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VERDONSCHOT ET AL

Later, high-throughput screening in cardiomyopathy cohorts determined a promi-
nent role for FLNC in isolated hypertrophic and dilated cardiomyopathies (HCM and
DCM). FLNC variants are now among the more prevalent causes of genetic DCM.
FLNC-associated DCM is associated with a malignant clinical course and a high
risk of sudden cardiac death. The clinical spectrum of FLNC suggests different
pathomechanisms related to variant types and their location in the gene. The
appropriate functioning of FLNC is crucial for structural integrity and cell signaling
of the sarcomere. The secondary protein structure of FLNC is critical to ensure this
function. Truncating variants with subsequent haploinsufficiency are associated with
DCM and cardiac arrhythmias. Interference with the dimerization and folding of
the protein leads to aggregate formation detrimental for muscle function, as found
in HCM and MFM. Variants associated with HCM are predominantly missense
variants, which cluster in the ROD2 domain. This domain is important for binding
to the sarcomere and to ensure appropriate cell signaling. We here review

KEYWORDS

1 | BACKGROUND

Similar to other filamins, Filamin C (FLNC) is a structural protein
which has an actin-binding domain (ABD) composed of two calponin
homology (CH) domains, 24 immunoglobulin (Ig) domains divided into a
ROD1 and ROD2 subdomain, and a C-terminal dimerization domain
(van der Flier & Sonnenberg, 2001). The dimerization of two identical
filamin proteins is necessary for appropriate function and occurs
via lg-like domain 24 (Himmel, Van Der Ven, Stocklein, & Furst, 2003).
In contrast to filamin A and B, filamin C expression is restricted to
striated muscles and localizes around the Z-disc, the sarcolemma,
the myotendinous junction, and the intercalated discs (Thompson
et al., 2000). Its main role is maintaining the structural integrity of the
sarcomere. This is through crosslinking actin filaments and the
anchoring of sarcolemmal proteins to the cytoskeleton. The main
interactors of FLNC are either part of the Z-disc (myotilin, myozenin,
myopodin, and calsarcins), signaling molecules (Zhang, Liu,
Cheng, Deyoung, & Saltiel, 2007) or sarcolemma-associated proteins
(integrin B1, sarcoglycan delta; Anastasi et al., 2004; Furst et al., 2013;
Takada et al., 2001). Proteases such as calpain can regulate the inter-
action between FLNC and the sarcoglycans by cleaving the corre-
sponding binding domains of FLNC (Guyon et al., 2003). In addition,
FLNC interacts with the Xin actin-binding repeat-containing proteins
(XIRP) and aciculin to fulfill a function in muscle maintenance (Fujita
et al, 2012; Leber et al., 2016; Molt et al.,, 2014). This interaction is
mediated via a unique insertion in Ig-like domain 20, which is absent
in the other filamin paralogs. The ROD1 domain (lg 1-15) is more
stretched and lacks interdomain interactions in contrast to the ROD2

domain (lg 16-23), which is more compact and globularly arranged by

FLNC genotype-phenotype correlations based on available evidence.

cardiomyopathy, filamin, FLNC, genotype-phenotype correlation, myopathy

domain pairs. These organizational differences between the domains
explain why certain ligands bind exclusively to ROD1 or ROD2.

The FLNC gene maps to chromosome 7q32-35 and has two main
transcripts, NM_001127487.2 and NM_001458.4. It comprises ~29.5
kb of genomic DNA and is composed of 49 coding exons (Chakarova
et al, 2000). The difference between the two transcripts is the
presence or absence of exon 31 encoding the hinge region between
Ig-likechrolg-like domains 15 and 16 (Xie, Xu, Davie, & Chung, 1998).
The longest transcript, NM_001458.4, encodes a protein with a
molecular mass of 291kDa and 2.725 amino acids, whereas the
shorter transcript NM_001127487.2 encodes a slightly shorter protein
(287 kDa, 2.692 amino acids) that is assumed to be less flexible.
The exact roles of these two isoforms are unknown, but the long
FLNC isoform is more abundantly expressed during cardiac stress
while almost absent in the normal situation (Kong et al., 2010). This
could potentially alter the integrity and function of the key sarcomeric
structures to cope with increased cell stress. The short isoform is
mainly expressed in the normal situation and is 3.5 times higher
expressed in skeletal compared with cardiac muscle.

Variants in FLNC are traditionally associated with myofibrillar
myopathy (MFM; MIM# 609524), but subsequently also with
isolated cardiomyopathies (MIM# 617047). To date, most
available basic research on FLNC has focused on myopathies.
Paradoxically, most genetic variants are described in cardiomyo-
pathy patients, as this clinical entity is more prevalent and studies
using high-throughput sequencing of FLNC are more frequent in
cardiomyopathy cohorts. This overview highlights known and
novel FLNC variants and focuses on specific pathomechanisms

important for distinct cardiac or muscular phenotypes.
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2 | VARIANTS

All FLNC variants are described according to current Human
Genome Variation Society mutation nomenclature guidelines based
on Genbank accession number NM_001458.4 (longest transcript).
Previously reported and novel variants are interpreted and
classified using American College of Medical Genetics and Genomics
classification recommendations (Richards et al., 2015).

A total of 285 unique variants could be retrieved from the
international peer-reviewed literature, the Human Gene Mutation
Database and the Leiden Open Variation Database (LOVD; Figure 1).
We added 40 novel unique variants, leading to a total of 325 unique
variants. All variants were submitted to the LOVD. A clear description
of the phenotype associated with the variant was a requirement for this
overview. One-hundred variants were excluded from the main analysis,
as no clinical information was available (Table S1). Most FLNC
variants have been reported over the last 5 years, from the time that
FLNC was recognized as a disease-associated gene in the field of
cardiomyopathies. Variant interpretation remains challenging, as the
available evidence for pathogenicity is still limited for most types of
variants. In general, truncating variants were classified as (likely)
pathogenic, and missense variants as a variant of unknown significance
(VUS), unless additional evidence from segregation and/or functional

experiments was available.

