
 

 

 

 

This is the post peer‐review accepted manuscript of:  

G. Tagliavini, S. Mach, D. Rossi, A. Marongiu and L. Benini, "Design and Evaluation of SmallFloat SIMD 

extensions  to  the  RISC‐V  ISA",  2019 Design,  Automation &  Test  in  Europe Conference &  Exhibition 

(DATE), Florence, Italy, 2019, pp. 654‐657. doi: 10.23919/DATE.2019.8714897 

The published version is available online at: https://doi.org/10.23919/DATE.2019.8714897    

 

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating 

new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in 

other works 

 



Design and Evaluation of SmallFloat SIMD
extensions to the RISC-V ISA

Giuseppe Tagliavini∗, Stefan Mach†, Davide Rossi∗, Andrea Marongiu‡, and Luca Benini∗†
∗ DEI, University of Bologna, Italy / Email: {giuseppe.tagliavini, davide.rossi, luca.benini}@unibo.it

† IIS, ETH Zurich, Switzerland / Email: {smach, luca.benini}@iis.ee.ethz.ch
‡ DISI, University of Bologna, Italy / Email: {a.marongiu}@unibo.it

Abstract—RISC-V is an open-source instruction set architec-
ture (ISA) with a modular design consisting of a mandatory
base part plus optional extensions. The RISC-V 32IMFC ISA
configuration has been widely adopted for the design of new-
generation, low-power processors. Motivated by the important
energy savings that smaller-than-32-bit FP types have enabled
in several application domains and related compute platforms,
some recent studies have published encouraging early results for
their adoption in RISC-V processors. In this paper we introduce
a set of ISA extensions for RISC-V 32IMFC, supporting scalar
and SIMD operations (fitting the 32-bit register size) for 8-bit
and two 16-bit FP types. The proposed extensions are enabled
by exposing the new FP types to the standard C/C++ type
system and an implementation for the RISC-V GCC compiler
is presented. As a further, novel contribution, we extensively
characterize the performance and energy savings achievable with
the proposed extensions. On average, experimental results show
that their adoption provide benefits in terms of performance
(1.64× speedup for 16-bit and 2.18× for 8-bit types) and energy
consumption (30% saving for 16-bit and 50% for 8-bit types). We
also illustrate an approach based on automatic precision tuning
to make effective use of the new FP types.

I. INTRODUCTION

Due to the widespread adoption of Internet of things (IoT)
and smart devices, an increasing amount of embedded applica-
tions must deal with complex data analytics algorithms. While
most embedded applications involving computations with
high dynamic range are performed using binary64 (double-
precision) or binary32 (single-precision) floating-point (FP)
formats [21], an emerging trend focuses into adapting the FP
arithmetic precision of applications according to the specific
constrains of the applications or their domains [13].
To trade-off the energy per operation with dynamic range

and precision, the IEEE 754 specification includes a 16-
bit format referred to as binary16 (half-precision). In re-
cent years significant advances in research have been made
to exploit approximation even more aggressively, aiming at
relaxing the “always maximum precision” abstraction [19]
[14]. The most promising approaches are moving beyond the
concept of approximation alone, toward a novel paradigm
called transprecision computing [12], which aims at designing
system to deliver just the required precision for intermediate
computations rather than tolerating errors implied by imprecise
HW or SW computations [11]. Recent works in this research
area have published encouraging initial results on the adoption
of smaller-than-32-bit formats on embedded systems [11].

