
This is the post peer-review accepted manuscript of:

B. Forsberg, L. Benini and A. Marongiu, "Taming Data Caches for Predictable

Execution on GPU-based SoCs," 2019 Design, Automation & Test in Europe

Conference & Exhibition (DATE), Florence, Italy, 2019, pp. 650-653.

The published version is available online at:

https://ieeexplore.ieee.org/document/8715255

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other

uses, in any current or future media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse

of any copyrighted component of this work in other works.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio istituzionale della ricerca - Alma Mater Studiorum Università di Bologna

https://core.ac.uk/display/304117818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Taming Data Caches for
Predictable Execution on GPU-based SoCs

Björn Forsberg1 Luca Benini1, 2 Andrea Marongiu2,1

1 Swiss Federal Institute of Technology Zürich 2 University of Bologna
{bjoernf, lbenini, a.marongiu}@iis.ee.ethz.ch

Abstract—Heterogeneous SoCs (HeSoCs) typically share a
single DRAM between the CPU and GPU, making workloads sus-
ceptible to memory interference, and predictable execution trou-
blesome. State-of-the art predictable execution models (PREM)
for HeSoCs prefetch data to the GPU scratchpad memory (SPM),
for computations to be insensitive to CPU-generated DRAM
traffic. However, the amount of work that the small SPM sizes
allow is typically insufficient to absorb CPU/GPU synchronization
costs. On-chip caches are larger, and would solve this issue, but
have been argued too unpredictable due to self-evictions. We
show how self-eviction can be minimized in GPU caches via
clever managing of prefetches, thus lowering the performance
cost, while retaining timing predictability.

I. INTRODUCTION

Heterogeneous SoCs (HeSoCs) [1], [2] have become a
promising target for the deployment of computationally in-
tensive embedded workloads in domains such as autonomous
automotive and avionics systems. These devices achieve high
performance-per-watt and small form factor by sharing re-
sources, at the cost of increased contention that may affect
the timing behavior of tasks. This has prevented the wide-
spread adoption of HeSoCs in these domains, where real-time
certification is required. Because of this, software resource
management techniques are in high demand.

In HeSoCs the main resource under contention is the
single DRAM shared by the host and accelerator, potentially
introducing delays at every load/store operation [3]. Aside
throttling-based techniques [4], [5], [6], one of the most wide-
spread approaches to overcome this is the Predictable Exe-
cution Model (PREM) [7], [8], [9], [10], [11], which allows
DRAM access to the CPU and GPU in mutually exclusive
time windows, during which data is copied to local memory.
Computation can happen on local data when DRAM access
is not allowed, to minimize system idleness. The state-of-the-
art in PREM on heterogeneous CPU+GPU systems [11] uses
the GPU scratchpad memory (SPM) for local storage, as the
software managed data placement provides a good basis for
predictable execution. However, due to their small size, SPMs
are prone to significant overheads due to the synchronizations
inherent to the technique. Integrated GPUs already feature
much larger hardware-managed caches, that would potentially
remedy this problem, but unpredictable replacement policies
have previously deterred any attempts at using these.

This paper shows how the hardware-managed caches of
the NVIDIA Tegra SoCs [1] can be successfully used with
the PREM model, to achieve predictable execution, at better
performance than the SPM-based state-of-the-art.

Fig. 1: The key components of a PREM interval.

II. THE PREDICTABLE EXECUTION MODEL (PREM)

The insight that underlies PREM is that any access that hits
in the local memory does not depend on the shared resource,
i.e., DRAM, and the worst case execution time (WCET) can
not be influenced by memory contention. For misses, isolation
(no impact on WCET) can be achieved by reserving the
memory system exclusively for the memory access. However,
as cache hit analysis is difficult for individual accesses [12],
and the mechanisms required to protect them are costly, it
is infeasible to do this on a per-access granularity. Instead,
PREM divides the program into coarse-grained intervals,
depicted in Figure 1, consisting of a memory and a compute
phase (henceforth M-phase and C-phase). The M-phase is
responsible for bringing all data used within the interval to
the local (private) memory, such that the C-phase is guaranteed
to hit in the cache. Thus, costly protection of each individual
access is replaced with the protection of the coarser M-phases.
HETEROGENEOUS PREM – Protecting the M-phases on the
CPU is straight forward, as the OS scheduler has full control
over which threads execute. On HeSoCs, the problem is more
difficult, as the protection needs to be extended beyond the
scope of the OS scheduler, to include the accelerators. This
can be achieved with custom software synchronization [10],
that enable memory access rights to be passed at a system-level
between the two devices. These synchronizations are triggered
by timer interrupts at the expiry of a WCET watchdog timer
(Fig. 1 (a)), at which point the memory token can be exchanged
between the processing units (Fig. 1 (b)). However, these
synchronizations can not occur at too fine granularity: The
system requires enough time to accomodate the interrupt
latency and interrupt handler, as well as leaving enough time
for ”useful work”. Therefore, there exists a system-dependent
minimum synchronization granularity (MSG) (Fig. 1 (c)). In
the case when the phase lengths are shorter than the MSG,
the GPU kernel is forced to idle until the CPU becomes ready
for synchronization (Fig. 1 (d)). When designing the system

