \\
\hline 90 & CONTINUE & SNA4210 \\
\hline c & CONTINUE & SNA4220 \\
\hline C & GIVEN PS(1,2), CALCULATE UPPER WALL COORDINATE Y(N) & SNA4230 \\
\hline C & & SNA4240 \\
\hline &  & \$NA4250 \\
\hline c & & SNA4260 \\
\hline C & IF YZ .EQ. \(\mathrm{Y}(\mathrm{N})\) THEN THIS PS(I.2) SATISFIES CONTINUITY & SNA4270 \\
\hline C & & \$NA4280 \\
\hline & IF (ITER .EQ. 11 DOISTA \(=\) DOIST & \$NA4290 \\
\hline & IF (ITER .GE. 2) DDISTB = DDIST & SNA4300 \\
\hline C & & SNA4310 \\
\hline C & If SUFFICIENTLY SMALL Interval. then exit & \$NA4320 \\
\hline C & & SNA4330 \\
\hline & IF (ABS (DDISTB) .LE. 0.1 ** 4) GO TO 660 & SNA4340 \\
\hline 650 & CONTINUE & SNA4350 \\
\hline & WRITE (6,916) DPDSA,DPOSB,DDISTB,NSTEP & \$NA4360 \\
\hline 916 &  & SNA4370 \\
\hline & 1 9H DDISTA \(=9\) F 10.506 H STEP \(=14\) ) & SNA4380 \\
\hline 660 & CONTINUE & SNA4390 \\
\hline & & SNA4400 \\
\hline & Save pressure gradient this step & SNA4410 \\
\hline C & & SNA4420 \\
\hline & DPOSA \(=\) DPDSB & SNA4430 \\
\hline & \(\mathrm{Gl}=\mathrm{G}-1\). & SNA4440 \\
\hline & G ? \(=\mathrm{G} / \mathrm{GI}\) & SNA4450 \\
\hline C & & \$NA4460 \\
\hline C & COMPUTE MACH NUMBERS M(I) & SNA4470 \\
\hline C & & SNA4480 \\
\hline & OO \(220 \mathrm{I}=1, \mathrm{~N}\) & SNA4490 \\
\hline & \(M(I)=U(I, 2) / S O R T(G * T S(I, 2))\) & SNA4500 \\
\hline &  & SNA4510 \\
\hline & PO(1) \(=\) PS(1,2)*G4**G2 & SNA4520 \\
\hline 220 & Continue & SNA4530 \\
\hline c & & SNA4540 \\
\hline C &  & SNA4550 \\
\hline C & REMOVE EXTRA GRIU POINTS, FIND EDGES OF FLOWS & SNA4560 \\
\hline c & - & \$NA4570 \\
\hline
\end{tabular}
```

 CALL REMOVEIN,NN.NGRIU,NX,NMAX,PSI,SI,S2,S3,S4,S5,DS,VIS,DN, SNA4590
 1 X,Y,M,PO,H,THETA,R,PS,U,TS,RHO)
 CALL LOOK(N.NN,K3,NCORE,DEL1,DEL2,DEL3,DEL4,CORE1.CORE2,CORE3,
 l NX,PO,ON,U,DIP,NMAX)
 SHRIM=U(2.2)*VIS(2)/(DN(2)-DN(1)) - .5*(PS(1,2)-PS(1,1))/OS(1)*
 1 (DN(2)-DN(1))
SHROR=U(NN,2)*VIS(NN)/(DN(N)-DN(NN)) -.5*(PS(N,2)-PS(N.1))// SNA4650
1 OS(N)*(DN(N)-DN(NN))
IF((SHRIN.LE.O.) -OR.(SHROR.LE.O.)) NSEP=1
1F(NSEP.EQ.1) NPRINT=NPCYCL-1
IF(NSEP.EQ.1) ICOUNT=1
SAVE VALUES COMPUTED THIS STEP
DO 222 I=1,N
PS(I,1)=PS(I,2)
U(I.1)=U(I,2)
TS(I,1) = TS(1,2)
THETA(I,1)=THETA(I,2)
R(I,1)= R(I-2)

```

```

 OUTPUT SECTION
 DS1O= DS(1) D
 DS2Q= DS(N)*D
 OSUMI= DSUMI +DSIO
 OSUMZ= DS2O + DSUMZ
 NPRINT= NPRINT +1
 IF ((X(I)*D) GF, XPROF(NF)) NPRINT= NPCYCL
 IF(X(1)*D.GE.XPROF(NF)) ICOUNT=1
 IF(X(1)*D.GE:XPROF (NF)) ICOUNT=1 NFE NF & 1
 IF (NSTEP.EQ. 1) NPRINT = NPCYCL
 IF (NPRINT OLT. NPCYCL) GO TO 45 SNA4950
 NPPRINT= O
 OXO= OXI *D
 XI= X(1) D
 XO= X(N) * D
 PH20I =(PS11,2)*PC1-P02)/A3
 PH2OO=(PS(N,2)4P01-P02)/A3
 IF (SHRIN OGT. 0.0)
 1
 1 USTARO=SQRT(SHROR/RHO(NN,2))*UREFP
 RI= R(1,2)/D
 RO=R(N,2)/n
 RNI= 2.0 * (R(2,1) / RHO(2,1))
 RNI=RNI/(S5(2)*(U(3,1)-U(?,1))+S4(2)*(U(2,1)-U(FT,1)))
 RNO= 2.0 * {R(NN,1) / RHO(NN,1))
 RNO=RNO/(S5(NN)*(11)N,1)-U(NN,1))+S4(NN)*(U(NN,1)-U(NN-1,1)))
 UMAX= U(NMAX,2) * UREFP
 XTSI= TS(1,2)*T01 + 0.5/GZ * T01 (U(1,2))**2
 XTSO= TS(N,2) *T01 + 0.5/G2 *TOL * (U(N,2))**2
 WRITE(6,908) NSTFP,XI,PH2OI,USTARI,RI,RNI,XO,PHZOO,USTARO,RO,RNO,
 1
 908
FORMATIIHI,5X,5HNSTEP, 6X,2HXI,8X,2HPI,4X,6HUSTARI,8X,2HKI,7X, SNA5I70
1 3HRNI,8X,2HXO,8X,2HPO,4X,6HUSTARO,8X,2HKO,7X,3HRNO,6X,4HUMAX/
2 5X,I3,2(F10.4,E11.3,2F10.4,F10.5),F10.1/17X,
2ZHNUMBER OF ITERATIONS =, I3/)
WRITE(6,907)DXO,DS1O,DS2Q,DSUMI,DSUM2
907
USTARI=SORT(SHRIN/RHO(2.2))\#UREFP
IF (SHROR .GT. 0.0)
UMAX,ITE.R
WRITE(6,907)DXO,DSIO,DS2Q,DSUMI,DSUM2
2. 12H DELTA SO =9F10.5.6H SI =F10.5.6H SO =.F10.5/1
2. 12H DELTA SO =9F10.5.6H SI =F10.5.6H SO =.F10.5/1
SNA4600
SNA4610
SNA4620
SNA4630
SNA4640
SHROR=U(NN,Z)*VIS(NN)/(DN(N)-DN(NN)) =.5*(PS(N,2)-PS(N.1))// SNA4650
SNA4660
SNA4670
\$NA4680
\$NA4690
C
SNA4700
SNA4710
SNA4720

```

```

\$NA4740
SNA4750
\$NA4760
\$NA4760
SNA4770
\$NA4780
\$NA4790
SNA4800
SNA4810
\$NA4810
\$NA4830
\NA4840
\$NA4850
\$NA4860
OS10= DS(1) D
SNA4870
DSUMI= DSUM1 +DS10 SNA4880
\$NA4890
\$NA4900
\$NA4910
\$NA4920
NFI NF * SNA4930
NPRINT= NPCYCL \$NA4940
NA4950
SNA4960
SNA4970
\$NA4980
\$NA4990
\$NA5000
SNA5010
\$NA5020
SNAS030
\$NA5040
SNAS050
SNA5060
\$NA5070
\$NA5070
\$NAS080
\$NAS5090
SNA5100
\$NAS100
\$NAS120
SNA5130
\$NA5140
\$NA5150
gNAS160
SNA5170
\$NA5180
SNA5190
\$NA5200
SNA5220
SNA5220
SHDTN=CHRTN*POI
\$NA5230
\$NAS240

```
```

 SHROR=SHKOR*POI $NA5250
 WRITE(6,912) SHRIN,SHROR
 TMOMX=0.
 NNY=N-1
 DO 95 J=1,NNY
 TMOMX=TMOMX + (PHO(J,1)*U(J,1)**2*COS(THETA(J,1))+RHO(J+1,1)*
 l
 TMOMX=TMOMX*POI*D
 CT = TMOMX/TNOTI
 WRITE(6,931) TMOMX,CT
 FORMAT(7X,7HSHRIN =E12.5,5X,7HSHROR =E12.5/)
 FORMAT (/7X,37HTOTAL AXIAL MOMENTUM PER UNIT WIDTH =,E10.3//7X,
 14HTHRUST RATIO =,ElO.3)
 IF (NQUICK .GT. 0) GO TO 45
 IF(ICOUNT.EQ.O) GO TO 45
 I COUNT=0
 COREIQ= COREI # D
 COREZQ= CORE2 * D
 CORE3Q= CORE3 # D
 DELIQ= DELI *D
 OEL2Q= UEL2 *D
 OEL3N= DEL3 * D
 DEL40= DEL4 * D
 WRITE(6,909)(NX(I),I=I,6),CORE:Q,CORE2Q,CORE3Q,DELIQ,OELL2Q,
 l DEL3Q,DEL4Q
 9U9
1
2
WRITE(6.910)
l 4HUREL,5X,5HDOREL,8X,2HPS,9X,1HE,5X,6HTOTEMP/)
DO 100 J=1,N
THEIO=THETA(J,2)*180./3.1416
XR=R(J,2)/D
YS=Y(J)*D
YREL= Y(J)/Y(N)
YREL=
UV=U(J,2) / U(NMAX,2)
POD=PO(J)
PSD=PS(J,2)*P01
T0= TS(J,2)*T0l*0.5/G2*T01* (U(J.2))**2
TOMAX= TS(NMAX,?) *TOL + 0.5/G2 *TOI * (U(NMAX.2))*\#Z
XTS= (TO - XTSO) / (TOMAX - XTSO)
XT=E(J)*IUREFP*D/SQRT(Al)
OND=DN(J)*D
WRITE (6,911)J,XR,THEIO,XS,YS,YREL,IIV,POD,PSD,XT,T0
WRITE (6,911)J,XR.THEIO,XS,YS,YREL,IIV,POD,PSD,XT,TO
911
CONTINUE
CONTINUE
IF(NSEP.EQ.I) GO TO 300
CONTINUE
4499
4500 CONTINUE
STOP
3v0 WRITE(6,930)
930
FORMAT (7X,24(1H\#)/7X,38HNEGATIVE SHEAR STRESS AT THIS STATION./
1 7X.36H THIF INDICATES POSSIRLE SEPARATION./
2 7X,48H SUHGEQUENT RESULTS SHOULD BE USED WITH CAUTION.//
7X,24(1H*))
NSEP=0
GO TO 4499
END
\$NA5260
SNAS261
\$NA526?
SNA5263
SNA5264
\$NA5265
\$NA5266
\$NAS267
SNA5268
\$NA5270
\$NA5271
SNA5272
sNA5280
\$NA5290
SNA5300
SNAS310
\$NA5320
\$NA5330
SNA5340
SNA5350
\$NA5360
\$NA5370
SNA5380
\$NA5390
\$NA5400
FORMAT (7x,2HN1,5x,2HN2,5X,2HN3,5X,2HN4,5X, 2HN5,5X,2HN6/5X, I4,
5(3X,14)// 7X,5HCORE1,5X,5HCORE2,5X,5HCORE3,/4X.3F10.5//
7X,4HDEL1,6X,4HDEL2,6X,4HDEL3,6X,4HDEL4/4X:4F10.5//)
FORMAT(7X,lHJ,7X,3Hl/R,5X,5HTHETA,9X, 1HX,9X,1HY,6X,4HYREL,6X,
SVA5410
\$NA5420
SNA5430
AT(7X,lHJ,7X,3HL/R,5X,5HTHETA,9X,1HX,9X,1HY,6X
SNA5440
\$NA5450
SNA5460
SNA5470
SNA5480
SNA5490
SNA5500
\$NA5510
\$NA5520
\$NA5530
\$NA5540
\$NA5550
\$NA5560
\$NA5570
\$NA5580
SNA5590
\$NA5600
\$NA5610
\$NA5620
INA5630
SNA5640
SNA5650
\$NA5650
\$NA5670
SNA5680
SNA5690
\$NA5700
\$NA5710
SNAS720
\$NA5730
SNA5740
\$NA5750