3
~WI LEY—I—
2.1 | Cardiomyopathies

Cardiomyopathies are a heterogeneous group of myocardial diseases
associated with mechanical or electrical dysfunction that exhibit in-
appropriate ventricular hypertrophy or dilatation (Elliott et al., 2008;

Maron et al., 2006). In this review, we distinguish between:

1. Dilated cardiomyopathy (DCM): Characterized by the presence of
left ventricular dilatation and contractile dysfunction, in the
absence of abnormal loading conditions and severe coronary
artery disease (Elliott et al., 2008; Maron et al., 2006).

2. Hypertrophic cardiomyopathy (HCM): The presence of increased
left ventricular wall thickness that is not solely explained by
abnormal loading conditions (Elliott et al., 2008; Maron et al., 2006).

3. Other cardiac diseases, which do not fulfill these criteria for
DCM or HCM.

2.1.1 | Dilated cardiomyopathy

Variants predicted to result in a premature stop codon are strongly
enriched in DCM, and are classified as (likely) pathogenic, as
FLNC is highly intolerant for loss-of-function variants (pLI-score = 1;

Figures 1 and 2). The prevalence of FLNC variants in patients with

Overview FLNC variants

Peer-reviewed literature + Butch an:‘:eB:tl:rI:n genetic
HGMD +LOVD i
n=40 (not previously
n=285
reported)
Exclusion of variants
withouta
reported associated
phenotype
n=185 n=40

n=225

mDCM ®mHCM mOthercardiac ®Myopathy ®mOther

100%
90%
80%
70%
60%
50%
40%
30%
20%

10%
0%

Frameshift Nonsense Splice Missense In-frame

Fr hift N Splice Mi: In-frame
DCM 24 23 14 14 2 77
HCM 0 1 2 54 0 57
Other cardiac 2 4 3 21 2 32
Myopathy 2 1 4 28 2 37
Other 1 0 0 21 0 22
29 29 23 138 é 225

FIGURE 1 Variant selection of all FLNC variants and the overview of all variants in association with their phenotype. DCM, dilated
cardiomyopathy; HCM, hypertrophic cardiomyopathy; HGMD, Human Gene Mutation Database; LOVD, Leiden Open Variation Database
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Dilated Cardiomyopathy
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FIGURE 2 Schematic representation of the FLNC gene with their protein-coding domains. Numbers inside the boxes refer to the Ig-like
domains of filamin C. Above and below the schematic are all unique variants associated with dilated cardiomyopathy. Variants are annotated at

the protein level

DCM ranges from 1% to 4.5% (Ader et al., 2019; Begay et al., 2018;
Janin et al., 2017; Ortiz-Genga et al., 2016; Table 1).

Three missense variants have been classified as likely
pathogenic: p.Phe106Leu, p.Alal23Met, and p.Gly2070Ser. The
p.Phel06Leu missense variant occurred on the opposite allele
of a nonsense variant (p.Arg991*) in a neonatal patient with DCM
(Reinstein et al.,, 2016). Compound heterozygosity for these FLNC
variants led to an early-onset phenotype. Heterozygous carriers had
not developed DCM by age 40 years. Protein levels were decreased
for the p.Phe106Leu variant, and the p.Arg991* was not detectable.
The p.Val123Met variant reported in the current study is classified as
likely pathogenic, due to the well-investigated p.Val123Ala variant at
the same codon in HCM (Valdes-Mas et al.,, 2014). The p.Gly2070Ser
variant is predicted to alter a canonical splice site, although RNA
analysis was not performed (Ortiz-Genga et al., 2016). All other
missense variants are classified as VUS and are not included in
Figure 2, but are listed in Table 1.

2.1.2 | Hypertrophic cardiomyopathy

Missense variants are mainly associated with HCM with a varying pre-
valence from 1.3% to 87% in HCM cohorts (Ader et al, 2019;
Cui et al., 2018; Gomez et al., 2017; Valdes-Mas et al., 2014; Figure 1;
Table 2). Two studies did not detect an excess of rare missense variants
between HCM patients and controls, questioning the importance of FLNC
missense variants in HCM (Cui et al.,, 2018; Walsh et al., 2019). Only 13
of the 54 missense variants are supported to be (likely) pathogenic by
additional evidence such as functional studies (n = 4) and/or segregation
(n=13; Ader et al.,, 2019; Cui et al., 2018; Gomez et al., 2017; Valdes-Mas
et al, 2014). Based on current diagnostic classification criteria, all other
missense variants would individually be classified as VUS (Table 2). There
is a strong clustering of missense variants in the ROD2 domain of the

FLNC, which is an important domain for cell signaling (Figure 3). Thus,

collectively, missense variants in the ROD2 domain carry an increased
likelihood of being pathogenic for HCM.

2.1.3 | Other cardiac phenotypes

FLNC variants have been associated with other cardiac phenotypes such
as arrhythmias without detectable structural abnormalities, congenital
heart disease, restrictive (RCM), and noncompaction (NCCM) cardio-
myopathies (Figure 4; Table 3). The association of FLNC with a broad
spectrum of cardiac phenotypes shows an important gap in knowledge.
Hence, not all reported variants have proven to be causal. There can
also be a large overlap between phenotypes: cardiac noncompaction
can be a trait observed in other cardiomyopathies and healthy hearts
(Hershberger et al., 2018).