Fig. 2: SPM data movement code (left) requires more instruc-
tions than caches (right).

to account for the MSG and the length of the PREM phases,
we say that we place a budget on the system, which affects
when the watchdog timer expires.

III. THE CASES FOR AND AGAINST CACHES

This section explores how SPM and caches impact PREM.
Synchronization – On the GPU, the SPM has been success-
fully used as local storage for PREM intervals [11]. However,
the small size of the SPM implies short PREM phases, even
below the MSG, which causes the synchronization/idling over-
head to blow up. Intuitively, these overheads can be overcome
by increasing the granulary of the intervals, such that the
synchronization makes up a smaller proportion of the overall
execution time. On current generation heterogeneous SoCs, the
last level cache (LLC) of the accelerator is much larger than
the SPM (5× on the NVIDIA TX1) Thus, the use of caches
promises a more effective use of the kernel execution time.
Code performance – As SPMs are software managed and
explicitly addressed, they require a significant addition of
instructions to manage the data allocation and data movement.
This implies an overhead compared to the use of implicitly
addressed caches. A simple example provided in Figure 2
highlights the difference between the two cases. Note that
depending on the complexity of the address calculation, the
added instructions from transl_addr (which transforms a
DRAM address to its SPM counterpart) can be significant. In
contrast, the only instructions needed for hardware-managed
caches is a prefetch of the original address in the M-phase.
Because of this, hardware caches promise additional perfor-
mance benefits due to hardware-managed data placement.
Self-eviction – To ensure predictability, no cache miss must
occur in the C-phase. To measure this we use the compute
phase miss rate (CPMR), defined as the ratio of cache misses
in the C-phase over the total amount of cache misses.

Thus, the key design goal for PREM is to minimize the
CPMR, which makes a strong case for the SPM: The software
managed data movement ensures that data brought into the
SPM is guaranteed to survive until explicitly evicted. In con-
trast, data in the caches are managed by a fixed replacement
policy, that selects which data to evict when new data is
requested. If the least-recently-used (LRU) [12] replacement
policy is used, this represents no problem. However, LRU is
seldom used in commercial systems, because of the complex
hardware needed to implement it. Instead, cheaper but less
predictable replacement policies are used, that can lead to

Fig. 3: The breakdown of the execution time for the bicg-100
kernel on the SPM, LLC, and without PREM (baseline).

(more or less) random self-evictions of alive data from the
cache. This is also the case in the NVIDIA Tegra GPUs [13].

A. Real-world example
In summmary, the cache promises smaller overheads, but

the problem of self-eviction may compromise the key design
goal of minimizing the CPMR. To see how this manifests in
practice, we run the cache-friendly bicg-100 kernel from the
PolyBench-ACC [14] benchmark suite on the NVIDIA TX1.
We compare the characteristics of this kernel on the SPM,
on the LLC, and without PREM (baseline), under different
interval sizes T , determined by the amount of data touched.
The SPM is limited to T ≤ 2 × 48KB, while the LLC
allows T ≤ 256KB. The results are shown in Figure 3, where
execution times are shown relative to the baseline.

From the bottom up, “without sync” shows the effect of
either SPM data movements or prefetches, and the “idle” and
“sync” parts show the two sources of synchronization overhead
described in Section III. In these aspects, caches indeed do
better than the SPM; the overheads are rapidly decreasing as T
goes up, and the use of prefetches initially has a positive effect,
as can be seen in the decrease in “without sync” between the
SPM and LLC cases. As T increases beyond the cache size
of 256KB, we start seeing capacity misses.

