72 research outputs found

    Mutations in <i>N</i>-acetylglucosamine (<i>O</i>-GlcNAc) transferase in patients with X-linked intellectual disability

    Get PDF
    Contains fulltext : 177227.pdf (publisher's version ) (Open Access)N-Acetylglucosamine (O-GlcNAc) transferase (OGT) regulates protein O-GlcNAcylation, an essential and dynamic post-translational modification. The O-GlcNAc modification is present on numerous nuclear and cytosolic proteins and has been implicated in essential cellular functions such as signaling and gene expression. Accordingly, altered levels of protein O-GlcNAcylation have been associated with developmental defects and neurodegeneration. However, mutations in the OGT gene have not yet been functionally confirmed in humans. Here, we report on two hemizygous mutations in OGT in individuals with X-linked intellectual disability (XLID) and dysmorphic features: one missense mutation (p.Arg284Pro) and one mutation leading to a splicing defect (c.463-6T>G). Both mutations reside in the tetratricopeptide repeats of OGT that are essential for substrate recognition. We observed slightly reduced levels of OGT protein and reduced levels of its opposing enzyme O-GlcNAcase in both patient-derived fibroblasts, but global O-GlcNAc levels appeared to be unaffected. Our data suggest that mutant cells attempt to maintain global O-GlcNAcylation by down-regulating O-GlcNAcase expression. We also found that the c.463-6T>G mutation leads to aberrant mRNA splicing, but no stable truncated protein was detected in the corresponding patient-derived fibroblasts. Recombinant OGT bearing the p.Arg284Pro mutation was prone to unfolding and exhibited reduced glycosylation activity against a complex array of glycosylation substrates and proteolytic processing of the transcription factor host cell factor 1, which is also encoded by an XLID-associated gene. We conclude that defects in O-GlcNAc homeostasis and host cell factor 1 proteolysis may play roles in mediation of XLID in individuals with OGT mutations

    Neonatal screening for congenital hypothyroidism in the Netherlands: Cognitive and motor outcome at 10 years of age

    Get PDF
    Contains fulltext : 35300.pdf (publisher's version ) (Open Access)CONTEXT: Patients with thyroidal congenital hypothyroidism (CH-T) born in The Netherlands in 1981-1982 showed persistent intellectual and motor deficits during childhood and adulthood, despite initiation of T(4) supplementation at a median age of 28 d after birth. OBJECTIVE: The present study examined whether advancement of treatment initiation to 20 d had resulted in improved cognitive and motor outcome. DESIGN/SETTING/PATIENTS: In 82 Dutch CH-T patients, born in 1992 to 1993 and treated at a median age of 20 d (mean, 22 d; range, 2-73 d), cognitive and motor outcome was assessed (mean age, 10.5 yr; range, 9.6-11.4 yr). Severity of CH-T was classified according to pretreatment free T(4) concentration. MAIN OUTCOME MEASURE: Cognitive and motor outcome of the 1992-1993 cohort in comparison to the 1981 to 1982 cohort was the main outcome measure. RESULTS: Patients with severe CH-T had lower full-scale (93.7), verbal (94.9), and performance (93.9) IQ scores than the normative population (P < 0.05), whereas IQ scores of patients with moderate and mild CH-T were comparable to those of the normative population. In all three severity subgroups, significant motor problems were observed, most pronounced in the severe CH-T group. No correlations were found between starting day of treatment and IQ or motor outcome. CONCLUSIONS: Essentially, findings from the 1992-1993 cohort were similar to those of the 1981-1982 cohort. Apparently, advancing initiation of T(4) supplementation from 28 to 20 d after birth did not result in improved cognitive or motor outcome in CH-T patients

    Expert consensus recommendations on the cardiogenetic care for patients with thoracic aortic disease and their first-degree

    Get PDF
    Background: Thoracic aortic aneurysm (TAA) is a potentially life-threatening disorder with a strong genetic component. The number of genes implicated in TAA has increased exponentially over the last decade. Approximately 20% of patients with TAA have a positive family history. As most TAA remain asymptomatic for a long time, screening of at risk relatives is warranted to prevent complications. Existing international guidelines lack detailed instructions regarding genetic evaluation and family screening of TAA patients. We aimed to develop a consensus document to provide medical guidance for all health care professionals involved in the recognition, diagnosis and treatment of patients with thoracic aortic disease and their relatives. Methods: A multidisciplinary panel of experts including cardiologists, cardiothoracic surgeons, clinical geneticists and general practitioners, convened to review and discuss the current literature, guidelines and clinical practice on genetic testing and family screening in TAA. Results: There is a lack of high-quality evidence in the literature. This consensus statement, based on the available literature and expert opinions, summarizes our recommendations in order to standardize and optimize the cardiogenetic care for patients and families with thoracic aortic disease. In particular, we provide criteria to identify those patients most likely to have a genetic predisposition, and discuss the preferred modality and frequency of screening in their relatives. Conclusions: Age, family history, aortic size and syndromic features determine who is advised to have genetic testing as well as screening of first-degree relatives. There is a need for more prospective multicenter studies to optimize current recommendations