In this paper we propose a set of extensions for the
RISC-V instruction set architecture (ISA) to provide support
for smaller-than-32-bit FP formats on embedded processors.
As a baseline for our experimental setup we consider the
RV32IMFC configuration , which has been widely adopted
for the design of embedded processors [18] [3] [4] [2] [8].
The proposed FP types include binary16 and two non-standard
formats, namely binary16alt and binary8, and are collectively
referred to as smallFloat formats. Scalar operations are sup-
ported by a set of ISA extensions corresponding to the new

formats, namely “Xf16”, “Xf16alt” and “Xf8”. Moreover the
complementary “Xfvec” extension defines SIMD sub-word
parallelism for all operations in the scalar FP extensions. Aux-
iliary operations have been added in an additional extension
set “Xfaux”. As a further contribution we provide an extension
to RISC-V GCC compiler to support smallFloat types.
We present a set of experimental results to evaluate the

impact of our proposal in terms of performance and energy
consumption. On average, automatic vectorization enables
a 1.64× speedup for 16-bit types and a 2.18× speedup
for binary8, with a further margin of ≈ 10% that can be
obtained by the adoption of manual vectorization techniques.
In terms of energy consumption, 16-bit types achieve on
average 30% savings compared to single-precision when data
is placed in a low-latency memory, wheres the savings are
on average 50% for the binary8 format. Finally we present
a case study in which automatic precision tuning is used to
provide associations among program variables and FP types
in accordance with application requirements.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III describes the smallFloat
extensions. Section IV illustrates the modifications to the
RISC-V GCC compiler. Section V presents an experimental
evaluation of our work. Section VI discusses conclusive re-
marks and future work.

II. RELATED WORK

In the area of approximate computing [19] [14] researchers
have proposed a wide range of techniques which aim at
increasing performance and energy efficiency of computing
systems trading off with the quality of results (QoR). In recent
years an evolution of this paradigm has been introduced,
known as transprecision computing [12], which leverages
computing architectures and applications that operate with a
smooth and wide range of precision vs. QoR. The adoption
of smallFloat types has been demonstrated to be particularly
beneficial in the context of transprecision computing [17].
Adopting a mixed-precision type system is paramount to

provide methodologies to perform precision tuning, i.e. to
associate the minimum bit-width to program variables without
violating the QoR constraints. Available tools for precision
tuning are based on static (e.g., FPTuner [7] and PRECISA
[15]) or dynamic techniques (e.g., Precimonious [16] and
fpPrecisionTuning [9]). The adoption of these tools is totally
complementary to our approach, since they can be used to
associate the program variables to the smallFloat types.
The RISC-V ISA introduced a “V” extension supporting a

configurable vector unit, to trade-off the number of vector
registers with the available maximum vector length [10]. The
vector extension is designed to allow the same binary code
to work efficiently across a variety of hardware platforms
varying in vector storage capacity and datapath parallelism.



TABLE I
COMMON OPERATIONS IN THE SMALLFLOAT EXTENSIONS.

ISA
Operation Type Instruction Semantics Ext.

Arithmetic fadd.h rd = rs1 + rs2 Xf16
Conversions e.g. fcvt.h.s rd = (f32)rs1 Xf16
Vector Arith. vfadd.h rd[] = rs1[] + rs2[] Xfvec
Vector Conv. e.g. vfcvt.x.h rd[] = (int16v)rs1[] Xfvec
Cast-and-Pack vfcpk.h.s rd[] = {(f16)rs1, (f16)rs2} Xfvec
Expanding fmacex.s.h rd = (fp32)(rs1 rs2 + rd) Xfaux
Other e.g. vfdopex.h rd[] = (fp32)dotp(rs1[],rs2[]) Xfaux

However, this extension is based on the style of vector register
architecture introduced by Seymour Cray in the 1970s tailored
to high-performance architectures, as opposed to the packed
SIMD approach proposed in this work targeting low-power
embedded processors.

III. SMALLFLOAT EXTENSIONS

As a base, scalar extensions are provided that match the
operations available in “F” and “D” standard extensions.
Furthermore, optional vectorial extensions are specified which
make use of SIMD sub-word parallelism on the FP register file.
Lastly, there is an optional extension for auxiliary operations.
The smallFloat extensions have no collisions with reasonable
RISC-V implementations, and can thus be included in any
implementation without loss of compliance with the standard.
Table I gives a summary of available operation types with
smallFloat extensions active1. More details are provided in
the smallFloat ISA manual [5].

