761 research outputs found

    Constraints on the environment and energetics of the Broad-Line Ic SN2014ad from deep radio and X-ray observations

    Full text link
    Broad-line type Ic Supernovae (BL-Ic SNe) are characterized by high ejecta velocity (≳104\gtrsim 10^4 km s−1^{-1}) and are sometimes associated with the relativistic jets typical of long duration (≳2\gtrsim 2 s) Gamma-Ray Bursts (L-GRBs). The reason why a small fraction of BL-Ic SNe harbor relativistic jets is not known. Here we present deep X-ray and radio observations of the BL-Ic SN2014ad extending from 1313 to 930930 days post explosion. SN2014ad was not detected at either frequency and has no observational evidence of a GRB counterpart. The proximity of SN2014ad (d∼26d\sim 26 Mpc) enables very deep constraints on the progenitor mass-loss rate M˙\dot{M} and on the total energy of the fast ejecta EE. We consider two synchrotron emission scenarios for a wind-like circumstellar medium (CSM): (i) uncollimated non-relativistic ejecta, and (ii) off-axis relativistic jet. Within the first scenario our observations are consistent with GRB-less BL-Ic SNe characterized by a modest energy budget of their fast ejecta (E≲1045E \lesssim 10^{45} erg), like SNe 2002ap and 2010ay. For jetted explosions, we cannot rule out a GRB with E≲1051E \lesssim 10^{51} erg (beam-corrected) with a narrow opening angle (θj∼5∘\theta_j \sim 5^{\circ}) observed moderately off-axis (θobs≳30∘\theta_{\rm obs} \gtrsim 30^{\circ}) and expanding in a very low CSM density (M˙\dot{M} ≲10−6\lesssim 10^{-6} M⊙_{\odot} yr−1^{-1}). Our study shows that off-axis low-energy jets expanding in a low-density medium cannot be ruled out even in the most nearby BL-Ic SNe with extensive deep observations, and might be a common feature of BL-Ic SNe.Comment: 9 pages, 5 figures, accepted in Ap

    Taming Data Caches for Predictable Execution on GPU-based SoCs

    Get PDF
    Heterogeneous SoCs (HeSoCs) typically share a single DRAM between the CPU and GPU, making workloads susceptible to memory interference, and predictable execution troublesome. State-of-the art predictable execution models (PREM) for HeSoCs prefetch data to the GPU scratchpad memory (SPM), for computations to be insensitive to CPU-generated DRAM traffic. However, the amount of work that the small SPM sizes allow is typically insufficient to absorb CPU/GPU synchronization costs. On-chip caches are larger, and would solve this issue, but have been argued too unpredictable due to self-evictions. We show how self-eviction can be minimized in GPU caches via clever managing of prefetches, thus lowering the performance cost, while retaining timing predictability

    Bringing the Embedded Systems Industry Towards Open Source: the SHARE project experience

    Get PDF
    International audienceOpen source software adoption in the embedded systems domain is gaining growing interest within the european industrial and academic communities due to the significant benefits it brings in terms of flexibility and cost reduction.Nonetheless, scepticism about open source as a viable option to support critical business functions still holds, since its decentralized and distributed development model makes quality evaluation and assessment hard to achieve. This paper reports the SHARE project experience, aimed at facilitating and promoting the use of open source software in the embedded systems industry. Performed activities, proposed methodology and achieved results are presented, along with lessons learned to exploit for enabling further initiatives in the next future

    Thermal simulations for optical transition radiation screen for Eli-NP compton gamma source

    Get PDF
    The ELI-NP GBS (Extreme Light Infrastructure-Nuclear Physics Gamma Beam Source) is a high brightness elec-tron LINAC that is being built in Romania. The goal for this facility is to provide high luminosity gamma beam through Compton Backscattering. A train of 32 bunches at 100Hz with a nominal charge of 250pC is accelerated up to 740 MeV. Two interaction points with an IR Laser beam produces the gamma beam at different energies. In order to measure the electron beam spot size and the beam proper-ties along the train, the OTR screens must sustain the ther-mal and mechanical stress due to the energy deposited by the bunches. This paper is an ANSYS study of the issues due to the high quantity of energy transferred to the OTR screen. They will be shown different analysis, steady-state and thermal transient analysis, where the input loads will be the internal heat generation equivalent to the average power, deposited by the ELI-GBS beam in 512 ns, that is the train duration. Each analyses will be followed by the structural analysis to investigate the performance of the OTR materi

    Design and Evaluation of SmallFloat SIMD extensions to the RISC-V ISA

    Get PDF
    RISC-V is an open-source instruction set architecture (ISA) with a modular design consisting of a mandatory base part plus optional extensions. The RISC-V 32IMFC ISA configuration has been widely adopted for the design of new-generation, low-power processors. Motivated by the important energy savings that smaller-than-32-bit FP types have enabled in several application domains and related compute platforms, some recent studies have published encouraging early results for their adoption in RISC-V processors. In this paper we introduce a set of ISA extensions for RISC-V 32IMFC, supporting scalar and SIMD operations (fitting the 32-bit register size) for 8-bit and two 16-bit FP types. The proposed extensions are enabled by exposing the new FP types to the standard C/C++ type system and an implementation for the RISC-V GCC compiler is presented. As a further, novel contribution, we extensively characterize the performance and energy savings achievable with the proposed extensions. On average, experimental results show that their adoption provide benefits in terms of performance (1.64 7 speedup for 16-bit and 2.18 7 for 8-bit types) and energy consumption (30% saving for 16-bit and 50% for 8-bit types). We also illustrate an approach based on automatic precision tuning to make effective use of the new FP types