    A mutation update for the FLNC gene in myopathies and cardiomyopathies

    Get PDF
    Filamin C (FLNC) variants are associated with cardiac and muscular phenotypes. Originally, FLNC variants were described in myofibrillar myopathy (MFM) patients. Later, high-throughput screening in cardiomyopathy cohorts determined a prominent role for FLNC in isolated hypertrophic and dilated cardiomyopathies (HCM and DCM). FLNC variants are now among the more prevalent causes of genetic DCM. FLNC-associated DCM is associated with a malignant clinical course and a high risk of sudden cardiac death. The clinical spectrum of FLNC suggests different pathomechanisms related to variant types and their location in the gene. The appropriate functioning of FLNC is crucial for structural integrity and cell signaling of the sarcomere. The secondary protein structure of FLNC is critical to ensure this function. Truncating variants with subsequent haploinsufficiency are associated with DCM and cardiac arrhythmias. Interference with the dimerization and folding of the protein leads to aggregate formation detrimental for muscle function, as found in HCM and MFM. Variants associated with HCM are predominantly missense variants, which cluster in the ROD2 domain. This domain is important for binding to the sarcomere and to ensure appropriate cell signaling. We here review FLNC genotype–phenotype correlations based on available evidence

    A mutation update for the FLNC gene in myopathies and cardiomyopathies

    Get PDF
    Filamin C (FLNC) variants are associated with cardiac and muscular phenotypes. Originally, FLNC variants were described in myofibrillar myopathy (MFM) patients. Later, high-throughput screening in cardiomyopathy cohorts determined a prominent role for FLNC in isolated hypertrophic and dilated cardiomyopathies (HCM and DCM). FLNC variants are now among the more prevalent causes of genetic DCM. FLNC-associated DCM is associated with a malignant clinical course and a high risk of sudden cardiac death. The clinical spectrum of FLNC suggests different pathomechanisms related to variant types and their location in the gene. The appropriate functioning of FLNC is crucial for structural integrity and cell signaling of the sarcomere. The secondary protein structure of FLNC is critical to ensure this function. Truncating variants with subsequent haploinsufficiency are associated with DCM and cardiac arrhythmias. Interference with the dimerization and folding of the protein leads to aggregate formation detrim

    Inflammation Aggravates Disease Severity in Marfan Syndrome Patients

    Get PDF
    BACKGROUND: Marfan syndrome (MFS) is a pleiotropic genetic disorder with major features in cardiovascular, ocular and skeletal systems, associated with large clinical variability. Numerous studies reveal an involvement of TGF-beta signaling. However, the contribution of tissue inflammation is not addressed so far. METHODOLOGY/PRINCIPAL FINDINGS: Here we showed that both TGF-beta and inflammation are up-regulated in patients with MFS. We analyzed transcriptome-wide gene expression in 55 MFS patients using Affymetrix Human Exon 1.0 ST Array and levels of TGF-beta and various cytokines in their plasma. Within our MFS population, increased plasma levels of TGF-beta were found especially in MFS patients with aortic root dilatation (124 pg/ml), when compared to MFS patients with normal aorta (10 pg/ml; p = 8x10(-6), 95% CI: 70-159 pg/ml). Interestingly, our microarray data show that increased expression of inflammatory genes was associated with major clinical features within the MFS patients group; namely severity of the aortic root dilatation (HLA-DRB1 and HLA-DRB5 genes; r = 0.56 for both; False Discovery Rate(FDR) = 0%), ocular lens dislocation (RAET1L, CCL19 and HLA-DQB2; Fold Change (FC) = 1.8; 1.4; 1.5, FDR = 0%) and specific skeletal features (HLA-DRB1, HLA-DRB5, GZMK; FC = 8.8, 7.1, 1.3; FDR = 0%). Patients with progressive aortic disease had higher levels of Macrophage Colony Stimulating Factor (M-CSF) in blood. When comparing MFS aortic root vessel wall with non-MFS aortic root, increased numbers of CD4+ T-cells were found in the media (p = 0.02) and increased number of CD8+ T-cells (p = 0.003) in the adventitia of the MFS patients. CONCLUSION/SIGNIFICANCE: In conclusion, our results imply a modifying role of inflammation in MFS. Inflammation might be a novel therapeutic target in these patients

    Candidate gene resequencing in a large bicuspid aortic valve-associated thoracic aortic aneurysm cohort: SMAD6 as an important contributor

    Get PDF
    Bicuspid aortic valve (BAV) is the most common congenital heart defect. Although many BAV patients remain asymptomatic, at least 20% develop thoracic aortic aneurysm (TAA). Historically, BAV-related TAA was considered as a hemodynamic consequence of the valve defect. Multiple lines of evidence currently suggest that genetic determinants contribute to the pathogenesis of both BAV and TAA in affected individuals. Despite high heritability, only very few genes have been linked to BAV or BAV/TAA, such as NOTCH1, SMAD6, and MAT2A. Moreover, they only explain a minority of patients. Other candidate genes have been suggested based on the presence of BAV in knockout mouse models (e.g., GATA5, NOS3) or in syndromic (e.g., TGFBR1/2, TGFB2/3) or non-syndromic (e.g., ACTA2) TAA forms. We hypothesized that rare genetic variants in these genes may be enriched in patients presenting with both BAV and TAA. We performed targeted resequencing of 22 candidate genes using Haloplex target enrichment in a strictly defined BAV/TAA cohort (n = 441; BAV in addition to an aortic root or ascendens diameter = 4.0 cm in adults, or a Z-score = 3 in children) and in a collection of healthy controls with normal echocardiographic evaluation (n = 183). After additional burden analysis against the Exome Aggregation Consortium database, the strongest candidate susceptibility gene was SMAD6 (p = 0.002), with 2.5% (n = 11) of BAV/TAA patients harboring causal variants, including two nonsense, one in-frame deletion and two frameshift mutations. All six missense mutations were located in the functionally important MH1 and MH2 domains. In conclusion, we report a significant contribution of SMAD6 mutations to the etiology of the BAV/TAA phenotype
    • …
    corecore