```


```

 TONMG1= (OMGJ? - OMGJ3) / FLOAT(K1) $IN1260
 ESI(1)=0.0 $1N1270
 PSI(LI)= OMGJ3 SINI280
 PSI(L2)= OMG.J? SINI290
 PSI(N)= OMGN
 CALL OMGSET(PSI, 1.LI,KWALL,KJET,DMWALL,DMJET,DOMG3.RST3,RFIN3)
 CALL OMGSET(PSI,Ll,LZ,KJET,KJET,DHJET,DMJET.,DOMG1,RST1,RFINI)
 CALL OMGSET(PSI,LP,N,KJET,KWALL,DMJET,DMWALL,DOMGZ,RST2,RFIN2)
 CALL TMPSFT(N,NN,RG,GC,G,DNP,R1,R2,L1,L2,ONI,DNO,
 PSI, R, M, TS, PS, PO, RHO, U, DN,MAXERR)
 IF ((MAXERR .EO. 1).AND.(ITER .EQ. 1)) GO TO 589
 IF (IMAXERR .EQ. 1).ANO.(ITER .NE. 1)) GO TO 599
 IF (ITER .EQ. 1) DIFFA= DN(1)
 IF (ITER .GE. ?) DIFFR= DN(I)
 C
IF (ABS(DIFFB) .LE. 0.001) GO TO 42
42 WRITE(6.902)SPLIT.ITER
902 FORMAT(/7X,7HSPLIT =,F10.5/
1
C
COMPUTE OMG DIFFERENCE ARRAYS SL... S5
DN 20 J=2,NN
JD= J+1
JM = J-1
SI(J)= PSI(JP) - PSI(JM)
SP(J)= PSI(JP) - PSI(J)
S3(J)=PSI(J)-PSI(JM)
S4(J)= S2(J)/S3(J)/Sl(J)
S5(J)=S3(J)/52(J)/SI(J)
CONTINUE
c
C
compute angles theta (I)
nO 410 J=2.NN
IF ((J.GE. LJ).AND.(J \&LE. LZ)) THETA(J.l)= TNOZ
IF(J.LT.L1) THETA(J,1)=THFTA(J-1,1)-(DN(J)-DN(J-1))/RC1
IF(J.GT.LZ) THETA(J,1)=THETA(J-1,1)-(DN(J)-DN(J-1))/RC2
CONTINUE
DN 2 J=2,NN
JM=J-1
D=.5*(THETA(J,1) +THFTA(JM,1))
X(J)=x(JM) -(INN(J)-ON(JM))\#SIN(O)
Y(J) = Y(JM) + (ON(J) -DN(JM))\# \#OS(D)
CONTINUE
RETIJRN
C. :
THIS SPLMAX GIVES A TS EXCEEDING TMAX
SO TRY LOWERING SPLMAX l PERCENT
CONTINUE
SPLMAX = SPLMAX * 0.99
rO TO 555
C
C
599 CONTINUE
WRITE(6,911)
911 FORMAT(/7X,21HNO SOLUTION FOR SPLIT)
STOP
ENO
SIN1300
\$IN1310
\$IN1320
SINI330
\$IN1340
SIN1350
\$IN1360
SIN1370
\$1N1380
SIN1390
SIN1400
SIN1410
SIN1420
\$IN1430
\$IN1440
\$IN1450
SIN1460
\$IN1470
\$IN1480
SIN1490
\$IN1500
< SIN1510
SIN1520
\$IN1530
\$IN1540
\$IN1550
\$IN1560
SIN1570
SIN1580
\$IN1590
\$IN1600
\$INl610
SIN1620
SIN1630
\$IN1640
SIN1650
\$IN1660
SIN1670
\$IN1680
FIN1690
SIN1700
SIN1710
SIN1720
\$IN1730
\$IN1740
SIN1750
SINI760
\$1N1770
SN1780
81N1790
\$IN1790
\$IN1810
\$IN1820
\$IN1830
\$IN1840
\$IN1850
\$IN1860
SIN1870
SIN1880
SIN1890

```
```

 1
 SUBROUTINE TMPSETIN,NN,RG,GC,G,DN2,RI,RZ,LI,L2,DNI,DNO,
 PSI, R, M, TS, PS, PO, RHO, U, DN, MAXERR)
 SETS AN INITIAL TS IN MIDDLE OF NOZZLE,
 DETERMINES CORRESPONDING M(I), TS(I), DN(I), ETC VALUES
 CHECKS DIFFEPENCE BETUEEN DN(N) AND DNZ
 REAL M(190)
 DIMENSION PO(190),THETA(190,2),R(190,2),U(190,2),TS(190,2),
 l
 RHO(190.2)
 DIMENSION OMG(190),DN(190),PS(190,2)
 DOUBLE OMG(190):DN(190),PS(190,2)
 DIMENSION PSI(180)
 DOURLE PSI(190)
 COMMON /CONST/ POI,POZ,PO3, TOl,TOC,TO3, XI, XC, YC
 ThE STARTING ITEHATION POINT IS AT PRESENT DETERMINED by THE
 location of the NOZZLE IN THE DUCT
 If NOZZLE IS CLOSE TO UPPER WALL, the tmAX CALCULATION IS
 VALID ONLY FOR TS(LI,l), AND SO NMIO SHOULD EQUAL Ll
 IF NOZZLE IN MIOOLE OF DUCT NMID SHOULD = (LI * L2) / 2
 IF NOZZLE CLOSE TO LOWER WALL NMID SHOULD = LZ
 AND CHANGE COMPIITATION OF R(J,NMID). AND DN(NMID)
 IF (DNI .LT. DNO) NZONE= 0
 MAXERR= 0
 Gl=1./(G-1.)
 GZ=G/(G-1.)
 ROECAY=4.
 IF (NZONE .EQ. 0) NMID= LZ
 IF (NZONE EQ. O) R(NMIO.I)= RI. EXP{-ROECAY#RI#(DNI+1.0))
 1 + R2* EXP(RDECAY*R2*DNO)
 IF (NZONE .EQ. O) DN(NMID)= DNI + 1.0.
 IF (NZONE EQ. 1) NMID= LI
 IF (NZONE .EQ. 1) R(NMID,1)= R1 * EXP(-RDECAY*RI*DNI)
 l
IF (NZONE. .EO. 1) DN(NMID)= DNI
TMAX IS THE TEMPFRATURE WHICH PREVENTS VELOCITY FROM
FALLING RELOW .OI (IE GOING NEGATIVE)
TMAX=(TO2/T01 -.0001*((G-1.0)/(G*2.0)))
1 * (PO3/P01)**((G-1.0)/G)*(T01/TO2)
CONTINUE
TSA=. TMAX
TSB= TSA - (5.0/TO1)
OIFFB= 1.0
OO LOOP WHICH SOLVES FOR TSB SUCH THAT DN2-DN(N) = 0.0
gUESS NEW TSB USING FIXED TSA AND PREVIOUS TSB VALUE
00 40 J=1,100
IF (J,.EO. 1) TS(NMID,1) = TSA
IF (J .GE. 3) TSB= (DIFFB\#TSA-DIFFA*TSB) / (DIFFB-DIFFA)
IF (J.GE. 2) TS(NMID,1)= TSB
IF (TS(NMID,1) .GT. TMAX) GO TO 599
\$TM
0
5TM 10
\$TM 20
STM 30
STM 40
STM 50
\$TM 60
\$TM 70
\$TM 80
STM 90
STM 100
STM 110
STM 120
STM 130
STM 140
\$TM 150
STM 160
\$TM 170
STM 180
\$TM 190
\$TM 200
STM 210
\$TM 220
STM 230
\$TM 240
\$TM 250
STM 260
STM 270
STM 280
\$TM 290
\$TM 300
5TM 310
\$TM 320
STM 330
STM 340
STM 350
\$TM 360
STM 370
STM 380
STM 390
STM 400
5TM 410
STM 420
STM 430
\$TM 440
STM 445
\$TM 450
STM 460
STM 470
STM 480
STM 490
\$TM 500
\$TM 510
\$TM 520
\$TM 530
STM 540
STM 550
STM 560