One patient with arrhythmogenic bileaflet mitral valve prolapse
syndrome (ABIMVPS) was recently reported in association with a
truncating variant (p.Trp34*) identified in whole-exome sequencing data
(Bains et al., 2019). It was speculated that FLNC haploinsufficiency was
the underlying arrhythmogenic substrate, which was exacerbated by the
mitral valve prolapse. Another recent report described familial sudden
cardiac death without signs of cardiomyopathy in association with a
truncating variant in FLNC (p.Pro2513Glufs*12; Mangum & Ferns, 2019).
Both cases highlight the arrhythmogenic potential associated with FLNC
truncating variants. However, it remains unknown if alternative
diagnostic tools such as global longitudinal strain analysis could detect
subtle changes in cardiac function. In addition, arrhythmias can also be
accompanied by a cardiomyopathy phenotype with right, left, or
biventricular involvement called arrhythmogenic cardiomyopathy (ACM).
When there is prominent left ventricular involvement, it is difficult to
clinically distinguish it from DCM. A recent cohort study in ACM patients
found four truncating variants (3.3%; Table 3; Hall et al., 2019).

FLNC variants in RCM and NCCM are less prevalent compared with

DCM and HCM, making it difficult to draw any conclusions on the role
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VERDONSCHOT ET AL

TABLE 2 FLNC variants found in individuals with hypertrophic cardiomyopathy (HCM) previously reported and from this study

Exon

1

2
4
4

VOO NN o

13
13
14
15
16
17
18
19
21
21
24
27
28
30
30
30
30
36
36
36
37
37
37
37
37
39
39
39
39
40

c-Notation
c.322G>T
c.368T>C
c.743A>T
c.850+4T>G
c.870C>A
c.986A>G
c.1076T>C
c.1132G>T
c.1425C>A
c.1882G>A
€.2050G>C
c.2084G>A
c.2170G>A
c.2375G>T
c.2450T>C
c.2587C>T
€.2737G>A
c.2812-4A>G
c.3581C>T
€.3623C>T
c4271G>T
c4615G>A
c4795A>G
€.5042C>T
c.5068C>T
c.5125C>T
c.5132C>T
c.5888C>T
c.5954C>T
c.5996G>A
€.6032G>A
€.6053G>A
c.6115G>A
c.6134G>A
€.6205G>A
c.6398G>A
c.6397C>T
c.6419G>A
c.6451G>A

c.6589C>T

p-Notation
p.Glu108*
p.Val123Ala
p.His248Leu
p.?
p.Asn290Lys
p.Asn329Ser
p.lle359Thr
p.Val378Leu
p.Asn475Lys
p.Val628Met
p.Val684Leu
p.Arg695His
p.Gly724Ser
p.Ser792lle
p.lle817Thr
p.Pro863Ser
p.Glu913Lys
p.?
p.Ser1194Leu
p.Ala1208Val
p.Gly1424Val
p.Ala1539Thr
p.Thr1599Ala
p.Thr1681Met
p.Leu1690Phe
p.Pro1709Ser
p.Pro1l711Leu
p.Thr1963Met
p.Ser1985Leu
p.Arg1999GIn
p.Gly2011Glu
p.Arg2018His
p.Gly2039Arg
p.Arg2045GIn
p.Ala2069Thr
p.Arg2133His
p.Arg2133Cys
p.Arg2140GIn
p.Gly2151Ser

p.Arg2197Trp

Variant type
Nonsense
Missense
Missense
Splice
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Splice
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense

Missense

Domain
ABD
ABD
ABD
ROD1
ROD1
ROD1
ROD1
ROD1
ROD1
ROD1
ROD1
ROD1
ROD1
ROD1
ROD1
ROD1
ROD1
ROD1
ROD1
ROD1
ROD1
ROD1
ROD1
ROD1
ROD1
ROD1
ROD1
ROD2
ROD2
ROD2
ROD2
ROD2
ROD2
ROD2
ROD2
ROD2
ROD2
ROD2
ROD2
ROD2

Location
CH1

CH1

CH2

Ig-like 1
Ig-like 1
Ig-like 1
Ig-like 1
Ig-like 2
Ig-like 3
Ig-like 4
Ig-like 5
Ig-like 5
Ig-like 5
Ig-like 6
Ig-like 6
Ig-like 7
Ig-like 7
Ig-like 7
Ig-like 10
Ig-like 10
Ig-like 12
Ig-like 14
Ig-like 14
Ig-like 15
Ig-like 15
Ig-like 15
Ig-like 15
Ig-like 18
Ig-like 18
Ig-like 18
Ig-like 18
Ig-like 18
Ig-like 19
Ig-like 19
Ig-like 19
Intradomain
Intradomain
Intradomain
Intradomain

Intradomain

Reference

(Valdes-Mas et al., 2014)

(Valdes-Mas et al., 2014)

Current study

(Cui et al., 2018)

(Valdes-Mas et al., 2014)

(Alejandra Restrepo-Cordoba et al., 2017)

(Cui et al., 2018)
(Cui et al., 2018)
Current study

(Cui et al., 2018)
(Cui et al., 2018)
Current study

(Cui et al., 2018)
(Jaafar et al., 2016)
(Cirino et al., 2017)
(Cui et al., 2018)
(Cui et al., 2018)
(Cui et al., 2018)
(Ader et al., 2019)
(Cui et al., 2018)

(Ader et al., 2019)

(Valdes-Mas et al., 2014)

(Gomez et al., 2017)
(Gomez et al., 2017)
(Gomez et al., 2017)
(Cui et al., 2018)

