142 research outputs found

    Control of disseminated intravascular coagulation in Klippel-Trenaunay-Weber syndrome using enoxaparin and recombinant activated factor VIIa: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Vascular malformation is associated with coagulopathies, especially when hemostasis is challenged.</p> <p>Case presentation</p> <p>We present the case of an 11-year-old Hispanic girl with Klippel-Trenaunay-Weber syndrome that developed disseminated intravascular coagulation after minor surgery, which was controlled by blood product transfusions and enoxaparin to address an ongoing consumptive coagulopathy. The patient, however, developed bacteremia and liver trauma that resulted in severe bleeding. To the best of our knowledge, we report here the first known instance of administering recombinant coagulation factor VIIa to control acute bleeding in a patient with Klippel-Trenaunay-Weber syndrome.</p> <p>Conclusions</p> <p>This case illustrates the concept of enoxaparin maintenance to suppress an ongoing consumptive coagulopathy and the use of recombinant coagulation factor VIIa to control its potentially fatal severe bleeding episodes.</p

    Three-dimensional culture of human meniscal cells: Extracellular matrix and proteoglycan production

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The meniscus is a complex tissue whose cell biology has only recently begun to be explored. Published models rely upon initial culture in the presence of added growth factors. The aim of this study was to test a three-dimensional (3D) collagen sponge microenvironment (without added growth factors) for its ability to provide a microenvironment supportive for meniscal cell extracellular matrix (ECM) production, and to test the responsiveness of cells cultured in this manner to transforming growth factor-ÎČ (TGF-ÎČ).</p> <p>Methods</p> <p>Experimental studies were approved prospectively by the authors' Human Subjects Institutional Review Board. Human meniscal cells were isolated from surgical specimens, established in monolayer culture, seeded into a 3D scaffold, and cell morphology and extracellular matrix components (ECM) evaluated either under control condition or with addition of TGF-ÎČ. Outcome variables were evaluation of cultured cell morphology, quantitative measurement of total sulfated proteoglycan production, and immunohistochemical study of the ECM components chondroitin sulfate, keratan sulfate, and types I and II collagen.</p> <p>Result and Conclusion</p> <p>Meniscal cells attached well within the 3D microenvironment and expanded with culture time. The 3D microenvironment was permissive for production of chondroitin sulfate, types I and II collagen, and to a lesser degree keratan sulfate. This microenvironment was also permissive for growth factor responsiveness, as indicated by a significant increase in proteoglycan production when cells were exposed to TGF-ÎČ (2.48 ÎŒg/ml ± 1.00, mean ± S.D., vs control levels of 1.58 ± 0.79, p < 0.0001). Knowledge of how culture microenvironments influence meniscal cell ECM production is important; the collagen sponge culture methodology provides a useful in vitro tool for study of meniscal cell biology.</p

    A Potential Neural Substrate for Processing Functional Classes of Complex Acoustic Signals

    Get PDF
    Categorization is essential to all cognitive processes, but identifying the neural substrates underlying categorization processes is a real challenge. Among animals that have been shown to be able of categorization, songbirds are particularly interesting because they provide researchers with clear examples of categories of acoustic signals allowing different levels of recognition, and they possess a system of specialized brain structures found only in birds that learn to sing: the song system. Moreover, an avian brain nucleus that is analogous to the mammalian secondary auditory cortex (the caudo-medial nidopallium, or NCM) has recently emerged as a plausible site for sensory representation of birdsong, and appears as a well positioned brain region for categorization of songs. Hence, we tested responses in this non-primary, associative area to clear and distinct classes of songs with different functions and social values, and for a possible correspondence between these responses and the functional aspects of songs, in a highly social songbird species: the European starling. Our results clearly show differential neuronal responses to the ethologically defined classes of songs, both in the number of neurons responding, and in the response magnitude of these neurons. Most importantly, these differential responses corresponded to the functional classes of songs, with increasing activation from non-specific to species-specific and from species-specific to individual-specific sounds. These data therefore suggest a potential neural substrate for sorting natural communication signals into categories, and for individual vocal recognition of same-species members. Given the many parallels that exist between birdsong and speech, these results may contribute to a better understanding of the neural bases of speech

    Neural Processing of Short-Term Recurrence in Songbird Vocal Communication

    Get PDF
    BACKGROUND: Many situations involving animal communication are dominated by recurring, stereotyped signals. How do receivers optimally distinguish between frequently recurring signals and novel ones? Cortical auditory systems are known to be pre-attentively sensitive to short-term delivery statistics of artificial stimuli, but it is unknown if this phenomenon extends to the level of behaviorally relevant delivery patterns, such as those used during communication. METHODOLOGY/PRINCIPAL FINDINGS: We recorded and analyzed complete auditory scenes of spontaneously communicating zebra finch (Taeniopygia guttata) pairs over a week-long period, and show that they can produce tens of thousands of short-range contact calls per day. Individual calls recur at time scales (median interval 1.5 s) matching those at which mammalian sensory systems are sensitive to recent stimulus history. Next, we presented to anesthetized birds sequences of frequently recurring calls interspersed with rare ones, and recorded, in parallel, action and local field potential responses in the medio-caudal auditory forebrain at 32 unique sites. Variation in call recurrence rate over natural ranges leads to widespread and significant modulation in strength of neural responses. Such modulation is highly call-specific in secondary auditory areas, but not in the main thalamo-recipient, primary auditory area. CONCLUSIONS/SIGNIFICANCE: Our results support the hypothesis that pre-attentive neural sensitivity to short-term stimulus recurrence is involved in the analysis of auditory scenes at the level of delivery patterns of meaningful sounds. This may enable birds to efficiently and automatically distinguish frequently recurring vocalizations from other events in their auditory scene