```
```

C

```
```

 M(NMID)= SQRT.(2.0 # G1 * (1.0/TS(NHID.1) - 1.0))
    ```
        M(NMID)= SQRT.(2.0 # G1 * (1.0/TS(NHID.1) - 1.0) )
    PS(NMID,1)= TS(NMID,1)* G2
    PS(NMID,1)= TS(NMID,1)* G2
        RHO(NMID,I)= PS(NMID,1) / TS(NMID,1)
        RHO(NMID,I)= PS(NMID,1) / TS(NMID,1)
    U(NMID,I)= M(NMID)* SQRT(G* TS(NMIDSI))
    U(NMID,I)= M(NMID)* SQRT(G* TS(NMIDSI))
    PO(NMID) = PS(NHID,1) * (1.0 * 0.5/G1* M(NMID)**2) ##G2
    PO(NMID) = PS(NHID,1) * (1.0 * 0.5/G1* M(NMID)**2) ##G2
    REGION FROM NOZZLE MIDDLE TO OUTER WALL
    REGION FROM NOZZLE MIDDLE TO OUTER WALL
        SET M, TS, PS
        SET M, TS, PS
        (LZ IS JUMP FROM NOZZLE TO SECONDARY STREAM)
        (LZ IS JUMP FROM NOZZLE TO SECONDARY STREAM)
        PK=1.
        GK=1.
        RK=1.
    NPRR=NMIO+1
    DO 42 I=NPRR,N
        IM=I-1
            JUMP POINT TO SECONDARY STREAN
    IF (I -E0.L2+1) PK= P02/P01
    IF (I .EQ.L2+I) OK=P02/P01*(T01/TOL)**GZ
    IF (I .EO.L2+1) RK=T02/T01
    SX=RK*R(IM,1)*(PSI(I)-PSI(IM))
    M(I)= M(IM) - SX/(G**.5 * OK *TS(IM.1)**(G2*0.5))
        Bl= ((PK/PS(IM,1))*#(10/G2)-10)*2.*G1
    IF((I.EQ.L2+1).AND.(81.LE.0.0)) TMAX=TMAX*0.995
    IF((I.EQ.L2+1).AND.(Bl.LE,0.0)) GO TO 595
        IF (1 EEO.L2+1) M(I)= SORT(B1)
    SET TS, PS, RHO, U, PO, DNQ R ACROSS STREAM FROM M(I)
    TS(I,1)=RK/(1.0+0.5/G1*(M(I))*#2.)
    PS(I-l)=OK*(TS(I,1))*#G2
    RHO(I,1)=PS(I,1)/TS(I,1)
    U(I,1)=M(I)*SORT(G*TS(I,1))
    PO(I)=PS(I,1)*(1.+0.5/GI*(M(I))**2.)*&G2
    Z=2.0 / (RHO(IM,1)#U(IM,l)+RHO(I,l)#U(IOl))
    ON(I)= DN(IM) + Z * (PSI(I) - PSI(IM))
    DWI= DN(I)
    DWZ= DN2 - UN(I)
    IF {DW2 .LT. 0.0) DW2= 0.0
    R(I,1)=RI*(1.-DW1/DN2)*EXP(-RDECAY*DW1*ABS(R1))&R2*DH1/DN2*
    1 EXP(-RDECAY*DW2*ABS(R2))
    SEARCH FOR TSA WHERE DN2-DN(N) OEQ. O.O
    IF (J .EQ. 1) DIFFA= DN2-DN(N)
    IF (J.GE. 2) DTFFB= DN2-DN(N)
        IF SUFFICIENTLY SMALL INTERVAL, THEN EXIT
        IF (ABS(TSB-TSA) &LE. 0.0000001) GO TO 41
        IF (ABS(DIFFB).LE. 0.0001) GO TO 41
    CONTINUE
    WRITE(6,900) DN2.DN(N),TSA,TSB
    FORMAT(/7X,22HNO CONVERGENCE DN2 =9F10.5.5X.7HDN(N) =9F10.5.5%
    1 SHTSA =,F10.5,5X,5HTSB = F F10.5/%
    CONTINUE
        STM 570
        SOLVE FOR TEMPFRATURESgMACH NUMBERS,ETC. AT NODE POINTS
        $TM 580
        WORKING FROM NOZZLE MIDDLE (NMID) OUT TO BOTH WALLS
        NOZZLE CENTRE LINE VALUES
C
        STH }59
        $TM 600
        STM 610
        $T:1 620
        5TM 630
        STM }64
        $TM 650
        STM 660
        STM }67
        STM }68
        STM 690
        STM 700
        STM 710
        STM 720
        STM 730
        STM }74
        STM 750
        STM 760
        STM 770
        STM 780
        $TM 790
        $TM 800
    STM 810
    STM 820
    $TM 830
    STM 840
    STM 850
    $TM 850
    $TM 860
$TM 870
$TM 872
$TM 873
$TM 880
$TM 890
$TM 900
STM 910
STM 920
STM 930
$TM 940
STM 950
STM 960
$TM 970
STM 980
STM 990
STM1000
STM1010
STM1020
$TM1030
$TM1040
STM1050
STM1060
$TM1070
STM1080
$TM1090
$TM1100
&TM1110
$TM1120
$TM1130
$TM1140
$TM1150
STM1160
$TM1170
$TMM1170
```



```
    GUBROUTINE EDNY(N,NN,NX,U,PS,CC,DS,E,EI,HHO,VIS,R,Y, SED 0
    1
                S4, S5. DELI,DEL2,DEL.3,DEL4,COREl.COREZ,CORE3)
    $ED 10
```



```
    SIJBROUTINE EDDY
    CALCULATES EDDY VISCOSITY VALUES - ARRAY E(N)
    REQUIRED PARAMETERS:
        ARRAYS OMG, RHO, VIS, Y, PS, DS, SI...S5
        VARIABLES N. NN, NI...NG, COREI, CORE?, CORE3
    METHOD
        CALCULATES RFFERENCE VARIABLES (DP, DELI. DELO.
                UREFI, UREFO. CC)
        FOR\cdotEACH J FROM l TO N
                DETERMINES THE REGION BY CHECKING NI...N5
                CALCULATES EDDY VISCOSITY: E(J)
```



```
    RFAL LZ,LTR,LM
    DIMENSION SI(190),S2(190),S3(190),S4(190),S5(190), E(190),E1(190).
    I DS(190),VIS(190),THETA(190,2),R(190,2),U(190,2),
        TS(190,2),RHO(19G,2),NX(6)
    DIMENSION OMG(190), Y(190),PS(190,2)
    DOUBLE OMG(190), Y{190},PS(190,2)
    calculate reference variables
    AP={PS(1,2)-PS(1,1))/DS(1)
        DELI=Y(2)-Y(1)
        DELO=Y(N)-Y (NN)
    UREFISSORT(U1)
UREFI=SORT((U( 2.2)/DELI-DELI*DP/(2**VIS(2))) / RHO( 2.2) *
1 VIS( 2))
    nP=(PS(N,2)-PS(N,1))/DS(N)
    UREFO=SQRT((U(NN,2)/DELO-DELO*OP/(2.*VIS(NN)) //RHO(NN*2)*
    1VIS(NN))
        IF (COREI .EO. 0.0) CC= 0.08
    SCORE = COREI + CORE2 + CORE3
DO LOOP WHICH COMPUTES EDDY VALUES E(J)
        YS: DIMENSIONLESS DIST TO WALL
        LZR: CURVATIJRE EFFECT
        RN: RICHARDSON NUMBER
DIFFEPING CALCULATIONS FOR EACH REGION (N1...N6)
    DO 10 J=2,NN
    .JM=J-1
    JP=J+1
    IF (J..LT.NX(1)) GO TO 20
    IF (J.GT.NX(6);G0 T0 2l
    IF (J .LE.NX(2) ) GO TO 30
    IF (J.GE.NX(5), GO TO 30
    IF (J \bulletLT. NX(3) ) GO TO 29
    IF (J.GT.NX(4) ,GOTO 40
    GO TO 30
C
    20
InNER WALL
\(D R N=Y(J)-Y(I)\)
```

| YS＝DPN＝UREFI＊P．HO（J，）／VIS（J） | | $\begin{aligned} & \text { SED } 580 \\ & \text { SED } 590 \end{aligned}$ | | |
|---|---|---|---|---|
| | | | |
| $\Delta Z 1=0.09 * D E L 1$ | | SED 600 | |
| | $n D Z=1.0-2.0 * D R N / Y(N)$ | SED 610 | |
| IF（SCORE．EQ．0．0）AZI＝（．14－．08＊DDZ＊＊2－．06＊DDZ＊＊4）＊Y（N）＊．5 | | SED 620 | |
| | LZ＝LZ \＃ 1.2 | SED | 630 |
| IF（LZ－GT．AZI）LZ＝AZI | | SED 640 | |
| g0 TO 25 | | SED 650 | |
| C | | SED 660 | |
| C | CORE REGIONS | SED 670 | |
| | | SED 680 | |
| 30 | | SED 690SED 700 | |
| | $\therefore 0 \text { TO } 10$ | | |
| C | | SED 710 | |
| C | DEL？REGION | SED 720 | |
| C29 | | GED 730 | |
| | N×3＝NX（3） | SED 740 | |
| | NX2＝NX（2） | | 750 |
| | $L Z=C C * D E L 2 *(1 .+.6 \# U(N X 2,2) / U(N X 3,2))$ | SED 760 | |
| | go TO 25 | | 770 |
| c ${ }^{\text {c }}$ | | SED 780 | |
| c | del 3 REgion | $\begin{aligned} & \text { \$ED } 790 \\ & \text { SED } 800 \end{aligned}$ | |
| C | | | |
| 40 | NX5 $=$ NX（5） | SED 810 | |
| | N $\times 4=N \times(4)$ | SED 820 | |
| | $L 7=C ̧ C \# D E L 3 *(1,+.6 * U(N X 5,2) / U(N X 4,2))$ | SED 830 | |
| | GO TO 25 | | 840 |
| $\begin{aligned} & \ddot{c} \\ & c \\ & c \\ & 21 \end{aligned}$ | | SED 850 | |
| | OUTER WALL | SED 860SED 870 | |
| | | | |
| | continue | SED 880 | |
| | ORN $=\quad Y(N)-Y(J)$$Y S=D R N: U R E F O R H O(J, 1) / V I S(J)$ | SED 890SED 900 | |
| | | | |
| | YS＝DRN＊UREFORHO（J， 1 ）／VIS（J）
 $\mathrm{LZ}=0.41 *(1 .-\operatorname{EXP}(-Y S / 26)$.$) ＊DRN$ | SED 900SED 910 | |
| | $\triangle Z 4=0.09 * D E L 4$ | SED 920 | |
| | $D O Z=1.0-2.0 * D R N / Y(N)$ | SED 930 | |
| | ```IF (SCORE.EQ.0.0) AZ4=(0.14-0.08*DOZ**2-0.06*DDZ**4)#Y(N)*0.5 IF(LZ .GT. AZ4) LZ=AZ4``` | SED 940 | |
| | | SED 950SED 960 | |
| | $\begin{aligned} & I F(L Z \cdot G T \cdot A Z 4) L Z=A Z 4 \\ & L Z=L Z * 1.2 \end{aligned}$ | | |
| 25 | CONTINUE | SED 970 | |
| | | SED 980 | |
| | $P N=R N /(S 5(J) *(U(J P, 1)-U(J, 1)\}+S 4(J) *(U(J, 1)-U(J M, 1))$ ） | SED 990 | |
| | IF（RN－LE． 0.0$) ~ L Z R=~ L Z * ~(2.0-E X P ~$ （3．0＊RN）） | $\begin{aligned} & \text { SED1000 } \\ & \text { SED } 1010 \end{aligned}$ | |
| | | | |
| | $\begin{aligned} & E I=Y(J)-Y(J M) \\ & E J=Y(J P)-Y(J) \end{aligned}$ | SED1020 | |
| | $E J=Y(J P)-Y(J)$ | SED1030 | |
| | $E K=Y(J P)-Y(J M)$ | SEDI | 040 |
| | $\begin{aligned} & \operatorname{DUY}=A F S(E I *(U(J P, 2)-U(J, 2)) /(E K * E J)+E J *(U(J, 2)-U(J M, 2)) /(E K * E I)) \\ & E(J)=D U Y \& L Z R * L R \end{aligned}$ | SED1050 | |
| | | SED 1060 | |
| 10 | $E(J)=D U Y * L Z R \otimes L Z R$
 CONTINUE | SED1070 | |
| | $F(1)=0.0$ | SED1 | 080 |
| | $E(N)=0.0$RETURN | SED1090 | |
| | | SED | 100 |
| | EMD | SED1110 | |
| | SLIRROUTINE WALLS（XW，YW，XX，YY，T，CUR，N，MO） | \＄WA | 0 |
| C＊＊があめかもあ | | SWA | 10 |
| C | SUqROUTINE WALLS SMOOTHS THF BOUNDARY DATA USING A LEAST | \＄WA 20 | |
| c | data to get the cijrvature and slope at any point | SWA 30 | |
| c | | SWA 40 | |
| | | $\begin{array}{ll}\text { SWA } & 50 \\ \text { SWA } & 60\end{array}$ | |
| | | | | |
| | | SWA | 70 |

```
    COMMON/KURV/MST,MSS,NOI,CIIRV SWA BO
    IF(MO.EQ.I) M=MST SWA 90
    IF(MD.EQ.2) M=MSS
    SWA 100
    IF(XX.LT.999.) GO TO 60
    A}=N+M-
    MX=N
    N:P=M-1
    DO 4 J=1,MP
    JK=M-J
    .JKI=JK+1
ND=NDI(JKl,MO)-NDI(JK,MQ) & 1
    nO 3 1=1,NP
    K=NX+1-I
    L=K-JK
    XLW (K,MQ) =XW (L,MO)
    YW(K,MO)=YW(L,MQ)
    NOI(JKI,MO)=NX
    NX=NX-NP
    OO 5 I=1.N
    YB(I,MQ)=YW(I,MQ)
    KM=1
    OO 198 MP=1,M
    NDA=NDI (MP,MS)
    KL=NDA-KM+1
    IF(KL.LT.3) GO TO 700
    IF(KL.EQ.3) GO TO 30
    IF(KL.EQ.4) GO TO 40
    L=5
    NO 20 KS=KM,NDA
    IF(L.EO.4) GO TO 17
    CALL LSQ(KS,KM,NDA,L,A1,A?,A3,XW(1,MO),YB(1,MO);-
```



```
    YP(KS,MQ)=A2+2.*A3#XW(KS,MQ)
    CURV(KS,MQ) =-2.*A3/(1.+YP(KS,MQ)**2)**1.5
    IF(ARS (CURV (KS,MO)).LT..001) CURV(KS,MO)=0.
    CONTINUE
    GO TO 198
    C.1=XW(KM,MO)-XW(KM+1,MO)
    C
    C 3 =XW (KM+1,MQ)-XW (NDA,MQ)
    YPP=2.*(YW(KM,MO)/C1/C2-YW(KM+1,MQ)/C1/C3+YW(NDA,MQ)/C2/C3)
    MO 31 K=KM,NDA
    YP(K,MO)=(2.*XW(K.MO)-XW(N\capA,MQ)-XW(KM+1,MO))#YW(KM,MO)/C1/C2
    1- -(2.#XW(K,MQ)-XW(KM,MQ)-XW(NDA,MQ))*YW(KM+1,MQ)/C1/C3
    2 + (2.*XW(K,MO)-XW(KM,MO)-XW(KM+1,MQ))#YW(NDA,MOI/C2/C3
    CIIRV(K,MQ)=-2.*YPP/(1.+YP(K,MO)**2)**1.5
    IF(ABS(CURV(K,MQ)).LT.0.001) CURV(K.MO)=0.
    CONTINUE
    ro TO.198
    I=4
    CALL LSQ(KS,KM,NDA,L,A1,A2,A3,XW(1,MQ),YB(1,MQ):
    GO TO 16
    KM=NDA+1
    RETURN
    NDA=1
    no 70 I=1,M
    J=NOI(I,MQ)
    IF((XX.GE.XW(NDA,MO)).AND.(XX.LE.XW(J,MOH)) GO TO 71
    IF(I.EQ.M) GO TO 71
    NDA=J*1
70
    JJ=J-1
    DO 72 K=NDA,JJ
```