(Cui et al., 2018)

(Cui et al., 2018)
Current study

(Jaafar et al., 2016)
(Ader et al., 2019)
(Chanavat et al., 2016)
(Ader et al., 2019)
(Chanavat et al., 2016)

Current study

(Valdes-Mas et al., 2014)

(Cui et al., 2018)

(Gomez et al., 2017)

(Valdes-Mas et al., 2014)

(Alejandra Restrepo-Cordoba et al., 2017)

Effect

Likely pathogenic
Likely pathogenic
VUS

VUS

VUS

VUS

VUS

VUS

VUS

VUS

VUS

VUS

VUS

VUS

VUS

VUS

VUS

VUS

VUS

VUS

Likely pathogenic
Likely pathogenic
VUS

VUS

VUS

VUS

VUS

VUS

VUS

VUS

VUS

VUS

Likely pathogenic
VUS

VUS

Likely pathogenic
Likely pathogenic
Likely pathogenic
VUS

VUS
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TABLE 2 (Continued)

Exon c-Notation p-Notation Variant type Domain Location Reference Effect

41 c.6860C>A p.Thr2287Lys Missense ROD2 Ig-like 20 Current study VUS

41 c.6892C>T p.Pro2298Ser Missense ROD2 Ig-like 20 (Gomez et al., 2017) Likely pathogenic
41 c.6895G>A p.Gly2299Ser Missense ROD2 Ig-like 20 (Ader et al., 2019) VUS

41 c.6901C>G p.Pro2301Ala Missense ROD2 Ig-like 20 (Gomez et al., 2017) Likely pathogenic
41 c.6943C>A p.His2315Asn Missense ROD2 Ig-like 21 (Valdes-Mas et al., 2014) Likely pathogenic
41 c.6952C>T p.Arg2318Trp Missense ROD2 Ig-like 21 (Gomez et al., 2017) VUS

42 c.7030G>A p.Ala2344Thr Missense ROD2 Ig-like 21 (Cui et al., 2018) VUS

42 c.7076T>C p.11e2359Thr Missense ROD2 Ig-like 21 (Ader et al., 2019) VUS

42 c.7123G>T p.Val2375Phe Missense ROD2 Ig-like 21 (Gomez et al., 2017) VUS

42 c.7123G>C p.Val2375Leu Missense ROD2 Ig-like 21 (Ader et al., 2019) Likely pathogenic
43 c.7228C>T p.Arg2410Cys  Missense ROD2 Ig-like 22 (Ader et al., 2019) VUS

43 c.7250A>C p.GIn2417Pro  Missense ROD2 Ig-like 22 (Ader et al., 2019) VUS

44 c.7289C>T p.Ala2430Val Missense ROD2 Ig-like 22 (Valdes-Mas et al., 2014) Likely pathogenic
45 c.7484G>A p.Arg2495His Missense ROD2 Ig-like 22 (Ader et al., 2019) Likely pathogenic
45 c.7514C>T p.Pro2505Leu Missense ROD2 Ig-like 23 (Cui et al., 2018) VUS

47 c.7781G>C p.Gly2594Ala Missense ROD2 Hinge 2 (Chanavat et al., 2016) VUS

47 c.7853C>T p.Ser2618Phe  Missense ROD2 Hinge 2 Current study VUS

Abbreviations: ABD, actin-binding domain; VUS, variant of unknown significance.

of FLNC in these cardiomyopathies. One truncating variant has been 2.2 | Myopathies
described in association with NCCM (p.GIn1024*; Miszalski-Jamka

et al,, 2017). Unfortunately, little clinical information was available to Classification of myopathies can be based on either clinical pre-
assess the arrhythmogenic potential of this individual. In addition, this sentation, cause or pathology. To enhance clinical utility and prevent
patient also carried a pathogenic RYR2 variant. miscommunication, we suggest the classification based on clinical

Hypertrophic Cardiomyopathy

I Nonsenseor frameshiftvariant [l Splice variant Il Missense variant

p.Glu108*

- = = = te 5253 BIEoL WEE wHLTEQELUSQOoze 3 o2
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— —
Actin-binding ROD1 Hinge 1 ROD2 Hinge 2 Dimerization
domain domain

FIGURE 3 Schematic representation of the FLNC gene with their protein-coding domains. Numbers inside the boxes refer to the Ig-like
domains of filamin C. Above and below the schematic are all unique variants associated with hypertrophic cardiomyopathy. Variants are
annotated at the protein level
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Other Cardiac Phenotypes

[l Arrhythmogenic Potential

I Restrictive Cardiomyopathy

pTrp34*
p.Ala656Profs*8
pTyr705
GIn1024*
Arg1370*

P.
p.

p.Asp150Gly
p.Thr160Lys
p.lle714Thr

p.Ala1183Leu

c.4288+2T>G

o
3
cQ
=g
N
v
ag
<
a

[ Non-compaction Cardiomyopathy

[l Congenital Heart Disease

p.Pro2513Glufs*12

-
S

p.Gly1546Ser
p.Ser1624Leu
p.lle1666Thr
€.5298+21C>T
p.lle1882Val
p.Thr1947dup
p.GIn2058Arg
Ilel%lfgogpgl'\e
260A
p.Gly2345Glu
p.Pro2393ser

€.7252-1G>A
p.Tyr2563Cys
D.Pro2643_Leu2645del

Actin-binding ROD1
domain

—
Hinge 1 ROD2 Hinge 2 Dimerization

domain

FIGURE 4 Schematic representation of the FLNC gene with their protein-coding domains. Numbers inside the boxes refer to the Ig-like
domains of filamin C. Above and below the schematic are all unique variants associated with different cardiac phenotypes. Variants are

annotated at the protein level

presentation, such as distal and/or proximal myopathy. The more
specific diagnosis MFM requires finding protein aggregates in muscle.