A. Scalar Extensions
The scalar extensions provide support for the IEEE binary16

and custom binary16alt FP formats (both 16-bit wide), as well
as the custom binary8 format (8-bit wide) [17]. The adoption
of an alternative 16-bit format has been proven to be highly
beneficial for those applications that require the dynamic
range of binary32 but can tolerate a lower precision [17].
Each format is contained in its own respective ISA extension
“Xf16”, “Xf16alt” and “Xf8”. The operations on smallFloat
formats are equivalent to their single-precision counterparts,
thus their encoding closely matches the standard FP operations
(e.g., fadd.h in Table I). An unused configuration of the FP
format field in the instruction word has been chosen to signify
16-bit FP types, while the patterns representing quad-precision
FP operations (128-bit) have been repurposed to now denote
the 8-bit FP type. While this poses a collision with the “Q”
RISC-V standard extension, it is highly unlikely embedded
implementations targeted towards low precision FP will also
implement 128-bit floats. The two 16-bit formats (binary16
and binary16alt) are differentiated using unused states of the
rounding-mode fields in the instruction word.

B. Vectorial Extension
The vectorial extension “Xfvec” is encoded in its own en-

coding space, which utilizes a previously unused prefix in the
RISC-V ”OP” opcode. This extension defines SIMD sub-word
parallelism for all operations in the scalar FP extensions, such
as the vfadd.h operation in Table I. If “Xfvec” is supported,
vectorial FP operations are added for all supported FP formats
that are narrower than the width of the FP register file (FLEN)
as shown in Table II.
‘Xfvec” adds vector-specific conversion operations (e.g., the
vfcvt.x.h operation in Table I). In addition, cast-and-pack

1For brevity the list reports binary16 instructions; operations related to the
other types are analogously defined by changing the opcode suffixes.

TABLE II
SUPPORTED VECTOR FORMATS CHANGING THE WIDTH OF THE FP

REGISTER FILE (FLEN) .

Vector length n if supported
F Xf16 Xf16alt Xf8

FL
E

N 64 2 4 4 8
32 × 2 2 4
16 × × × 2

instructions were added that convert two scalar single- or
double-precision operands and insert them into two adjacent
entries of a packed vector (e.g., the vfcpk.h.s operation
in Table I). These operations were added since “convert
scalars and assemble vectors” operations emerged as a main
bottleneck of transprecision computing [11].

C. Auxiliary Operations Extension
The extension set “Xfaux” includes additional operations

that have been encoded in unused regions of either scalar
or vectorial extensions. It includes the so-called expanding
operations that take smallFloat type operands and return a
single-precision result, making explicit conversion instruction
cycles unnecessary where the dynamic range of operands
increases over the execution. These instructions include ex-
panding multiplication, multiply-accumulate of smallFloats
on a binary32 accumulator (the fmacex.s.h operation in
Table I), as well as expanding dot-products.

IV. COMPILER SUPPORT

To provide support to the smallFloat types in the GCC
compiler, we have extended the real interface – used as an
internal representation for all the FP types supported by the
programming language – with callback functions that enable to
convert data from the internal format to the smallFloat ones.
Then we have augmented the RISC-V back-end to include
new machine modes and corresponding machine description
rules. At the higher level of abstraction, we have extended
the standard C/C++ type system by introducing a new set
of keywords (float8, float16 and float16alt) and
extending the conversion rules to guarantee a correct behavior.
GCC includes an automatic vectorization pass that operates

on the middle-end intermediate representation [1]. In our work
we have extended the GCC auto-vectorizer to enable the adop-
tion of smallFloat types. Moreover, programmers can manually
vectorize their code using the vector support provided by
GCC. To complement this support we have provided a set
of compiler intrinsics which provide access to the operations
included in the “Xfvec” and “Xfaux” ISA extensions (see
Table I). An example of manual vectorization using vectorial
types and intrinsics is provided in Section V-C (Figure 5).