| | | \$WA 690 $\$ W A 700$ |
| :---: | :---: | :---: |
| 72 | CONTINUE | \$WA 710 |
| 73 | IF(K.EQ.NDA) $K=N D A+1$ | SWA 720 |
| | $C_{1}=X W(K+1, M Q)-X W(K, M Q)$ | SWA 730 |
| | C C $=X W(K+1, M Q)-X W(K-1, M Q)$ | SWA 740 |
| | $C .3=X W(K, M Q)-X W(K-1, M Q)$ | \$WA 750 |
| | S $1=X X-X W(K+1, M(2)$ | \$WA 760 |
| | S? = XX - XW (K.MO) | \$WA 770 |
| | S $3=X X-X W(K-1, M 0)$ | SWA 780 |
| | YY =S $3 * S 2 * Y W(K+1, M O) / C 1 / C 2-S 1 * S 3 * Y W(K, M Q) / C 1 / C 3+S 1 * S 2 * Y W(K-1, M Q) / ~$ | \$WA 790 |
| | $1 \mathrm{CZ/C3}$ | \$WA 800 |
| | C(IR=S2*S3*CURV (K+1, MQ)/Cl/C2-S1*S3*CURV (K, MQ)/Cl/C3 | \$WA 810 |
| | 1 +S1*S2\#CURV (K-1,MQ)/C2/C3 | \$WA 820 |
| | $T=S 3 * S 2 * Y P(K+1, M Q) / C 1 / C 2-S 1 * S 3 * Y P(K+M Q) / C 1 / C 3+S 1 * S 2 * Y P(K-1, M Q)$ | \$WA 830 |
| | 1 /C2/C3 | \$WA 840 |
| | $T=A T A N(T)$ | \$WA 850 |
| | Rfturn | \$WA 860 |
| 700 | V'RITE (6,900) | \$WA 870 |
| 900 | FORMAT(//4X.34H LESS THAN THREE POINTS IN SEGMENT) | \$WA 880 |
| | STOP | \$WA 890 |
| | EHD | \$WA 900 |
| | SUBROUTINE LSO(KS,KM,NDA,L,A1, A2,A3,C,B) | \$LS 0 |
| | DIMENSION B(99), $\mathrm{C}(99), S(2,4)$ | \$LS 10 |
| | $k=K S$ | \$LS 20 |
| | | \$LS 30 |
| | IF (K S.EQ.KM) . OR. $(K S . E Q \cdot K M+1)) K=K M+2$ | \$LS 40 |
| | 1F(L.EO.4) K=KM+? | \$LS 50 |
| | ก๐ $5 \mathrm{I}=1,2$ | \$LS 60 |
| | no $5 \mathrm{~J}=1.4$ | ¢LS 70 |
| | $\mathrm{N}=\mathrm{I}-1$ | SLS 80 |
| | $S(I, J)=0$. | \$LS 90 |
| | CO $4 \mathrm{M}=1, \mathrm{~L}$ | \$LS 100 |
| | $K K=K+M-3$ | SLS 110 |
| | IF (C) KK).EQ.0.) $C(K K)=1 . E-06$ | \$LS 120 |
| | | \$LS 130 |
| | $S(I, J)=S(I ; J)+B(K K) * * N * C(K K) * *(J-N)$ | \$LS 140 |
| 5 | CONTINUE | \$LS 150 |
| | $A=L$ | \$LS 160 |
| | $\mathrm{D}=\mathrm{A} \#(\mathrm{~S}(1,2) * S(1,4)-S(1,3) * \# 2)-S(1,1) *(S(1,1) * S(1,4)-S(1,2) * S(1,3)$ | SLS 170 |
| | $1)+5(1,2) *(S(1,1) * S(1,3)-S(1,2) * * 2)$ | SLS 180 |
| | $A 1=(S(2,1) *(S(1,2) * S(1,4)-S(1,3) * * 2)-S(2,2) *(S(1,4) * S(1,4)-$ | \$LS 190 |
| | $15(1,2) * S(1,3))+5(2,3) *(S(1,1) * S(1,3)-5(1,2) * * 2)) / D$ | \$LS 200 |
| | A2 $=(S(2,1) *(S(1,2) * S(1,3)-S(1,1) * S(1,4))+S(2,2) *(A * S(1,4)-$ | \$LS 210 |
| | | \$LS 220 |
| | $A 3=(S(2,1) *(S(1,1) * S(1,3)-S(1,2) * * 2)-5(2,2) *(A * S(1,3)-$ | SLS 230 |
| | $15 \mathrm{~S}(1,1) * S(1,2))+5(2,3) *(A * S(1,2)-S(1,1) * \# 2)$) 0 | \$LS 240 |
| | RETURN | SLS 250 |
| | END | SLS 260 |
| | SUBROUTINE SOLV(DS,N,NN,PR,PRT,G). | \$S0 0 |
| | REAL M(190) | \$SO 10 |
| | DIMENSION SI(190), S? (190),S3(190), S4(190),S5(190), E(190), E1(190), | \$50 20 |
| | $1 \mathrm{DS}(190), \mathrm{VIS}(190), \mathrm{X}(190), Y(190), \mathrm{PO}(190), H(190)$, | \$SO 30 |
| | 2 THETA(190,2),R(190,2).U(190,2), TS 2190,2$)$,RHO(190,2). | \$SO 40 |
| | 3 A(190), 3 (190), C(190),D(190) | \$SO 50 |
| | DIMENSION OMG(190),DN(190), PS (190,2) | \$SO 60 |
| C | DOUBLE, OMG(190), DN(190), PS (190.2) | \$SO 70 |
| | DIMENSION PSI(180) | \$SO 80 |
| C | DOUQLE PSI(190) | \$50 90 |
| | COMMON/INCD/ U,PS,TS,M,PO,THETA,R,X,Y,DN | \$SO 100 |
| | COMMON/SOLV/ Sl, S2,S3,E,E1,H,S4,S5 | \$50 110 |
| | COMMON/INEOY/PSI, RHO,VIS | SSO 120 |
| | $C_{L}=(G-1 \cdot) / G$ | \$50 130 |
| | CO $=0$. | |

```
\begin{tabular}{|c|c|}
\hline & \$50 140 \\
\hline IF (PR . EO. .7) \(\mathrm{CO}=1\). & \$S0 150 \\
\hline Dif \(10 \mathrm{~J}=2 \cdot \mathrm{NN}\) & \$SO 160 \\
\hline \(\mathrm{JP}=\mathrm{J}+1\) & \$SO 170 \\
\hline \(J M=J-1\) & \$50 180 \\
\hline \(Y 1=E 1(J P) *(V I S(J P) / P R+R H O(J P, 1) * E(J P) / P R T)\) & \$50 190 \\
\hline  & ¢50 200 \\
\hline \(Y 3\) =EI(J) (VIS(J)/PR + RHO(J -1)*E(J)/PRT) & \$S0 210 \\
\hline \(Y_{4}=(Y 1+Y 3) / 52(J)\) & \$S0 220 \\
\hline \(Y 5=(Y 3+Y Z) / 53(J)\) & \$S0 230 \\
\hline \(Y 6=Y 4 / 51(J)\) & sSo 240 \\
\hline \(Y 7=Y 5 / 51(J)\) & \$50 250 \\
\hline \(Y 8=Y 6\) U(J,1) & \$S0 260 \\
\hline \(Y 9=Y 7\) U(J.l) & \$S0 270 \\
\hline \(A(J M)=U(J, 1) / D S(J)+Y 8\) + Y9 & \$50 280 \\
\hline \(B(J M)=-Y 8\) & \$S0 290 \\
\hline \(C(J M)=-Y 9\) & \$SO 300 \\
\hline IF(PR.NE.0.7) D(JM) \(=\mathrm{U}(\mathrm{J}, 1) * * 2 / D S(J)-(P S(J, 2)-P S(J, 1)) / D S(J) *(1.1\) & \$SO 310 \\
\hline ( (RHO(J,1)) & \$50 320 \\
\hline IF(PR.EQ.0.7) \(\cap(J M)=T S(J, 1) * U(J, 1) / D S(J)+(C L * U(J, 1) /(R H O(J, 1))\) ) & \$SO 330 \\
\hline *(PS(J,2)-PS (J, l) / DSS(J)+RHO(J.1)*CL*(VIS(J)+RHO(J,1)*E(J))*(U) & \$50 340 \\
\hline 2(J.1)**2*(S5(J)*(U(JP,2)-U(J,2))*S4(J)*(U(J, 2) - U (JM, 2) ) ) **2 & sSO 350 \\
\hline CONTINUE & \$S0 360 \\
\hline A(1) \(=A(1)+C 0 * C(1)\) & \$50 370 \\
\hline \(\Delta(N-2)=A(N-2)+C O * B(N-2)\) & \$50 380 \\
\hline CALL CALC \((A, B, C, D, H, N)\) & \$S0 390 \\
\hline PETURN & \$SO 400 \\
\hline END & SSO 410 \\
\hline Surroutine CALC(A,B,C,D,H,J) & SCA 0 \\
\hline ПIMENSION A(190), \(\mathrm{B}(190), \mathrm{C}(190), \mathrm{D}(190), \mathrm{W}(190), \mathrm{G}(190), \mathrm{H}(190), 0(190)\) & \$CA 10 \\
\hline \(\mathrm{Ni2}=\mathrm{J}-2\) & SCA 20 \\
\hline \(\cdots 1=J-2\) & SCA 30 \\
\hline \(W(1)=A(1)\) & ¢CA 40 \\
\hline G(1) \(=\mathrm{D}(1) / \mathrm{W}(1)\) & \$CA 50 \\
\hline D \(\mathrm{Cl}_{1}^{1 \cdot K}=2, N 2\) & SCA 60 \\
\hline \(k 1=K-1\) & \$CA 70 \\
\hline \(n(K 1)=R(K 1) / W(K 1)\) & SCA 80 \\
\hline W(K) \(=A(K)-C(K) W Q(K 1)\) & \$CA 90 \\
\hline \(\mathrm{F}_{\mathrm{H}}(\mathrm{K})=(\mathrm{D}(\mathrm{K})-\mathrm{C}(\mathrm{K}) * \mathrm{G}(\mathrm{K} 1) \mathrm{)} / \mathrm{W}(\mathrm{K})\) & SCA 100 \\
\hline \(H(N 2)=G(N Z)\) & SCA 110 \\
\hline N3 \(=\mathrm{J}-3\) & \$CA 120 \\
\hline คO \(2 \mathrm{~K}=1\), N & SCA 130 \\
\hline \(K K=N 2-K\) & \(s\) SA 140 \\
\hline \(H(K K)=G(K K)-Q(K K) * H(K K+1)\) & \$CA 150 \\
\hline PETURN & \$CA 160 \\
\hline End & \$CA 170 \\
\hline SUBRQUTINE DSMOVE \(X W, Y W, X X, Y Y\), DSX,THETA,RR,NPAIR,J) & SDS 0 \\
\hline & SDS 10 \\
\hline **********************************************世**** & SDS 20 \\
\hline & \$DS 30 \\
\hline SUBROUTINE DSMOVE & SDS 40 \\
\hline Finds new \(x\) Value at a given distance dix along wall surface & SDS 50 \\
\hline METHOD: & SDS 60 \\
\hline GUESSES VALUES OF DX UNTIL (DSX - DS COMPUTED) \(=0.0\) & SDS 70 \\
\hline  & SDS 80 \\
\hline & \$DS 90 \\
\hline AIMENSION XW(99,?),YW(99.?) & SDS 100 \\
\hline & SDS 110 \\
\hline APPROXIMATE POINT \(X(N), Y(N)\) & SDS 120 \\
\hline AT DISTANCE DS(N) ALONG UPPER WALL & SDS 130 \\
\hline (TWO METHODS OF APPROXIMATING, DEPENDING ON RI) & SOS 140 \\
\hline
\end{tabular}
```