The first description of a human phenotype related to FLNC was in
2005, when a nonsense variant (p.Trp2710%) was described in
a German family with a novel type of autosomal dominant MFM
(Vorgerd et al., 2005). The variant was later described in cohorts of
varying ethnicity, suggesting codon 2710 to be a mutational hotspot
(Kley et al., 2012). FLNC variants are mostly associated with a proximal
myopathy, with occasional distal involvement (Figure 5; Table 4;
van den Bogaart et al., 2017). There are few associations between
variant type or location and the corresponding myopathy phenotype or
special features such as cardiac involvement. We observed a cluster of
missense variants in Ig-like domain 10, a domain which is rarely involved
in cardiomyopathies. There was no genotype-phenotype association
between variant location, and features of MFM, including tissue protein
aggregate formation (Figure 5). Missense, in-frame and nonsense
variants are all associated with protein aggregate formation in muscle
tissue (Avila-Smirnow et al, 2010; Luan, Hong, Zhang, Wang, &
Yuan, 2010; Vorgerd et al., 2005). Only two truncating variants have
been reported to cause myopathy. Both are in Ig-like 15, and associated
with a form of isolated distal myopathy.

2.3 | Other nonstriated muscle diseases

Twenty-two unique FLNC variants have been described in association
with noncardiac or muscular phenotypes. These variants are listed in
the Supporting Information as they are not the main focus of this
overview (Table S2). There is a single large study, which performed
high-throughput sequencing in patients with frontotemporal
dementia and found a rare FLNC missense variant in 3.6% of the

patients (Janssens et al., 2015).

3 | BIOLOGICAL RELEVANCE

FLNC variants are associated with a spectrum of cardiac and
muscular phenotypes, suggesting that specific variants fall into

three pathomechanisms, as previously suggested (Furst et al., 2013):

1. Variants that are predicted to lead to expression of misfolded
proteins, which saturate the proteasome and autophagy pathways.

2. Variants, which give a toxic gain-of-function by altering ligand
binding properties.

3. Variants causing a premature stop codon and concomitant

nonsense-mediated decay (NMD), resulting in haploinsufficiency.

3.1 | Pathomechanisms of FLNC variants
in cardiomyopathy phenotypes

A landmark paper regarding FLNC variants in DCM showed a
strong association between truncating variants and this disease
(Ortiz-Genga et al, 2016). NMD and subsequent haploinsufficiency
were validated for a number of truncating variants as the patho-
mechanism in FLNC-associated DCM. Immunohistochemical analysis
showed normal FLNC protein in the intercalated discs of patients with
DCM. Abnormal FLNC protein aggregates in the cytoplasm were not
detectable (Ortiz-Genga et al., 2016). The absence of aggregates in the
cardiac tissue of patients with truncating FLNC variants in the ROD2
domain indicates the lack of an abnormal FLNC protein. In addition,
western blot analysis in zebrafish models and rat cardiac myoblasts
showed the absence of a truncated protein in the truncating variant
models (Begay et al., 2016; Reinstein et al., 2016). Haploinsufficiency
affects force transduction of striated muscle, specifically in tissues

dependent on high-force generation, such as the myocardium.
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(Continued)

TABLE 3

-

Effect
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Phenotype
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Domain

p-Notation Variant type
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VUS

(Ader et al., 2019)

RCM

ROD2 Ig-like 24

In-frame

p.Pro2643_Leu2645del

c.7927_7935del

47

Abbreviations: ABD, actin-binding domain; ABiMVPS, arrhythmogenic bileaflet mitral valve prolapse syndrome; ACM, arrhythmogenic cardiomyopathy; NCCM, noncompaction cardiomyopathy; RCM,

restrictive cardiomyopathy; SCD, sudden cardiac death; VUS, variant of unknown significance.

VERDONSCHOT ET AL

Both HCM and RCM patients have an enrichment of missense
variants causing changes in the secondary protein structure resulting
in an abnormal protein. Missense variants are strongly clustered in
the short ROD2 domain of the protein in HCM (Figure 3). This region
of the protein is important for the interaction between FLNC and the
Z-disc. Five missense variants were reported in the intradomain
insert (between Ig-like domain 19 and 20), which mediates the
specific targeting to the Z-disc. Abnormal protein has been observed
within aggregates in the tissue of FLNC-associated HCM and RCM
patients in association with marked sarcomeric abnormalities
(Kiselev et al, 2018; Valdes-Mas et al., 2014). The progressive
accumulation of protein aggregates in the cardiac muscle eventually
leads to sarcomeric disarray. Functional studies including the
transfection of missense variants in rat cardiac myoblasts confirmed
the formation of insoluble filamin C aggregates (Valdes-Mas
et al, 2014), although there were differences in the size of
aggregates and signal strength on western blots per variant. The
overall histopathology of FLNC-associated HCM constituted large
nuclei and large fiber diameters, as comparable to established
non-FLNC HCM.

3.2 | Pathomechanisms of FLNC variants
in myopathy phenotypes with and without
protein aggregate formation

The p.Trp2710* variant leads to truncation of lIg-domain 24, which
is needed for the formation of FLNC dimers (Vorgerd et al., 2005).
The mutant messenger RNA (mRNA) is stable and not subject to
degradation by NMD, probably because the variant is in the last exon
of the gene. Instead, the nonsense variant leads to the formation of
protein aggregates of mutated filamin fragments, other known
MFM-associated proteins and a number of filamin C binding partners
in the skeletal muscle (Kley, Maerkens et al., 2013; Lowe et al., 2007).
Interestingly, there is one truncating variant in the last exon
described in association with DCM (p.Asp2703Thrfs*69), which is
subject to NMD (Ortiz-Genga et al., 2016). This shows that not
only the variant type in the last exon is of importance but also the
pathomechanism for the subsequent phenotype.