After budgeting for the WCET and applying memory in-
terference, the two top-most bars show a large difference
between the SPM and the LLC. While PREM on the SPM
is indifferent to memory interference, PREM on the LLC
shows a significant slowdown under interference. Compared
to the baseline, PREM on LLC can still perform better under
interference, as the cache misses that occur in the M-phase
are protected, but any cache miss in the C-phase is subject
to the same slowdown. For the LLC, the bad performance
under interference would occur only if the data prefetched in
the M-phase is selected for eviction before its point of use
in the C-phase, as the resulting cache misses in the C-phase
would be subject to interference. This implies that the cache
replacement policy is working against us, as the prefetch can
not guarantee that the data is in the cache after the M-phase.

IV. THE WAY OF THE CACHE

The main source of self-evictions in the NVIDIA GPU
caches, as shown by [13], is the random replacement policy.

Fig. 4: The CPMR for different R and T .

Data stored in different cache ways are more or less likely to
be evicted, and if the loaded data ends up in a cache way that
is more likely to get evicted, it will not survive until the start
of the C-phase. The authors of [13] were only able to show
this effect in the L1 cache, where out of four cache ways
per set, one was three times more likely to evict the data1.
We refer to this way as the bad way, and the others as the
good ways. To minimize the CPMR we want to have a near-
zero probability that data is stored in the bad way. Since the
eviction probabilities imply a 50% chance of data being stored
to the bad way, we can model this as a coin toss (probability
of getting R heads in a row), in which the likelyhood of using
a bad way reaches a probability of less than 0.5% at R ≥ 8.

We verify this intuition, and that this applies to the LLC,
in Figure 4, measuring the CPMR for different R at interval
sizes T . As expected, increasing the number of prefetches by a
factor of R monotonically decreases the CPMR towards near-
zero values. Thus, we can decrease the CPMR by choosing
R = 8, and we refer to R as the prefetch repetition factor.

In the other dimension we explore the effects on the CPMR
as the interval size T increases, and see that as T decreases
the CPMR also decreases. For all T ≤ 192 the CPMR reaches
CPMR < 10%, after which it increases rapidly. We know that
3/4 of the cache ways are good, and 1/4 is bad. That also
means, that of the full cache capacity of 256KB, only 192KB
(3/4th) is available in good cache ways. Which in turn means:

• While T ≤ 192KB, all data fits in the good ways, and
with a high enough R, all data will reside there.

• Once T > 192KB, data must also be stored in the bad
ways, and there is a very high risk that this data will be
evicted at any cache miss. We therefore expect the CPMR
to start increasing due to self-eviction.

Comparing this to the CPMR in Figure 4, we can see that this
matches the observed pattern. Thus, by choosing an interval
size T that is small enough to fit in the good ways of the
cache, and repeating the prefetch operation R = 8 times, we

1In [13], the observed probabilities of evictions were (1
6
, 1
6
, 3
6
, 1
6
).

Fig. 5: The breakdown of the execution time for the bicg-100
kernel, with a prefetch repetition R of 8.

are able to significantly reduce the CPMR, whose previously
high values prevented predictable execution on the LLC.

A. Real-world example revisited
Equipped with this knowledge, we revisit the example from

Section III-A, repeating each prefetch operation R = 8 times,
and plotting the results in Figure 5. We now see, in the
“without sync” part of the bars, that the code overhead slowly
increases with the interval size T . To understand how this
affects the execution time, lets reason about the impact of
repeated prefetches. For a repeated prefetch that hits in the
cache, the increase in execution time should be negligible
because the low cache latency. If a repeated prefetch causes a
miss, we will overcome the self-eviction by refetching it, and
thus move one cache miss from the C-phase to the M-phase,
expecting no change in the overall execution time. This is the
case for interval sizes that fit in the good cache ways, when
T ≤ 192KB. However, if we repeat the prefetch, and after that
still miss in the C-phase, the overall number of cache misses
increases, and with it the execution time goes up. We can see
that this effect starts at T = 192KB, where the good cache
ways are no longer enough to hold all data of the interval.

The good news, however, is that the lowering of the CPMR
has the corresponding decrease in sensitivity to memory inter-
ference (“with interference” in Figure 5), showing a positive
relationship between the CPMR and predictability achievable.

V. EVALUATION

This section extends the evaluation to more kernels from
the PolyBench-ACC benchmark suite [14], using a subset
of benchmarks for which the SPM-based PREM execution
implies large overheads. We co-schedule the TX1 CPU and
GPU so that both devices get an equal share of the memory
bandwidth, which ensures that neither device is starved for
memory. This is achieved by budgeting the M- and C-phases
to equal length. The results are presented in Figure 6.

A. Optimized cache performance
In all cases, the SPM-based state-of-the-art performs signif-

icantly worse than the LLC, and we can confirm the previous
results that the best configuration is to use a T that only
depends on the good cache ways. For the best interval size
T = 160KB the LLC performs, on average, twice as good

Fig. 6: The results for the individual kernels in fair co-scheduling with the CPU.