| C | | SLO 250 |
| :---: | :---: | :---: |
| | DIMENSION X(190),Y(190), U(190,2), DIP(190), NX(6), PO(190);H(190) | \$LO 260 |
| | DIMENSION DN(190) | SLO 270 |
| C | DOURLE DN(190) | SLO 280 |
| | | \$LO 290 |
| C | | \$LO 300 |
| | SET TOLERANCES | \$LO 310 |
| C | | \$LO 320 |
| | TOLI $=0.01 * P 03 / D N(N) / P 01$ | SLO 330 |
| | TOL2 $=0.01 *(P 01-P 07) / D N(N) / P 01$ | \$LO 340 |
| | TOL3 $=0.01 *(P 01-P 02) / D N(N) / P 01$ | \$LO 350 |
| | TOL4 $=0.01 * P 02 / D N(N) / P 01$ | \$LO 360 |
| | IF (K3.EO.0) CORE3 $=0$ 。 | SLO 370 |
| C | | \$LO 380 |
| | THIS LOOP finds a value for nmax | \$LO 390 |
| C | | SLO 400 |
| | DO $11 \mathrm{~J}=2, \mathrm{~N}$ | SLO 410 |
| | DIP(J) = (PO(J)-PO(J-1))/(ON(J)-DN(J-1) | \$LO 420 |
| | DIP(J)= ABS(DIP(J)) | SLO 430 |
| 11 | continue | SLO 440 |
| | INMAX $=1$ | SLO 450 |
| | no $12 \mathrm{~J}=$?, N | SLO 460 |
| | IF (U(J,2) .GT. U(NMAX,2)) NMAX $=$ J | \$LO 470 |
| 12 | CONTINUE | \$LO 480 |
| C | | SLO 490 |
| C | THIS LOOP COMPUTES EDGE VALUES FOR THE PRIMARY.. SECONDARY | SLO 500 |
| C | AND TERTIARY POTENTIAL FLOWS | SLO 510 |
| C | TERTIARY FLOW REGION | \$LO 520 |
| C | | \$LO 530 |
| | no $50 \mathrm{I}=2, \mathrm{~N}$ | \$LO 540 |
| | IF (DIP(I) \<. TOLI) GO TO 52 | SLO 550 |
| | CONTINUE | \$LO 560 |
| 52 | CONTINUE | \$LO 570 |
| | NX(1)= $1-1$ | \$LO 580 |
| C | | \$LO 590 |
| C | SECONDARY FLOW REGION | \$LO 600 |
| C | | \$LO 610 |
| | $\text { no } 60 \mathrm{M}=2, \mathrm{~N}$ | \$LO 620 |
| | $I=N+(2-M)$ | \$LO 630 |
| | IF (DIP (I) .LT. TOL4) GO TO 62 | SLO 640 |
| 60 | CONTINUE | \$LO 650 |
| 62 | CONTINUE | \$LO 660 |
| | $\mathrm{A} \times(6)=1$ | \$LO 670 |
| | IF (NX(1) .GT. $N \times(2)$) CORE3 $=0.0$ | \$LO 680 |
| | IF (NX16) -LT. NX(5), COREZ $=0.0$ | \$LO 690 |
| | IF (CORE3 -EQ. 0.0) GO TO 102 | \$LO 700 |
| | | \$LO 710 |
| C | TERTIARY CORE REGION | SLO 720 |
| C | | \$LO 730 |
| | $\mathrm{N} P \mathrm{PRR}=\mathrm{N} \times(1)+1$ | SLO 740 |
| | DO 70 I $=\mathrm{NPRR}$, N | SLO 750 |
| | IF (DIP(I) -GT. TOL2) GO TO 72 | \$LO 760 |
| 70 | CONTINUE | \$LO 770 |
| 72 | CONT INUE | \$LO 780 |
| | NX(2) = $1-1$ | \$LO 790 |
| | $N P R R=N \times(2)+1$ | SLO 800 |
| | no 751 =NPRR.N | \$LO 810 |
| | IF (DIP(I) -LT. TOLZ) GO TO 77 | \$LO 820 |
| 75 | CONTINUE | SLO 830 |
| 77 | CONT INUE | SLO 840 |
| | $\mathrm{NX}(3)=1-1$ | SLO 850 |
| 102 | CONTINUE | SLO 860 |
| | IF (CORES ©EQ. O.O) GO TO 101 | SLO 870 |