The autophagy pathways which clear protein aggregates in MFM
(mainly the “chaperone-assisted selective autophagy” [CASA] pathway)
are activated but unable to clear the aggregates, preventing recovery of
homeostasis (Kley, van der Ven et al., 2013; Ruparelia, Oorschot, Ramm,
& Bryson-Richardson, 2016). More proteins are being associated with the
regulation of FLNC proteostasis via autophagy, such as Hspb7 (Mercer,
Lin, Cohen-Gould, & Evans, 2018). Consequently, many of the FLNC
binding partners are dispersed, which disturbs the stability between the
cytoskeleton and the membrane protein complexes, affecting cell sig-
naling. The formation of protein aggregates in combination with FLNC
depletion causes myofiber disintegration and muscle weakness, which is
aggravated by muscle activity (Chevessier et al., 2015; Kley et al.,, 2012).

Two missense variants (p.Alal193Thr and p.Met251Thr) in the

ABD are associated with a form of isolated distal myopathy without
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FIGURE 5 Schematic representation of the FLNC gene with their protein-coding domains. Numbers inside the boxes refer to the Ig-like
domains of filamin C. Above and below the schematic are all unique variants associated with myopathies. Variants are annotated at the

protein level

protein aggregate formation (Duff et al., 2011). In contrast to all
other reported missense variants in the ABD, these variants are
predicted to change from a hydrophobic to an uncharged amino
acid. They are predicted to alter intradomain interactions, thereby
increasing the binding affinity of filamin C to actin.

A frameshift variant (p.Phe1720Leufs*63) has also been asso-
ciated with an isolated distal myopathy without protein aggregates
(Guergueltcheva et al., 2011). In contrast to p.Trp2710%, this variant
occurs in Ig-like domain 15 and activates NMD: analysis of RNA and
protein in patients' muscle biopsies showed a 50% decrease in FLNC
mRNA and protein, implicating haploinsufficiency (Guergueltcheva
et al,, 2011). When compared with the truncating variants in DCM,
this is the only reported frameshift variant in Ig-like domain 15,
which is the domain before hinge 1. This hinge is only present in the
long isoform of FLNC which incorporates exon 31 (Xie et al., 1998),
and might be important in the isoform switch during cell stress
(Kong et al., 2010). There is no comparable frameshift variant
encompassing exon 31 in DCM. The different impact of the
frameshift on the two isoforms could be a mechanistic explanation
for the clinical variation, although this hypothesis needs further
testing to accurately determine the importance of the isoform shift.

4 | ANIMAL MODELS

Animal studies of FLNC are performed in (zebra) fish, mice, and
Drosophila (Figure 6). Shortly after the description of FLNC variants
in MFM, the first mouse model was developed by the deletion
of the last eight exons of FLNC (Dalkilic, Schienda, Thompson, &
Kunkel, 2006). Homozygous mice died shortly after birth due to
respiratory failure. Heterozygous mice had less muscle mass and a
decreased number of primary muscle fibers. Their muscles also

showed excessive fiber size variation, centrally located nuclei and

a disorganized muscle structure. This suggests a key role for FLNC in
myogenesis as well as in myofiber structure maintenance.

A Medaka fish (Orzyias latipes) model was developed to investigate
the cardiac and muscular phenotype of FLNC variants (Fuijita et al., 2012).
It contained a nonsense variant resulting in truncation at Ig-15. Despite
this variant, these fish had normal myogenesis. However, the myofibrils
gradually degenerated and became disorganized, eventually leading to
myocardial rupture. This suggests that FLNC is mainly involved in muscle
structure maintenance instead of myogenesis, partly by affording pro-
tection against mechanical stress related to muscle contraction. Fiber
dissolution and protein aggregate formation were not described in this
model. These characteristics of MFM were observed in a zebrafish (Danio
rerio) model in which the filamin C-b homolog (flncb) contains a nonsense
variant in exon 30 (Ruparelia, Zhao, Currie, & Bryson-Richardson, 2012).
A knockdown of the filamin C-a homolog (flnca) yielded the same
phenotype. However, loss of both homologs leads to a major failure of
the muscle fibers. Also here, it was shown that FLNC was mainly involved
in fiber protection and maintenance rather than fiber specification and
myogenesis. Investigation of the cardiac phenotype in fish with a flncb
knockdown showed atrium distention and backflow upon contraction
(Deo et al., 2014). Optical mapping showed a decrease in ventricular
conduction velocity, suggesting alterations in junctional remodeling, and
cell-cell coupling. Later studies also showed sarcomere and Z-disc dis-
organization (Begay et al., 2016). A study using Drosophila showed fila-
min C as an important cohesive element within the Z-disc, where it acts
as a bridge between thin filaments and the elastic scaffold protein titin
(Gonzalez-Morales, Holenka, & Schock, 2017). The Z-disc requires filamin
C to withstand the strong contractile forces acting on the sarcomere.