Fig. 7: The average sensitivity to interference for all kernels.

as the SPM, due to the coarser granularity of synchronization
made possible by the large LLC. An additional effect of the
cache-based approach is that the length of the M- and C-phases
become more balanced, leading to smaller amount of idleness
budgeted into the system schedule. In the case of SPMs, the
C-phase was so short that it would starve the CPU from using
memory, but on the LLC, the longer latency to the LLC brings
up the execution time, allowing the CPU to get a fair share of
memory. The increase in C-phase latency is compensated by
the lower complexity of the LLC M-phase (Figure 2).

We also see that on average, the LLC outperforms the
baseline under interference. While the average over these ker-
nels is modest, only 10% improvement, the SPM on average
showed a almost a 200% decrease in performance, even under
interference. However, in the best case, PREM on LLC offers a
215% improvement in WCET compared to the baseline. As the
interference to the baseline kernels are found by measurement,
they are only a lower bound on the possible slowdown. In
contrast, PREM is designed with this limit as a design goal.

B. Predictability

In addition to better performance, the predictability guar-
antees can still be preserved with the LLC. Figure 7 shows
how much, on average, the execution time increases under
interference. For intervals similar in size to the SPM, T ≤
128KB, the interference only adds 3% to the execution time.
For the 160KB interval the sensitivity increases to 5% over
the execution time in isolation, and for 192KB, at the limit
of the size of the good ways, the sensitivity increases further
to 15%. However, this is significantly less than the 245% for
the unmodified baseline.

VI. CONCLUSION

State-of-the-art Predictable Execution Models (PREM) are
using the scratchpad memory for local storage. However,
due to the small size of the SPM it is difficult to hide the
synchronization cost inherent to PREM. The solution is to use
the larger hardware managed caches, but these have previously
been considered too unpredictable for use in timing-critical
systems. In this paper, we provide insights on how the caches
can be tamed for use with PREM, and show that this provides
on average a 2× improvement in performance compared to the
SPM-based state of the art, without sacrificing the key goal of
predictability.

VII. ACKNOWLEDGMENT

Supported by the EU H2020 project HERCULES (688860).

REFERENCES

[1] NVIDIA. (2018, Sept) Jetson embedded systems. [On-
line]. Available: https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems-dev-kits-modules/

[2] AMD. (2018, Sept) Embedded g-series lx. [Online]. Available:
https://www.amd.com/en/products/embedded-g-series-lx

[3] R. Cavicchioli et al., “Memory interference characterization between cpu
cores and integrated gpus in mixed-criticality platforms,” in ETFA’17,
Sept 2017, pp. 1–10.

[4] H. Yun et al., “Bwlock: A dynamic memory access control framework
for soft real-time applications on multicore platforms,” IEEE Trans. on
Computers, vol. 66, no. 7, 2017.

[5] W. Ali et al., “Protecting Real-Time GPU Applications on Integrated
CPU-GPU SoC Platforms,” ArXiv e-prints, Dec. 2017.

[6] H. Yun et al., “Memguard: Memory bandwidth reservation system for
efficient performance isolation in multi-core platforms,” in Real-Time
and Embedded Techn. and Appl. Symp. (RTAS). IEEE, 2013.

[7] R. Pellizzoni et al., “A predictable execution model for cots-based
embedded systems,” in RTAS’11. IEEE, 2011.

[8] A. Alhammad et al., “Time-predictable execution of multithreaded
applications on multicore systems,” in DATE’14. IEEE, 2014.

[9] N. Capodieci et al., “Sigamma: Server based integrated gpu arbitration
mechanism for memory accesses,” in RTNS’17. ACM, 2017, pp. 48–57.

[10] B. Forsberg et al., “Gpuguard: Towards supporting a predictable execu-
tion model for heterogeneous soc,” in DATE’17, 2017.

[11] B. Forsberg et al., “Heprem: Enabling predictable gpu execution on
heterogeneous soc,” in DATE’18, March 2018, pp. 539–544.

[12] M. Lv et al., “A survey on static cache analysis for real-time systems,”
2016.

[13] X. Mei et al., “Dissecting gpu memory hierarchy through microbench-
marking,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 1, pp. 72–86, Jan 2017.

[14] S. Grauer-Gray et al., “Auto-tuning a high-level language targeted to
gpu codes,” in 2012 Innovative Parallel Computing (InPar), 2012.