| C | | flo 880 | | |
|---|---|---|---|---|
| C | SECONDARY CORE REGION | SLO 890 |
| C | | SLO 900 |
| | $\cdots P R R=N X(6)$ | \$LO 910 |
| | no $80 \mathrm{M}=$? , NPRR | SLO 920 |
| | $I=N \times(6)+(2-M)$ | \$LO 930 |
| | IF (DIP(I) .GT. TOL3) GO TO 82 | SLO 940 |
| 80 | CONTINUE | \$LO. 950 |
| 82 | CONTINUE | \$LO 960 |
| | $\mathrm{N} \times(5)=1$ | \$LO 970 |
| | $N P R R=N \times(5)$ | \$LO 980 |
| | no $85 \mathrm{M}=$?, NPRR | SLO 990 |
| | $1=N \times(5) *(2-M)$ | \$LO1000 |
| | | SLO1010 |
| 85 | CONTINUE | \$L01020 |
| 88 | continue | SLO1030 |
| | $N \times(4)=1$ | \$L01040 |
| 101 | CONTINUE | \$L01050 |
| C | | \$L01060 |
| C | C.HECK IF PRIMARY CORE EXISTS | \$L01070 |
| C | | \$LO1080 |
| | IF (CORE1 .EQ. 0.0) GO TO 110 | SLO1090 |
| | IF (COPE 3 . NE. 0.0) GO TO 120 | \$LO1100 |
| | ก0 $130 \mathrm{I}=2, \mathrm{~N}$ | SLO1110 |
| | IF (OIP(I) .LT. TOLZ) GO TO 132 | \$L01120 |
| 130 | CONTINUE | \$L01130 |
| 132 | continue | \$L01140 |
| | $\mathrm{NX}(3)=\mathrm{I}-1$ | \$L01150 |
| 120 | CONTINUE | \$L01160 |
| | IF (COREZ .NE 0.0$)$ GO TO 140 | \$LO1170 |
| | DO $135 \mathrm{M}=2, \mathrm{~N}$ | \$LO1180 |
| | $I=N+(P-M)$ | \$L01190 |
| | IF (DIP(I) -LT. TOL3) GO TO 137 | \$LOI200 |
| 135 | CONTINUE | \$L01210 |
| 137 | CONTINUE | \$LO1220 |
| | $\cdots \times(4)=1$ | \$L01230 |
| 140 | CONTINUE | \$LO1240 |
| | IF (NX(3) -GE. $\mathrm{NX}(4) \mathrm{l}$) CORE] $=0.0$CONTINUE | \$LO1250 |
| 110 CONTINUE | | \$L01260 |
| | | | | \$L01270 |
| C | CHECK VALUES OF , COREI, CORE2, CORE3 | \$LO1280 |
| cc | nmax is maximum ui, value | \$LO1290 |
| | | \$L01300 |
| | IF (CORE . NE. 0.0) GO TO 670 | \$LO1310 |
| c | COREI $=0.0$ | \$LO1320 |
| C | | SLO1330 |
| C | | \$LO1340 |
| | $N X(3)=$ NMAX | \$LO1350 |
| | NX(4) = NMAX | SLO1360 |
| 670 | IF ICORE3 . NE * 0.0) GO TO 680 | SLO1370 |
| C | | \$LO1380 |
| C | Core3 $=0.0$ | SLO1390 |
| C | | \$LO1400 |
| | $N \times(1)=N \times(3)$ | SLO1410 |
| | $N \times(2)=N X(3)$ | \$L01420 |
| 680 | IF (CORE2 .NE. 0.0) GO TO 90 | \$L01430 |
| C | | \$L01440 |
| C | COREZ $=0.0$ | SL01450 |
| C | | SLO1460 |
| | $N \times(5)=N \times(4)$ | \$L01470 |
| | $N \times(6)=N \times(4)$ | \$L01480 |
| 90 | CONTINUE | SLO1490 |
| | N×1=NX(1) | |

```
\begin{tabular}{|c|c|}
\hline & SLO1500 \\
\hline N×2=NX(2) & \$LO1510 \\
\hline N×3=NX(3) & \$LO1520 \\
\hline N×4=NX(4) & SLO1530 \\
\hline NXS \(=N \times(5)\) & \$LO1540 \\
\hline NXG=NX (6) & \$LO1550 \\
\hline COREI \(=\) DN ( \(\mathrm{NX4}\) ) - DN (NX3) & \$LO1560 \\
\hline CIRE2 \(=\) DN (NX6)-DN(NX5) & \$L01570 \\
\hline CORE3 \(=\) DN (NX2) - DN (NXX1) & \$LO1580 \\
\hline -DELI \(=\) DN ( \(\mathrm{NXIS}^{\text {l }}\) ) & \$L0.1590 \\
\hline DFL. \(3=0 \mathrm{~N}(\mathrm{~N} \times 5)-\mathrm{DN}(\mathrm{N} \times 4)\) & \$LO1600 \\
\hline DFLL \(2=D N(N \times 3)-\) ON (NX2) & \$L01610 \\
\hline DEL4=DN(N) - DN (NX6) & \$L01620 \\
\hline IF ((CORE1.EQ.0.).AND.(CORE2.E.O.0.).AND.(CORE3.EQ.O.)) NCORE= 0 & \$LO1630 \\
\hline RFTURN & \$L01640 \\
\hline End & \$LO1650 \\
\hline SUBROUTINE CORDS ( \(N, X, Y, T H E T A, U, R H O, P S I, D N, N D U C T, D D I S T)\) & SCO 0 \\
\hline & 5 CO 10 \\
\hline ************************\#\#\#************* & SCO 20 \\
\hline SUBROUTINE CORDS & \$CO 30 \\
\hline CALCULATES & \$CO 40 \\
\hline DISTANCE RETWEEN STREAM LINES (ARRAY DN) & \$CO 50 \\
\hline DRAWS ARCS FROM TOP AND BOTTOM WALL TO MIDDLE OF DUCT & \$CO 60 \\
\hline COMPARES Y COORD OF ROTH ARCS AT MIDDLE POINT & ¢CO 70 \\
\hline  & ¢CO 80 \\
\hline & \$CO 90 \\
\hline RFALL M(190) & \$CO 100 \\
\hline DIMENSION X(190),Y(190), PO(190),H(190), THETA(190, 2), R(190,2), & \$CO 110 \\
\hline U(190,2), TS(190,2),RHO(190,2) & SCO 120 \\
\hline DIMENSION OMG(190), DN(190) & SCO 130 \\
\hline DOUBLE OMG(190),DN(190) & SCO 140 \\
\hline DIMENSION PSI(1R0) & ¢CO 150 \\
\hline DOIJPLE PSI(190) & SCO 160 \\
\hline nN(1) \(=0\). & 5 CO 170 \\
\hline Do \(2 \mathrm{~J}=2 \cdot \mathrm{~N}\) & \$ 60180 \\
\hline \(J M=J-1\) & \$CO 190 \\
\hline 7=2./(RHO (JM, 2)*U(JM, 2) +RHO (J, 2 )*U(J,2)) & \$CO 200 \\
\hline CN(J) \(=\) DN(JM) + Z * (PSI(J) - PSI (JM) & \$CO 210 \\
\hline CONTINUE & \$CO 220 \\
\hline DO \(50 \mathrm{~J}=2\), NOUCT & ¢CO 230 \\
\hline \(J M=J-1\) & \$CO 240 \\
\hline \(x(J)=X(J M)-(D N(J)-D N(J M))\) SIN(THETA \((J, 2))\) & \$CO 250 \\
\hline \(Y(J)=Y(J M)+(D N(J)-D N(J M))\) ( \(\operatorname{Cos}(\) THETA \((J, 2))\) & \$CO 260 \\
\hline CONTINUE & 8 CO 270 \\
\hline NPAR \(=\) NDUCT+1 & \$CO 280 \\
\hline \(\mathrm{N}!\) PARR \(=\mathrm{N}-1\) & \$co 290 \\
\hline กO \(52 \mathrm{MM}=\mathrm{NPAR}\); NP PARR & SCO 300 \\
\hline \(J=N-M M+\) NDUCT & \$CO 310 \\
\hline , \(\mathrm{M}=\mathrm{J}+1\) & \$CO 320 \\
\hline \(X(J)=X(J M)-(D N(J)-O N(J M))\) SSIN(THETA \((J, 2))\) & 9CO 330 \\
\hline \(Y(J)=Y(J M)+(D N(J)-D N(J M)) \# \operatorname{COS}(T H E T A(J, 2))\) & \$CO 340 \\
\hline CONTINUE & \$CO 350 \\
\hline  & \$CO 360 \\
\hline DDIST \(=\) PY(NDUCT) - YCOMP) / DN(N) & \$CO 370 \\
\hline PEETURN & \$CO 380 \\
\hline END & SCO 390 \\
\hline SUBROUTINE REMOVE(N,NN,NGRID,NX,NMAX,OMG,S1,S2,S3,S4,S5,DS,VIS. & SRE 0 \\
\hline ( \(\mathrm{D}, \mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{PO}, \mathrm{H}, \mathrm{THETA,R,PS,U,TS,RHO)}\) & SRE 10 \\
\hline & SRE 20 \\
\hline  & SRE 30 \\
\hline SUBROUTINE REMOVEPTS & SRE 40 \\
\hline
\end{tabular}
```


| 350 | go TO 320 | \$AR | 450 |
| :---: | :---: | :---: | :---: |
| | CONTINUE | SAR | 460 |
| | $X \times A=X X$ | SAR | 470 |
| | DRCA $=02 \mathrm{C}$ | SAR | 480 |
| 320 | IF(FW*DRC.GT.0.0) DRCB $=$ ORCR*0.5 | \$AR | 490 |
| | CONT INUE | \$AR | 500 |
| | $F W=$ DRC | SAR | 510 |
| C | | \$AR | 520 |
| C | CHECK FOR TERMINATION | SAR | 530 |
| C | | SAR | 540 |
| | IF (ABS (XXB-XXA) -LF. 1.E-G) Go TO 310 | SAR | 550 |
| | IF (ARS (DRC) -LE. 1.E-9 GO TO 310 | SAR | 560 |
| 300 | CONTINUE | SAR | 570 |
| | WRITE (6,900) | sAR | 580 |
| 900 | FORMAT $/ 7 \mathrm{XX}$, 35HNO CONVERGENCE IN FINDING XC AND YC/I | SAR | 590 |
| 310 | CONTINUE | SAR | 600 |
| | PETURN | \$AR | 610 |
| | END | SAR | 620 |
| | | SCE | 0 |
| C | | SCE | 10 |
| C | *************************t************ | SCE | 20 |
| C | FUNCTION CENTRE | SCE | 30 |
| C | AIDS IN FINDING A SUITABLE TANGENT TO UPPER WALL | SCE | 40° |
| C | GIVEN XNOZ, $X X$ - PROJECTS TWO TANGENTS | SCE | 50 |
| C | FINDS INTERSECTION XC, YC | SCE | 60 |
| C | RETURNS IIFFFRENCE BETWEEN LENGTH OF RADIUS | SCE | 70 |
| C | | SCE | 80 |
| C | | 5 CE | 90 |
| | DEAL MNOZ, MM | SCE | 100 |
| | DIMENSION XW(99,2),YW(99,2) | SCE | 110 |
| | | SCE | 120 |
| | CALL WALLS (XW,YW, XX,YY,TT,RR,NPAIR,J) | SCE | 130 |
| | MM = TAN(TT) | SCE | 140 |
| | $A B=Y Y$ - (MM* $X X)$ | SCE | 150 |
| | | SCE | 160 |
| | IF (ABS (MNOZ-MM) -LE. 0.00001$) \quad \mathrm{XC}=(\mathrm{XNOZ}+\mathrm{XX}) * 0.5$ | SCE | 170 |
| | $Y C=M N O Z * X C$ + BNOZ | SCE | 180 |
| | RC $=$ DIST (XNOZ,YNOZ,XC,YC) | SCE | 190 |
| | CENTRE $=$ DIST(XNOZ,YNOZ,XC,YC) - DIST(XX,YY,XC,YC) | SCE | 200 |
| | RETURN | SCE | 210 |
| | En'o | SCE | 220 |
| | SUBROUTINE OMGSET IOMG, JSTART, JFIN, JSTSER, JFNSER, DMST, DMFN, DMMID, | SOM | 0 |
| | 1 RST,RFIN) | SOM | 10 |
| C | | SOM | 20 |
| C | ******************************甘***\#\#\#\#\#\#\# | SOM | 30 |
| C | SUBROUTINE OMGSET | \$OM | 40 |
| C | SETS OMG DISTRIBUTION ARRAY OMG | SOM | 50 |
| C | FOR EACH CORE REGIUN, OMGS ARE CONSTANT IN MIDDLE | \$0M | 60 |
| C | CLOSE TOGETHER AT EDGES | \$0M | 70 |
| C | QMG (JSTART) AND OMG (JFIN) MUST ALREADY BE SPECIFIED | SOM | 80 |
| C | *************************************** | \$OM | 90 |
| c | | \$0M | 100 |
| | DIMENSION OMG(190) | SOM | 110 |
| C | DOUBLE OMG(190) | \$OM | 120 |
| | .JCONST = JSTART + JSTSER * 1 | SOM | 130 |
| | NMG (JCONST) = OMG(JSTART) * DMMID | SOM | 140 |
| | $N P R R=J C O N S T+1$ | \$0M | 150 |
| | NPRRR $=J F 1 N-J F N S F R-1$ | SOM | 160 |
| | DO $500 \mathrm{~J}=$ NPRR, NPR (${ }^{\text {a }}$ | SOM | 170 |
| $\begin{aligned} & 500 \\ & c \end{aligned}$ | OMG (J) =OMG (J-1) + DMM 10 | \$OM | 180 |
| | SOLVE FOR RST IN SERIES A+AR+AR**2+... | SOM | 190 |
| | X $A=1.51$ | SOM | 200 |
| | FXA = SERIES(DMMID, DMST, JSTSER,XA) | SOM | 210 |

SUBROUTINE ARCOIS
FINDS XX (ON WALL SPECIFIED) SUCH THAT
ARC RADIUS RC IS TANGENT AT XX
AND PASSES THROUGH NOZZLE AT ANGLE TNOZ

FIND EQUATION OF LINE TANGENT TO x 1
REAL MNOZ
DIMENSION XW(99,2),YW(99,2)
BIST $(X X, Y Y, X X C, Y Y C)=S Q R T((A B S(X X-X X C) * * 2) *(A B S(Y Y-Y Y C) * * 2))$
MNOZ $=$ TAN(TNOZ)
ANOZ = YNOZ - MNOZ * XNOZ
CHOOPPING TECHNIDUE TO FIND CENTRE(X2A) -LT. 0.0 AND CENTRE(X2B) -GT. 0.0