    Diversity in sound pressure levels and estimated active space of resident killer whale vocalizations

    Get PDF
    Author Posting. © The Author, 2005. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology 192 (2006): 449-459, doi:10.1007/s00359-005-0085-2.Signal source intensity and detection range, which integrates source intensity with propagation loss, background noise and receiver hearing abilities, are important characteristics of communication signals. Apparent source levels were calculated for 819 pulsed calls and 24 whistles produced by free-ranging resident killer whales by triangulating the angles-of-arrival of sounds on two beamforming arrays towed in series. Levels in the 1-20 kHz band ranged from 131-168 dB re 1ÎŒPa @1m, with differences in the means of different sound classes (whistles: 140.2 ± 4.1 dB; variable calls: 146.6 ± 6.6 dB; stereotyped calls: 152.6 ± 5.9 dB), and among stereotyped call types. Repertoire diversity carried through to estimates of active space, with “long-range” stereotyped calls all containing overlapping, independently-modulated high-frequency components (mean estimated active space of 10-16km in sea state zero) and “short-range” sounds (5-9 km) included all stereotyped calls without a high-frequency component, whistles, and variable calls. Short-range sounds are reported to be more common during social and resting behaviors, while long-range stereotyped calls predominate in dispersed travel and foraging behaviors. These results suggest that variability in sound pressure levels may reflect diverse social and ecological functions of the acoustic repertoire of killer whales.Funding was provided by WHOI’s Ocean Ventures Fund and Rinehart Coastal Research Center and a Royal Society fellowship

    Arbuscular mycorrhizal colonisation of roots of grass species differing in invasiveness

    Get PDF
    Recent research indicates that the soil microbial community, particularly arbuscular mycorrhizal fungi (AMF), can influence plant invasion in several ways. We tested if 1) invasive species are colonised by AMF to a lower degree than resident native species, and 2) AMF colonisation of native plants is lower in a community inhabited by an invasive species than in an uninvaded resident community. The two tests were run in semiarid temperate grasslands on grass (Poaceae) species, and the frequency and intensity of mycorrhizal colonisation, and the proportion of arbuscules and vesicles in plant roots have been measured. In the first test, grasses representing three classes of invasiveness were included: invasive species, resident species becoming abundant upon disturbance, and non-invasive native species. Each class contained one C3 and one C4 species. The AMF colonisation of the invasive Calamagrostis epigejos and Cynodon dactylon was consistently lower than that of the non-invasive native Chrysopogon gryllus and Bromus inermis, and contained fewer arbuscules than the post-disturbance dominant resident grasses Bothriochloa ischaemum and Brachypodium pinnatum. The C3 and C4 grasses behaved alike despite their displaced phenologies in these habitats. The second test compared AMF colonisation for sand grassland dominant grasses Festuca vaginata and Stipa borysthenica in stands invaded by either C. epigejos or C. dactylon, and in the uninvaded natural community. Resident grasses showed lower degree of AMF colonisation in the invaded stand compared to the uninvaded natural community with F. vaginata responding so to both invaders, while S. borysthenica responding to C. dactylon only. These results indicate that invasive grasses supposedly less reliant on AMF symbionts have the capacity of altering the soil mycorrhizal community in such a way that resident native species can establish a considerably reduced extent of the beneficial AMF associations, hence their growth, reproduction and ultimately abundance may decline. Accumulating evidence suggests that such indirect influences of invasive alien plants on resident native species mediated by AMF or other members of the soil biota is probably more the rule than the exception

    Does personality affect premating isolation between locally-adapted populations?

    Get PDF
    Background: One aspect of premating isolation between diverging, locally-adapted population pairs is female mate choice for resident over alien male phenotypes. Mating preferences often show considerable individual variation, and whether or not certain individuals are more likely to contribute to population interbreeding remains to be studied. In the Poecilia mexicana-species complex different ecotypes have adapted to hydrogen sulfide (H2S)-toxic springs, and females from adjacent non-sulfidic habitats prefer resident over sulfide-adapted males. We asked if consistent individual differences in behavioral tendencies (animal personality) predict the strength and direction of the mate choice component of premating isolation in this system. Results: We characterized focal females for their personality and found behavioral measures of ‘novel object exploration’, ‘boldness’ and ‘activity in an unknown area’ to be highly repeatable. Furthermore, the interaction term between our measures of exploration and boldness affected focal females’ strength of preference (SOP) for the resident male phenotype in dichotomous association preference tests. High exploration tendencies were coupled with stronger SOPs for resident over alien mating partners in bold, but not shy, females. Shy and/or little explorative females had an increased likelihood of preferring the non-resident phenotype and thus, are more likely to contribute to rare population hybridization. When we offered large vs. small conspecific stimulus males instead, less explorative females showed stronger preferences for large male body size. However, this effect disappeared when the size difference between the stimulus males was small. Conclusions: Our results suggest that personality affects female mate choice in a very nuanced fashion. Hence, population differences in the distribution of personality types could be facilitating or impeding reproductive isolation between diverging populations depending on the study system and the male trait(s) upon which females base their mating decisions, respectively
    • 

    corecore