V. EXPERIMENTAL RESULTS

A. Setup
In our experiments we have considered a set of computational

intensive kernels from the Polybench/C benchmark suite [20]
and a support vector machine (SVM) used in the context
of an embedded application [6]. Our target platform is the
RISCY core of the open-source PULP project. We have added
the smallFloat extensions to the PULP virtual platform and
we have implemented the compiler support on its official
compilation toolchain2. A smallFloat unit implementing the
proposed extensions was synthesized for the UMC 65 nm
technology and the energy costs of FP operations have been
obtained through simulation of the post-layout design set to
350MHz using worst-case conditions (1.08V, 125 ◦C).

2Hardware design and software tools: https://github.com/pulp-platform/



Fig. 1. Speedup of smallFloat types compared to float.

Fig. 2. Speedup of smallFloat types for increasing memory latencies.

B. Performance and Energy of smallFloat Types

Figure 1 shows the speedup achieved when different small-
Float types are replaced to standard float variables, compar-
ing automatic and manual vectorization. The solid part of the
bars shows the measured results, whereas the dashed segments
indicate the ideal ones. On average, float16 types allow
for 1.34× faster execution than native float. The maximum
speedup achievable by automatic vectorization is 1.64×; man-
ual vectorization enables an additional≈ 12% faster execution,
with average 1.5× and peak 1.91× speedups. When float8
types are concerned, automatic vectorization enables 2.18×
speedups on average float and up to 3.08×. The same
speedup figures increase with manual vectorization to average
and peak speedups of 2.35× and 3.58×, respectively. In many
cases the speedups are very close to the ideal ones. In those
cases when there is a significant difference, this is due to the
fact that the computation happens inside nested loops, with
the innermost using the iterator of the outermost as an upper
bound; this condition creates significant additional overhead
to handle the prologue/epilogue loops to the vectorized one.
Figures 2 and 3 depicts an experiment where speedup and

energy consumption have been calculated for different memory
latencies. Specifically, we indicate with L1 the setup where
memory operations have 1-cycle latencies (representative of
a load/store from a level-1 cache). L2 stands for 10-cycle
latency operations and L3 for 100-cycle operations. For this
experiment (and from now on) we only consider the manually
vectorized version of each benchmark. Also, we only consider
float16 as a 16-bit type, as there is no difference in speedup
(or energy) with the float16alt type. Focusing on speedup,
float16 types on average experience 7.4% higher values
when data is read/written from L2, as compared to L1, and

Fig. 3. Energy of smallFloat types (normalized to energy of float) for
increasing latencies for the memory operations.

TABLE III
QUALITY OF RESULTS EXPRESSED IN SQNR (DB).

SQNR
Bench. SVM GEMM ATAX SYRK SYR2K FDTD2D

float16 40.5 60.5 36.9 59.4 60.1 45.7
float16alt 25.9 43.3 39.0 42.3 42.3 31.2
float8 -12.1 14.0 1.0 10.1 6.8 -8.8

10.65% higher values when data is read/written from L3, as
compared to L1. For float8 types, these numbers get down
to 4.75% and 8.01%. Concerning energy, float16 types
achieve on average 30% savings compared to float, when
data is placed in L1 memories. For float8 type the savings
are on average 50%. The savings for float8 are less than
its ideal maximum (twice the savings of 16-bit FP types);
this effect is mainly due to the major impact of pack/unpack
operations compared to 16-bit types.
Table III reports the QoR expressed as the value of signal-

to-quantization-noise ratio (SQNR) computed on the program
results. Taking into account domain and application-specific
requirements expressed in terms of SQNR, programmers can
choose the minimum configuration among the available ones.
This is a bottom-up approach that we have adopted to perform
extensive benchmarking of the ISA extensions; in the follow-
ing section we describe a top-down approach driven by the
application constraints.