DO $200 \mathrm{~K}=1$.NPAIR
$X \times B=X W(K, J)$
חRCB= CENTRE(XNOZ,YNOZ,MNOZ,BNOZ, XXB,RC,XW,YW,NPAIR,J)
IF (DRCB .GT. O.O) GO TO 210 CONTINUE CONTINUE
$X \times A=X W(K-2, J)$
DRCA $=$ CENTRE (XNOZ,YNOZ,MNOZ,BNOZ, XXA,RC,XW,YW,NPAIR,J)
$F W=D R C A$.
MOOIFIÉD REGULA FALSI ALGORITHM
ก० $300 K=2,50$
gUESS NEW $\times 2$
$X X=$ (DRCB*XXA - DRCA*XXR)/(DRCB-DRCA)
nRC $=$ CENTRE(XNOT,YNOZ,MNOZ,BNOZ, XX,RC,XW,YW,NPAIR,J)
CHANGE APPROPRIATE ENDPOINT TO MIDPOINT
IF (DRCA*DRC .GT.0.0) GO TO 350
$X \times R=X X$
DRCBE DRC
IF (FW*DRC.GT. 0.0) DRCA=DRCA*. 5
\$RE 680
SRE 690
SRE 700
SRE 710
SRE 720
SRE 7.30
SRE 740
SRE 750
SRE 760
SRE 770
SRE 780
SRE 790
SRE 800
SRE 810
SRE 820
SRE 830
SRE 840
SRE 850
\$AR 0
SAR 10
SAR 20
SAR 30
SAR 40
$\$ A R 50$
\$AR 60
SAR 70
SAR 80
SAR 90
SAR 100
SAR 110
\$AR 120
\$AR 130
\$AR 140
SAR 150
SAR 160
SAR 170
SAR 180
SAR 190
SAR 200
$\$$ AR 210
\$AR 220
$\$ 4 R 230$
$\$$ AR 240
SAR 250
SAR 260
SAR 270
SAR 280
SAR 290
SAR 300
\$AR 310
SAR 320
SAR 330
\$AR 340
\$AR 350
5 SAR 360
SAR 370
\$AR 380
SAR 390
SAR 400
SAR 410
SAR 420
SAR 430
SAR 440

1. Hickman, K.E., Hill, P.G., and Gilbert, G.B.: "Analysis and Testing of Compressible Flow Ejectors with Variable Area Mixing Tubes", NASA CR-2067 and ASME Paper 72-FE-14.
2. Gerald B. Gilbert and Philip G. Hill "Analysis and Testing of Two-Dimensional Slot Nozzle Ejectors with Variable Area Mixing Sections" NASA CR-2251, May 1973.
3. P. Bradshaw "Effects of Streamline Curvature on Turbulence Flow" AGARDograph No. 169 August 1973 Available from Report Distribution and Storage Unit, NASA, Langley Field, Virginia 23365.
4. H. Sch1ichting "Boundary Layer Theory" McGraw Hill Book Company, New York, 1968.
5. K.R. Hedges and P.G. Hill "A Finite Difference Method for Compressible Jet Mixing in Converging - Diverging Ducts" Queen's University Thermal Sciences Report No. 3/72 June 1, 1972 Department of Mechanical Engineering, Kingston, Ontario, Canada.
6. Hickman, K.E., Gilbert, G.B., and Carey, J.H., "Analytical and Experimental Investigation of High Entrainment Jet Pumps", NASA CR-1602, July 1970.
7. Kline, S.J., and McClintock, F.A., "Describing Uncertainties in Single Sample Experiments", Mechanical Engineering, 1953.

Table 1
Mixing Section Dimensions
(Inches)

| J | LOWER KALL | | UPPLR WALL | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| J | | | curav | | γ | CURV |
| 1 | -6.00c0 | -4.1028 | .11979 | $-3.327{ }^{-1}$ | 6.02j6 | -.03137 |
| 2 | -5.9500 | -4. 5268 | . 12608 | -3.3009 | 5.7680 | -. 04041 |
| 3 | -5.9000 | -3.9523 | . 13277 | -3.2500 | 5.3572 | -. 06887 |
| 4 | -5.5000 | -3.4324 | .17553 | -3.1250 | 4.7764 | -. 11333 |
| 5 | -5.0000 | -2.9342 | .21657 | -3.006] | 4.3953 | -. 13194 |
| 6 | -4.5000 | -2.5697 | .22500 | -2.7500 | 3.8304 | -. 17358 |
| 7 | -4.0500 | -2. 2988 | $\cdot 23416$ | -2.5000 | 3.4514 | -. 20405 |
| 8 | -3.5000 | -2.1047 | .18402 | -2.2500 | 3.0633 | -. 17665 |
| 9 | -3.0000 | -1.9528 | .15850 | -2.c000 | 2.7705 | -. 16650 |
| 10 | -2.5000 | -1. $\overline{66} 37$ | .13904 | -1.5000 | 2.2963 | -18696 |
| 11 | -2.3500 | -1.8403 | .14043 | -1.0000 | 1.9315 | -. 20381 |
| 12 | -2.3125 | -1.8349 | .14075 | -. 5000 | 1.6544 | -. 20305 |
| 13 | -2.3125 | -1.8390 | .00000 | - coeo | -1.4449 | -. 21235 |
| 14 | -2.0000 | -1.7783 | .00000 | .5000 | 1.2971 | -. 21607 |
| 15 | -1.0000 | -1.5840 | .00000 | . 6250 | 1.2689 | -. 22019 |
| 16 | - 0000 | -1.3897 | . 0.0000 | . 75 ū | 1.1.2444 | -. 22389^{-} |
| 17 | .7503 | -1.2440 | . 00000 | .7500 | 1.2443 | -. 08962 |
| 18 | .7500 | -1.2443 | . 08962 | .80 O | 1.2350 | -. 08984 |
| -19 | -8000 | -1.2350 | . 088984 | . 8500 | $1.2260{ }^{\text {1 }}$ | $=.09007^{-}$ |
| 20 | . 8500 | -1.2260 | . 09007 | 1.0000 | 1.2009 | -. 07313 |
| 21 | 1.0000 | -1.2009 | . 07313 | 1.5000 | 1.1298 | -. 07108 |
| 22 | 1.5000 | -1.1298 | .07108 | 2.0000 | 1.0773 | -. 36664^{-} |
| 23 | 2.0000 | -1.0773 | .05664 | 2.5000 | 1.0423 | -. 05432 |
| 24 | 2.5000 | -1.0423 | . 05432 | 3.0000 | 1.0255 | -. 04063 |
| 25 | 3.0300 | -1.0205 | . 07063 | 3.4000 | 1.0095 | $\rightarrow .01971$ |
| 26 | 3.4000 | -1.0095 | . 01971 | 3.4500 | 1.0082 | -. 01971 |
| 27 | 3.4500 | -1.0082 | . 01971 | 3.5000 | 1.0369 | -. 01971 |
| 28 | 3.5005 | -1.0069 | .01971 | 3.5000 | 1.6570 | .00000 |
| 29 | 3.5000 | -1.0070 | .00000 | 4.0000 | . 9984 | - 00000 |
| 30 | 4.0000 | -. 9984 | .00000 | 5.0000 | . 9811 | .00000 |
| 31 | 5.7000 | -. 98.911 | .05000 | 6.0000 | -9639 | . 00005 |
| 32 | 6.0050 | -. 9639 | .09000 | 7.0000 | . 9456 | . 00000 |
| 33 | 7.0000 | -. 9466 | .00000 | 7.5[0] | .9380 | .00000 |
| 34 | 7.5000 | -. .9380 | .00000 | 7.5000 | .9383 | . 00000 |
| 35 | 7.5000 | -. 9380 | . 09000 | 8.0000 | . 9380 | .00000 |
| 36 | 8.0020 | -. .9380 | .03003 | 9.0000 | . 9380 | .00000 |
| 37 | 9.0000 | -. 9380 | . 05000 | 15.0000 | . 9380 | . 00000 |
| 58 | 10.0000 | -. 9380 | . 09000 | -10.5000 | . 9380 | . 00000 |
| 39 | 10.5000 | -. 9380 | . 00000 | 15.5000 | . 9380 | .00000 |
| 40 | 10.5000 | -. 9380 | . 05000 | 11.0000 | .9642 | -00000 |
| 41 | 11.0000 | -. 9642 | .00000 | 12.0000 | 1.0166 | . 00000 |
| 42 | 12.0000 | -1.0166 | .00000 | 14.0000 | 1.1214 | .00000 |
| 43 | 14.0000 | -1.1214 | - 0000 | 1E.00T0 | 1.2262 | . 00000 |
| 44 | 16.0000 | -1. 2262 | . 00035 | 18.0000 | 1.3310 | .00000 |
| 45 | 18.0000 | -1.3310 | .03000 | 20.0000 | 1.4358 | .00000 |
| 46 | 20.0030 | -1.4358 | .00005 | 22.0000 | 1.5406 | . 00000 |
| 47 | 22.0000 | -1.5406 | .03005 | 23.0000 | 1.5930 | .00000 |

Table 2

Variation of Individual Integrated Traverse Mass
 Flows for Each Test Run

| Run | Variation of Integrated Taverse
 Mass Flow Rate Around An
 Average Value | Number of
 Traverses |
| :---: | :---: | :---: |
| 1 | $-4.1 \%,+7.3 \%$ | 4 |
| 2 | $-3.1 \%,+5.1 \%$ | 10 |
| 3 | $-2.1 \%,+2.2 \%$ | 3 |
| 4 | $-3.7 \%,+5.9 \%$ | 4 |
| 5 | $-2.7 \%,+3.7 \%$ | 4 |
| 6 | $-1.6 \%,+3.0 \%$ | 3 |
| 7 | $-3.5 \%,+4.6 \%$ | 5 |
| 8 | $-3.4 \%,+3.5 \%$ | 5 |
| Average | $-3.0 \%,+4.4 \%$ | |