Other animal models were created to investigate targeted variants
by knock-in experiments in mice or overexpression in zebrafish
(Chevessier et al., 2015; Kiselev et al., 2018; Ruparelia et al., 2016). Two
models were created to investigate the hotspot variant, p.Trp2710*

(Chevessier et al., 2015; Ruparelia et al, 2016). Heterozygous mice
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developed muscle weakness and myofibrillar instability (Chevessier
et al, 2015). In addition to the classical protein aggregates, they also
developed filamin C positive lesions between the Z-discs appearing

upon physical exercise. Overexpression of the variant in zebrafish led to

Likely pathogenic
Likely pathogenic

Effect
VUS
VUS
VUS
VUS
VUS
VUS
VUS

the formation of protein aggregates (Ruparelia et al, 2016). In this
model, mutant FLNC was localized around the Z-disc and is able to
rescue the disintegration phenotype. This led to the hypothesis that it
was mainly the aggregates and the sequestration of FLNC away from
the Z-disc that cause myofibrillar disintegration. The study further
showed that the CASA pathway is impaired, making the cell unable to
clear the protein aggregates.

Current study
Current study

(Weihl et al., 2015)
(Chen et al., 2019)
Current study

(Tasca et al., 2012)
(Reddy et al., 2017)
Current study
(Vorgerd et al., 2005)

Reference

5 | CLINICAL AND DIAGNOSTIC
RELEVANCE

Cardiac involvement is a common clinical manifestation in
hereditary muscular dystrophies (Hermans et al., 2010). Conversely,
muscular problems in cardiomyopathy patients have also been

Phenotype
M
OM
PM; DM; MFM
oM
PM; Car; CNS; MFM
PM; Car
PM; Con
PM; DM; MFM

described (Limongelli et al.,, 2013), showing the strong molecular

IBM

link between hereditary muscular dystrophies and cardiomyo-
pathies. In line with this, cardiac involvement is not uncommon in
FLNC-associated myopathy (Figure 5), but muscle involvement has
not been described (yet) at the moment of diagnosis in
FLNC-associated cardiomyopathy (Ader et al., 2019). A single
patient with DCM developed distal myopathy during follow-up
(Ortiz-Genga et al., 2016).

Ig-like 20
Ig-like 20
Ig-like 21
Ig-like 21
Ig-like 21
Ig-like 22
Ig-like 22
Ig-like 23
Ig-like 24

Location

Domain
ROD2
ROD2
ROD2
ROD2
ROD2
ROD2
ROD2
ROD2
Dimerization

5.1 | Specific clinical characteristics
of FLNC-associated cardiomyopathies

Missense
Missense
Missense
Missense
Missense
Missense
Missense
Nonsense

Variant type
Missense

Compared with the average clinical course of DCM, FLNC-associated
DCM is more malignant, characterized by ventricular arrhythmias,
myocardial fibrosis, and a high risk of sudden cardiac death
(Ortiz-Genga et al., 2016). The average age of onset is 39.7 + 14.5.
Considering all available literature at the moment, filaminopathy
has a distinct cardiac phenotype. In contrast to arrhythmogenic
cardiomyopathies, FLNC-associated DCM is left-dominant in the
absence of right ventricular involvement (Augusto et al, 2019;
Ortiz-Genga et al, 2016). Diagnostic clues can be inferolateral

p-Notation
p.Glu2270Lys
p.Ser2275lle
p.Arg2364His
p.Val2375lle
p.Tyr2381Asp
p.Thr2419Met
p.Pro2470His
p.lle2575Asn
p.Trp2710*

negative T waves on the electrocardiogram, mild to moderate left
ventricular dysfunction and regional dyskinesia. It also has a
characteristic ring-like scar pattern in the left ventricle as detected by
cardiovascular magnetic resonance imaging (Augusto et al,, 2019). The
combination of increased myocardial fibrosis, ventricular arrhythmias,
and sudden cardiac death are also found in laminopathies,
desminopathies, and desmosomal variants (Hasselberg et al., 2017;

(Continued)

Lopez-Ayala et al., 2014). In contrast to these forms of genetic DCM,

cardiac conduction abnormalities such as an atrioventricular block are

c-Notation
c.6808G>A
c.6824G>T
c.7091G>A
c.7123G>A
c.71417>G
c.7256C>T
c.7409C>A
c.7724T>A
c.8130G>A

uncommon in FLNC-associated DCM while they are common in

laminopathies and desminopathies. In addition, desmosomal variants

Exon

41
42
46
Abbreviations: ABD, actin-binding domain; Car, cardiac involvement; CM, congenital myopathy; CNS, central nervous system involvement; Con, contractures; DM, distal myopathy; IBM, inclusion body

myositis; MFM, diagnosis of myofibrillar myopathy using cardiac tissue; OM, other nonspecified myopathy; PM, proximal myopathy; VUS, variant of unknown significance.

TABLE 4

are strongly correlated to isolated or predominant right ventricular
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FLNC-associated animal studies

A nonsense mutation in
amedaka fish model
causes an enlarged heart
dueto
myocardial rupture and
myofibrillar degeneration

' 4
“'
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FLNC (p.W2710*) causes
formation of protein aggregates
but rescues the fiber
disintegration phenotype

Overexpression of eGFP-labeled
FLNC (p.A1183L and p.A1186V)
causes formation of protein
aggregates and mild Z-disc
abnormalities

Heterozygous mice with the
targeted variant p.W2710*
developed muscle weakness and
myofibrillar instability with
formation of filamin C positive
lesions between Z-discs
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FIGURE 6 A timeline representation of animal models generated to study FLNC variants. eGFP indicates enhanced green fluorescent protein

involvement. For patients with DCM, the finding of a truncating FLNC
is likely causative, and relatives should be screened for this variant
(Tayal & Cook, 2016). The finding of a truncating FLNC variant in
otherwise healthy subjects outside of a familial context is much
less clear at the moment, as there is not enough knowledge regarding
Although the

prevalence of truncating FLNC variants is very low in the general

penetrance, expression, and clinical correlation.
population (<0.01% in gnomAD).