C. A case study of mixed precision
In this section we explore the implication on performance

and energy of vectorized codes under mixed-precision. We
have considered a gesture recognition application using SVM
as a classifier [6] and we have imposed a strict constraint on
the QoR, i.e. to avoid classification errors on our data set. To
find the minimum size for program variables we have used a
tool for precision tuning [9]. The variable-to-type associations
resulting from the tuning process include a float variable for
the final accumulation and float16 for other variables (i.e.,
inputs, weights, intermediate results). By tolerating a minimum
amount of classification errors (around 5%), the tuning tools
would assign the accumulation variable to the float16alt
type. As already mentioned, the adoption of this format is
beneficial whenever the dynamic range of a variable is more
critical than its precision.
Figure 4 shows the instruction count breakdown for both

the original version and its two vectorized variants (automatic
and manual). Focusing on automatic vectorization, we can see
that many of the calculations on float scalar variables are
converted into calculations on scalar and vectorial float16 ,
which also has the merit of significantly reducing the number



Fig. 4. Instruction count breakdown for benchmark SVM when mixed-
precision types are used.

float16 *a, *b;

float sum = 0;

for(i=0;i<n;i++)

sum+=a[i]*b[i];

lw a5,0(t5)

lw a6,0(t1)

vfmul.h a5,a5,a6

srli a4,a5,2

fcvt.s.h a5,a5

fcvt.s.h a4,a4

fadd.s s8,s8,a5

fadd.s s8,s8,a4

lw a5,0(t5)

lw a6,0(t1)

vfmul.h a5,a5,a6

srli a4,a5,2

fmacex.s.h s8,s7,a5

fmacex.s.h s8,s7,a4

float16v *a, *b, t;

float sum;

for(i=0;i<n/2;i++){

t=a[i]*b[i];

__macex_vf16(sum,1,t[0]);

__macex_vf16(sum,1,t[1]);

}

Fig. 5. Example of code vectorization (automatic vs. manual).

of memory instructions. The main drawback of the automatic
vectorization scheme resides in some inefficiencies on how
the vectorial code is generated. Here, some optimizations that
are applied on the baseline code are not automatically applied
to the vectorized code, which leads to a significant number
of additional ALU instructions, which end up eating all the
margin for savings (and beyond). With manual vectorization it
is possible to (i) convert more float operations in float16
vectorial ones (note that the scalar float16 operations have
also disappeared); (ii) reduce the overhead instructions (ALU
or conversion) generated for the vectorial float16 loops.

This effect is further explained in Figure 5, which shows a
code snippet and its manually vectorized version using the
widening multiply-and-add operation in the “Xfaux” exten-
sion. Manual vectorization enables to remove the conversion
instructions, reducing by 25% the instruction count.
Figure 6 summarizes the results achieved for the gesture

recognition application when mixed precision is used as com-
pared to fully replacing float variables with float16 or
float8 ones. It is important to highlight that the mixed-
precision scheme allows speedup and energy savings compara-
ble to those achievable with float16, but achieves the same
accuracy of the original float version. This outcome is fully
aligned with the principles of transprecision computing: this
technique enables a very fine-grained control of approximation
at the intermediate steps of computation, nevertheless the
accuracy of the results is not compromised at all.

VI. CONCLUSION

This paper introduces a set of extensions for the RISC-V ISA
to support a set of smaller-than-32-bit FP formats. We present
(i) a full specification for the proposed smallFloat extensions,
(ii) design and implementation of the compiler support and
(iii) a full experimental evaluation highlighting benefits and
limits of this proposal. Experimental results show benefits in
terms of performance (1.64× speedup for 16-bit and 2.18× for
8-bit types) and energy consumption (30% saving for 16-bit
and 50% for 8-bit types), and include a case study for mixed-
precision computing in which the accuracy of the results is
not compromised at all by the adoption of multiple formats.

Fig. 6. Speedup of smallFloat types compared to float.

Our future work will be focused on three main aspects, (i)
improvement of the auto-vectorization, (ii) extension of small-
Float support to RV64-based systems, and (iii) full integration
in a transprecision computing toolchain.
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