Table 3

Traverse Locations and Data Summary

| | Maximum Flow - Atmospheric Discharge | | | | Reduced Flow - Back Pressure at Discharge | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Test Number | 2 | 3 | 6 | 7 | 1 | 4 | 5 | 8 |
| Nozzle Position (See Fig. 3) | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| Nozzle Angle | 22.5° | 45° | 45° | 67.5° | 22.5° | 45° | 45° | 67.5° |
| Nozzle meter
 Spacing inch | $\begin{aligned} & 0.020 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & 0.020 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & 0.034 \\ & 1.32 \end{aligned}$ | $\begin{aligned} & 0.018 \\ & 0.70 \end{aligned}$ | $\begin{aligned} & 0.020 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & 0.020 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & 0.034 \\ & 1.32 \end{aligned}$ | $\begin{aligned} & 0.018 \\ & 0.70 \end{aligned}$ |
| Traverse Location + | | | | | | | | |
| $s=-0.070$ meters, - 2.75 inches | | | | $\mathrm{P}_{\text {max }}$ | | | | $\mathrm{P}_{\text {max }}$ |
| $\mathrm{s}=-0.024$ meters, -0.95 inches | | $\mathrm{P}_{\text {max }}$ | $\mathrm{P}_{\text {max }}$ | P, P max | | $\mathrm{P}_{\text {max }}$ | $\mathrm{P}_{\text {max }}$ | $\mathrm{P}, \mathrm{P}_{\text {max }}$ |
| $x=+0.01 .3$ meters, +0.50 inches | $\mathrm{P}_{\text {max }}$ | $\mathrm{P}_{\text {max }}$ | ${ }^{P}$ max | $\mathrm{P}_{\text {max }}$ |
| $\mathrm{x}=+0.038$ meters, +1.50 inches | | | | | $\mathrm{P}_{\text {max }}$ | $\mathrm{P}_{\text {max }}$ | ${ }^{\mathrm{P}}$ max | |
| | | | | | | | | |
| $x=+0.114$ meters, +4.50 inches | U, $\mathrm{P}_{\text {max }}$ | ${\mathrm{U}, \mathrm{P}_{\text {max }}}$ | U, $\mathrm{P}_{\text {max }}$ |
| $x=+0.165$ meters, +6.50 inches | | | | U, P ${ }_{\text {max }}$ | U, $\mathrm{P}_{\text {max }}$ | $\mathrm{U}, \mathrm{P}_{\text {max }}$ | U, $\mathrm{P}_{\text {max }}$ | U, $\mathrm{P}_{\text {max }}$ |
| $x=+0.254$ meters, +10.00 inches | U, $\mathrm{P}_{\text {max }}$ | | | | | | | |
| $x=+0.318$ meters, +12.50 inches | | U, $\mathrm{P}_{\text {max }}$ | U, $\mathrm{P}_{\max }$ | U, ${ }^{\text {max }}$ | U, $\mathrm{P}_{\text {max }}$ | U, $\mathrm{P}_{\max }$ | U, $\mathrm{P}_{\text {max }}$ | U, $\mathrm{P}_{\text {max }}$ |
| $x=+0.419$ meters, +16.50 inches | | | | U, $\mathrm{P}_{\text {max }}$ | | | | |
| $x=+0.521$ meters, +20.50 inches | U, $\mathrm{P}_{\text {max }}$ | U, $\mathrm{P}_{\text {max }}$ | U, $\mathrm{P}_{\max }$ | U, $\mathrm{P}_{\text {max }}$ | U, $\mathrm{P}_{\max }$ |

Axial Wall Static Pressure Profiles (Figures 16 to 19)
P $\quad=$ Vertical Total Pressure Profile (Figures 21 and 22)
$P_{\text {max }}=$ Maximum Pressure Location (Figures 23 to 30)
$\mathrm{U}=$ Vertical Velocity Profile (Figures 31 to 38)

> Nozzle Throat Area $=.9688$ in 2
> Mixing Section Throat Size $=1.875$ inch Nozzle Pressure $=36.70$ psia (constant)

| $\begin{aligned} & \text { Run } \\ & \text { No } \end{aligned}$ | Nozzle
 Temp ${ }^{\circ} \mathrm{R}$ ${ }^{T} \mathrm{~N}$ | Nozzle
 Throat Coefficient C_{N} | ```Barometric Pressure in Hg P``` | Atmospheric Temp ${ }^{\circ} \mathrm{R}$
 Ta | Measured Nozzle Flow Rate 1b/(sec-in) W_{N} | Mixing Section Flow $1 \mathrm{~b} /(\mathrm{sec}-\mathrm{in})$ W_{m} | $\begin{gathered} \text { Secondary } \\ \text { Flow } \\ \text { Rate } \\ 1 \mathrm{lb} /(\text { sec-in }) \\ \mathrm{W}_{\mathrm{S}} \end{gathered}$ | F1ow Ratio $\mathrm{W}_{\mathrm{s}} / \mathrm{W}_{\mathrm{N}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 556 | . 959 | 30.02 | 527 | . 0967 | . 4995 | . 4028 | $4.17{ }^{\text { }}$ |
| 2 | 575 | . 966 | 29.96 | 540 | . 0952 | . 4332 | . 3380 | 3.55 |
| 3 | 564 | . 961 | 29.89 | 536 | . 0952 | . 4627 | . 3675 | 3.86 |
| 4 | 561 | . 957 | 29.91 | 536 | . 0955 | . 5238 | . 4283 | 4.48 |
| 5 | 576 | . 959 | 30.16 | 544 | . 0889 | . 5208 | . 4319 | 4.86 |
| 6 | 561 | . 959 | 30.00 | 545 | . 0958 | . 4220 | . 3262 | 3.41 |
| 7 | 576 | . 960 | 30.13 | 543 | . 0955 | . 4390 | . 3435 | 3.60 |
| 8 | 582 | . 954 | 30.04 | 548 | . 0932 | . 5242 | . 4310 | 4.62 |

Table 5
Comparison of Experimental and Analytical Mass Flow Rates

| Run
 No. | Mixing Section Mass Flow Rate From Traverse Data lb/(sec-m) | Mixing
 Section
 Mass Flow
 Rate From
 Orifice Data
 lb/(sec-in) | Percent Difference in Measured Data (1)-(2) (1) | Analytical
 Mass Flow
 for Best
 Static Pressure Match
 $1 \mathrm{~b} /(\mathrm{sec}-\mathrm{m})$
 (3) | Comparison of Traverse to Analytical Mass Flow (1) - (3) (1) | Comparison of Orifice to Analytical Mass Flow (2)-(3) (2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | .4995 | - | - | . 4905 | + 1.8% | - |
| 2 | . 4332 | . 3776 | + 12.8% | .4086 | + 5.7\% | - 8.2\% |
| 3 | . 4627 | . 3954 | + 14.5% | .4175 | + 9.8% | - 5.6\% |
| 4 | . 5238 | - | - | .4930 | + 5.9\% | - |
| 5 | . 5208 | - | - | . 5100 | $+2.1 \%$ | - |
| 6 | .4220 | . 3886 | + 7.9% | .4117 | + 2.4% | - 5.9\% |
| 7 | .4390 | .3846 | + 12.4% | .3960 | + 9.8\% | -3.0% |
| 8 | . 5242 | - | - | . 4840 | + 7.7\% | - |

Initial Line for Flow Calculation

1. Primary Nozzle
2. Side Plates
3. Nozzle Positioning Plates
4. Suction Plenum
5. Upper Contoured Plate
6. Lower Contoured Plate
7. Plexiglass Windows
8. Inlet Bellmouth
9. Coanda Surface

Figure 2

Figure 3
Drawing of Nozzle Coordinate System and Positioning Data for Eight Tests

Figure 4
Primary Nozzle

1. Nozzle
2. Mixing Section Side Plate
3. Top Contoured Plate
4. Bottom Contoured Plate
5. Table Top
6. Screen
7. Solid Side Plates
8. Nozzle Positioning Plates

Figure 5
Extended Inlet on Ejector Test Rig

Figure 6

```
            Side View of Test Section Showing
            Nozzle Positioned at
22.5}\mp@subsup{}{}{\circ}\mathrm{ and 0.020 meters (0.80 inches) spacing
```


Figure 7

Side View of Test Section Showing
Nozzle Positioned at
45° and 0.034 meters (1.32 inches) spacing

Figure 8

Side View of Test Section Showing
 Nozzle Positioned at

67.5° and 0.018 meters (0.7 inches) spacing

Figure 9
Schematic of Experimental Layout
for Reduced Flow Conditions

Figure 10
View of Test Facility Showing Plenum,
Mixing Section, Manometer Board, and
Pressure Sampling Valves

Figure 11
Top View of Mixing Section Showing Static and Traversing Tap Locations
Traversing Probe is Positioned at
"A" Location on Coanda Surface

Figure 12

Figure 13
Mixing Section Static Pressure Tap Locations

Figure 14
Side View of Test Section Showing
Extended Inlet, Mixing Section and Suction
System Piping and Manifold

Figure 15
Comparison of Experimental and Analytical Flow Rates

Solid Lines are Analytical Results

Figure 16 Comparison of wall static pressure distributions in a symmetrical mixing section with a $1.875^{\prime \prime}$ throat computed with the present streamline coordinate program and with the program from CR-2251
Wall Static Pressure - inches of water gage

Wall Static Pressure - kPa gage
 Nozzle positioned at 22.5° and 0.020 meters (0.80 inches) spacing

Figure 18 Wall static pressure distributions for Tests 3 and 4. Nozzle positioned at 45° and 0.020 meters (0.80 inches) spacing

Figure 20
Wall static pressure distributions for Tests 7 and 8. Nozzle positioned at 67.5° and 0.018 meters (0.70 inches) spacing
Wall Static Pressure - inches of water gage

Wall Static Pressure - kPa gage

Figure 21 Wall static pressure sensitivity to the Richardson number coefficient (NR) for Test 6

Figure 22 Wall static pressure sensitivity to the rate of streamline curvature decay (RD) for Test 6

Figure 23
Locii of Maximum Stagnation Pressures ($P_{0 \text { max }}$) in the Mixing Section Nozzle Positioned at 22.5° and 0.020 meters (0.80 inches) spacing

Figure 24
Locii of Maximum Stagnation Pressure ($\mathrm{P}_{\mathrm{o} \text { max }}$) in the Mixing Section
Nozzle Positioned at 22.5° and 0.020 meters (0.80 inches) spacing

Figure 25
Locii of Maximum Stagnation Pressure ($\mathrm{P}_{\mathrm{o} \text { max }}$) in the Mixing Section Nozzle Positioned at 45° and 0.020 meters (0.80 inches) spacing

Locii of Maximum Stagnation Pressure ($\mathrm{P}_{\mathrm{o} \text { max }}$) in the Mixing Section Nozzle Positioned at 45° and 0.034 meters (1.32 inches) spacing

Locii of Maximum Stagnation Pressure ($\mathrm{P}_{\mathrm{omax}}$) in Mixing Section Nozzle positioned at 45° and 0.034 meters (1.32 inches) spacing

Figure 29

Locii of Maximum Stagnation Pressure (P_{0} max) in Mixing Section Nozzle positioned at 67.5° and 0.018 meters (0.70 inches) spacing

Locii of Maximum Stagnation Pressure ($P_{0 \text { max }}$) in Mixing Section Nozzle positioned at 67.5° and 0.018 meters (0.70 inches) spacing

$$
\cdots
$$

Figure 31 Total Pressure Profiles for Run 7 at $\mathrm{x}=+0.013$ meters (+0.50 inches), Nozzle Positioned at 67.5°, 0.018 meters (0.70 inches) spacing

Figure 32 Total Pressure Profile for Run 8 at $x=+0.013$ meters (+0.50 inches), Nozzle Positioned at 67.5°, 0.018 meters (0.70 inches) spacing

Figure 33 Velocity Profiles for Run 1, Nozzle Positioned at 22.5° and 0.020 meters (0.80 inches) spacing

Figure 34 Velocity Profiles for Run 2, Nozzle Positioned at 22.5° and 0.020 meters (0.80 inches) spacing

Figure 35 Velocity Profiles for Run 3, Nozzle Positioned at 45° and 0.020 meters (0.80 inches) spacing

Figure 36 Velocity Profiles for Run 4, Nozzle Positioned at 45° and 0.020 meters (0.80 inches) spacing

Figure 37 Velocity Profiles for Run 5, Nozzle Positioned at 45° and 0.034 meters (1.32 inches) spacing

Figure 38 Velocity Profiles for Run 6, Nozzle Positioned at 45° and 0.034 meters (1.32 inches) spacing

Figure 39 Velocity Profiles for Run 7, Nozzle Positioned at 67.5° and 0.018 meters (0.70 inches) spacing

Figure 40 Velocity Profiles for Run 8, Nozzle Positioned at 67.5° and 0.018 meters (0.70 inches) spacing

[^0]: denotes average pressure for 2 or 3 static taps located across width of test section (see Figs. 12 and 13).