The mean age of onset of HCM in FLNC carriers is 35.9 + 14.8.
In a previous cohort of patients with HCM, it was reported that
34% of the FLNC variant carriers had elevated creatine kinase (CK)
levels (Valdes-Mas et al., 2014), also in RCM, there were some
patients with mildly elevated CK levels (Brodehl et al., 2016).
However, this finding is not consistent across different patient

cohorts (Ader et al., 2019).

5.2 | Specific clinical characteristics
of FLNC-associated myopathies

The two classic muscular phenotypes are MFM and distal
myopathy (with and without protein aggregates respectively;
Furst et al, 2013). Other genes have been associated with
these phenotypes, such as DES, LDB3, and BAG3 (Hermans
et al., 2010). Besides the muscular phenotype, these genes are
also associated with isolated cardiomyopathies. Characteristic
features of FLNC-associated MFM is the symmetrical involvement

of proximal muscles in the lower extremities, respiratory weakness

during the disease course, and a specific set of imaging
characteristics for muscle involvement (Kley et al., 2012). About
one-third of the FLNC-MFM

Distal myopathies due to FLNC variants are characterized by

showed cardiac involvement.
weakness in the hand and calf muscles with an onset in early
adulthood (Furst et al., 2013).

6 | GENOTYPE/PHENOTYPE
CORRELATIONS

Genotype-phenotype correlations are currently incomplete, but
some patterns are starting to emerge (Figure 7).

There is no clear clustering of DCM variants in any specific
region of the gene, partly because most truncating variants are
predicted to result in NMD. Truncating FLNC variants are strongly
associated with DCM and arrhythmogenic potential. Just three out
of 55 truncating variants are associated with a muscular phenotype.
Two are a frameshift in Ig-like 15 spanning hinge 1 and one is a
nonsense variant in Ig-like 24 of the dimerization domain. The
different pathomechanism underlying missense and truncating
variants partly explains the structural changes at the histological
level and the corresponding clinical phenotype. Missense variants are
mainly found in ROD2, which is essential for filamin C dimerization
and Z-disc interaction. These variants interfere with the secondary
protein structure, leading to sarcomere disarray and aggregate
formation. These histopathological changes are associated with HCM

and RCM phenotypes.
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FIGURE 7 A summary how different variants in FLNC lead to a variety of disease mechanisms eventually giving a spectrum of clinical entities
with the corresponding structural histological changes. These FLNC-associated diseases contain specific clinical characteristics compared with

other forms of the corresponding disease

1. Truncating variants are found throughout the whole gene, and are
expected to invoke haploinsufficiency via NMD. This will lead to
Z-disc disarray and weakened cell-cell adhesion with subsequent
impaired mechanotransduction. These structural alterations make
the heart prone for developing DCM with arrhythmogenesis and
promote fibrogenesis contributing to the arrhythmogenesis.

2. Frameshift variants spanning hinge 1 (exon 31) potentially interfere
with flexibility for isoform switching. Both described frameshift
variants spanning exon 31 are associated with distal myopathy.

3. Missense variants in the ABD that create an uncharged amino acid
give a toxic gain-of-function with a stronger actin-binding activity.
These variants have been associated with distal myopathy.

4. A nonsense variant in the dimerization domain interferes with the
ability to form FLNC homodimers, although proteins are still
translated. These proteins form aggregates in the skeletal muscle
leading to MFM.

7 | FUTURE PROSPECTS

As FLNC is now included in many genetic screening panels
for muscular and cardiac diseases, the number of variants will
increase in the coming years. A better understanding of the
molecular alterations due to FLNC variants can shed light on
potential treatment targets. It can help us in understanding and
predicting  genotype-phenotype correlations.  Appropriate
functioning of FLNC depends on multiple interactions with other

proteins (correlations Mercer et al., 2018). These interactions

could contribute to specific phenotypes. The ROD2 domain
FLNC

interactors, and is necessary for mechanosensing and muscle

encompasses binding sites for the majority of
maintenance functions. Chaperones such as HspB1 need to bind to
FLNC to ensure these functions (Collier et al., 2019). The inability
of HspB1 leads to bind to FLNC can lead to cardiac dysfunction.
This is one example how variants in a specific domain could affect
protein interactions and contribute to a specific phenotypes.
A field that should be further explored. As an example, we

formulated the following research questions:

1. Which factors explain the clinical variety among truncating variants in
the FLNC gene. For example: Why does p. Phe1720Leufs*63 lead
to a distal myopathy while p.Asn1369Lysfs*36 leads to DCM?
Does flexibility in isoform switching play a role in this?

2. How does a nonsense variant in lIg-like 24 (p.Trp2710%)
lead to an MFM and a frameshift variant in the same region
(p.Asp2703Thrfs*69) lead to arrhythmogenic DCM?

3. What are the exact structural protein changes related to missense
variants in the ABD and how do they explain the clinical
difference between HCM and distal myopathy?

4. Are truncating variants in certain parts of the gene better
tolerated clinically and therefore less penetrant?

5. Which molecular pathways are differentially activated due to FLNC
variants and can these pathways serve as potential therapeutic
targets?

6. What is the clinical relevance and outcome of (truncating)

FLNC variants in the general population?
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8 | CONCLUSION

Variants in FLNC can lead to myopathies and cardiomyopathies. The
difference in phenotypes can be partly explained by the pathomechanism
associated with the variant type and location within the gene. As a
general rule, interference with the dimerization and folding of the protein
leads to aggregate formation, as found in HCM or MFM. Truncating
variants with subsequent haploinsufficiency lead to weakened structural
adhesion mainly associated with DCM and cardiac arrhythmias.
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