75 research outputs found

    Superparticle actions from superfields

    Full text link
    Gauge invariant complex covariant actions for superparticles are derived from the field equations for the chiral superfields in a precise manner. The massive and massless cases in four dimensions are treated both free and in interaction with an external super Maxwell field. By means of a generalized BRST quantization these complex actions are related to real actions with second class constraints which are new in some cases.Comment: 23 pages, ITP-G\"{o}teborg 94-14, LATE

    Extended observables in theories with constraints

    Full text link
    In a classical Hamiltonian theory with second class constraints the phase space functions on the constraint surface are observables. We give general formulas for extended observables, which are expressions representing the observables in the enveloping unconstrained phase space. These expressions satisfy in the unconstrained phase space a Poisson algebra of the same form as the Dirac bracket algebra of the observables on the constraint surface. The general formulas involve new differential operators that differentiate the Dirac bracket. Similar extended observables are also constructed for theories with first class constraints which, however, are gauge dependent. For such theories one may also construct gauge invariant extensions with similar properties. Whenever extended observables exist the theory is expected to allow for a covariant quantization. A mapping procedure is proposed for covariant quantization of theories with second class constraints.Comment: 26 pages, Latexfile,Minor misprints on page 4 are correcte

    Hamiltonian BRST Quantization of the Conformal String

    Full text link
    We present a new formulation of the tensionless string (T=0T= 0) where the space-time conformal symmetry is manifest. Using a Hamiltonian BRST scheme we quantize this {\em Conformal String} and find that it has critical dimension D=2D=2. This is in keeping with our classical result that the model describes massless particles in this dimension. It is also consistent with our previous results which indicate that quantized conformally symmetric tensionless strings describe a topological phase away {}from D=2D=2. We reach our result by demanding nilpotency of the BRST charge and consistency with the Jacobi identities. The derivation is presented in two different ways: in operator language and using mode expansions. Careful attention is payed to regularization, a crucial ingredient in our calculations.Comment: 33pp (LaTeX), USITP-94-0

    BRST quantization of anomalous gauge theories

    Get PDF
    It is shown how the BRST quantization can be applied to a gauge invariant sector of theories with anomalously broken symmetries. This result is used to show that shifting the anomalies to a classically trivial sector of fields (Wess-Zumino mechanism) makes it possible to quantize the physical sector using a standard BRST procedure, as for a non anomalous theory. The trivial sector plays the role of a topological sector if the system is quantized without shifting the anomalies.Comment: 16 pages, latex, revised and enlarged version to appear in Phys.Rev.

    Time Variation of Fine Structure Constant and Proton-Electron Mass Ratio with Quintessence

    Get PDF
    Recent astrophysical observations of quasar absorption systems indicate that the fine structure constant α\alpha and the proton-electron mass ratio μ\mu may have evolved through the history of the universe. Motivated by these observations, we consider the cosmological evolution of a quintessence-like scalar field ϕ\phi coupled to gauge fields and matter which leads to effective modifications of the coupling constants and particle masses over time. We show that a class of models where the scalar field potential V(ϕ)V(\phi) and the couplings to matter B(ϕ)B(\phi) admit common extremum in ϕ\phi naturally explains constraints on variations of both the fine structure constant and the proton-electron mass ratio.Comment: 9 pages, 4 figures, CosPA 2006 Proceeding. 9 pages, 4 figures, CosPA 2006 Proceeding will be published in the Mod. Phys. Lett.

    A pedestrian approach to the high energy limits of branes and other gravitational systems

    Get PDF
    In this article we study limits of models that contain a dimensionful parameter such as the mass of the relativistic point-particle. The limits are analogous to the massless limit of the particle and may be thought of as high energy limits. We present the ideas and work through several examples in a (hopefully) pedagogical manner. Along the way we derive several new results.Comment: 19 pages, 1 figur

    On the Minimal Model of Anyons

    Get PDF
    We present new geometric formulations for the fractional spin particle models on the minimal phase spaces. New consistent couplings of the anyon to background fields are constructed. The relationship between our approach and previously developed anyon models is discussed.Comment: 17 pages, LaTex, no figure

    Schwinger-Dyson equation for non-Lagrangian field theory

    Full text link
    A method is proposed of constructing quantum correlators for a general gauge system whose classical equations of motion do not necessarily follow from the least action principle. The idea of the method is in assigning a certain BRST operator Ω^\hat\Omega to any classical equations of motion, Lagrangian or not. The generating functional of Green's functions is defined by the equation Ω^Z(J)=0\hat\Omega Z (J) = 0 that is reduced to the standard Schwinger-Dyson equation whenever the classical field equations are Lagrangian. The corresponding probability amplitude Ψ\Psi of a field ϕ\phi is defined by the same equation Ω^Ψ(ϕ)=0\hat\Omega \Psi (\phi) = 0 although in another representation. When the classical dynamics are Lagrangian, the solution for Ψ(ϕ)\Psi (\phi) is reduced to the Feynman amplitude eiℏSe^{\frac{i}{\hbar}S}, while in the non-Lagrangian case this amplitude can be a more general distribution.Comment: 33 page

    Pseudoclassical description of the massive Dirac particles in odd dimensions

    Get PDF
    A pseudoclassical model is proposed to describe massive Dirac (spin one-half) particles in arbitrary odd dimensions. The quantization of the model reproduces the minimal quantum theory of spinning particles in such dimensions. A dimensional duality between the model proposed and the pseudoclassical description of Weyl particles in even dimensions is discussed.Comment: 12 pages, LaTeX (RevTeX

    Gauge Fixing and BFV Quantization

    Get PDF
    Nonsingularity conditions are established for the BFV gauge-fixing fermion which are sufficient for it to lead to the correct path integral for a theory with constraints canonically quantized in the BFV approach. The conditions ensure that anticommutator of this fermion with the BRST charge regularises the path integral by regularising the trace over non-physical states in each ghost sector. The results are applied to the quantization of a system which has a Gribov problem, using a non-standard form of the gauge-fixing fermion.Comment: 14 page
    • …
    corecore