    Human immunodeficiency virus type 2 (HIV-2) Gag is trafficked in an AP-3 and AP-5 dependent manner

    Get PDF
    Although human immunodeficiency virus (HIV) types 1 and 2 are closely related lentiviruses with similar replication cycles, HIV-2 infection is associated with slower progression to AIDS, a higher proportion of long term non-progressors, and lower rates of transmission than HIV-1, likely as a consequence of a lower viral load during HIV-2 infection. A mechanistic explanation for the differential viral load remains unclear but knowledge of differences in particle production between HIV-1 and HIV-2 may help to shed light on this issue. In contrast to HIV-1, little is known about the assembly of HIV-2 particles, and the trafficking of HIV-2 Gag, the structural component of the virus, within cells. We have established that HIV-2 Gag accumulates in intracellular CD63 positive compartments, from which it may be delivered or recycled to the cell surface, or degraded. HIV-2 particle release was dependent on the adaptor protein complex AP-3 and the newly identified AP-5 complex, but much less so on AP-1. In contrast, HIV-1 particle release required AP-1 and AP-3, but not AP-5. AP-2, an essential component of clathrin-mediated endocytosis, which was previously shown to be inhibitory to HIV-1 particle release, had no effect on HIV-2. The differential requirement for adaptor protein complexes confirmed that HIV-1 and HIV-2 Gag have distinct cellular trafficking pathways, and that HIV-2 particles may be more susceptible to degradation prior to release

    Thermal issues for the optical transition radiation screen for the ELI-NP compton gamma source

    Get PDF
    A high brightness electron LINAC is being built in the Compton Gamma Source at the ELI Nuclear Physics facility in Romania. To achieve the design luminosity, a train of 32 bunches, 16 ns spaced, with a nominal charge of 250 pC will collide with a laser beam in two interaction points. Electron beam spot size is measured with Optical Transition Radiation (OTR) profile monitors. In order to measure the beam properties, the OTR screens must sustain the thermal and mechanical stress due to the energy deposited by bunches. This paper is an ANSYS study of the issues due to the high energy transferred to the OTR screens. Thermal multicycle analysis will be shown; each analysis will be followed by a structural analysis in order to investigate the performance of the materia

    Design of an X-band constant impedance LINAC for compact light project

    Get PDF
    Within the framework of Horizon 2020 project, Compact Light, in order to provide a high performance, high-gradient X-band technology, for the new generation of hard X-ray FEL, a travelling wave (TW) Linac, working on 2pi/3 mode at 11.9952 GHz, fed by two types of asymmetrically couplers, has been designed. The design was performed using CST Microwave Studio frequency domain solver. First, simulations have been conduct in order to obtain the best trade-off between single cell’s parameters, varying iris aperture. Then, the both couplers, with and without pumping port, has been tuned to avoid reflections at the input port. Finally, the entire structure, with 5 cells, was simulated. The main structure parameters will be present and we will also show and discuss the acceleranting gradient obtained vary with linac lenght and input power

    The Epidemiology of Fractures and Muskulo-Skeletal Traumas During COVID-19 Lockdown: A Detailed Survey of 17.591 Patients in a Wide Italian Metropolitan Area

    Get PDF
    Introduction: On 9 March 2020 the Italian Government declared a national lockdown to curb the spread of Covid-19. The aim of our study was to analyze the effects of such intervention on the traumatological emergency service, with particular emphasis on variations in trauma incidence and patients’ characteristics. Materials and Methods: An observational analysis was performed. Medical records were collected from 3 different trauma centers within a wide metropolitan area, and compared between 2 time periods: the full Italian lockdown period and the same period from the past year. The study population included all patients who were admitted to the Emergency Department (ED). For those who accessed for orthopedic reasons, the analyzed variables included the date of ED admission, age, gender, after visit discharge or hospitalization, place where the injury occurred, traumatic mechanism, diagnosis, relationship with sport activity, and time from injury/symptoms debut to ED access. Results: A total of 17591 ED accesses and 3163 ED trauma visits were identified. During the lockdown, ED trauma visits decreased by -59.8%, but required patient’s hospitalization significantly more frequently. The rate of ED trauma admissions in the elderlies significantly increased, together with the proportion of fragility fractures such as hip fractures. Road accident traumas (-79.6%) and sport-related injuries (-96.2%) significantly dropped. Admissions for less-severe reasons such as atraumatic musculoskeletal pain significantly decreased (-81.6%). Conclusions: The lockdown reduced the pressure on the Health System in at least 2 ways: directly, by curbing viral transmission and indirectly, by more than halving the ED trauma visits. Nonetheless, we observed an increased proportion of traumas in older patients, requiring hospitalizations, while the rate of less-severe cases decreased. This analysis may raise awareness of the effects of a lockdown on trauma services and may be helpful for those ones around the world who are now facing the emergency
    • …
    corecore