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Abstract (179 words) 

Signal source intensity and detection range, which integrates source intensity with 

propagation loss, background noise and receiver hearing abilities, are important 

characteristics of communication signals.  Apparent source levels were calculated for 819 

pulsed calls and 24 whistles produced by free-ranging resident killer whales by triangulating 

the angles-of-arrival of sounds on two beamforming arrays towed in series.  Levels in the 1-

20 kHz band ranged from 131-168 dB re 1μPa @1m, with differences in the means of 

different sound classes (whistles: 140.2 ± 4.1 dB; variable calls: 146.6 ± 6.6 dB; stereotyped 

calls: 152.6 ± 5.9 dB), and among stereotyped call types.  Repertoire diversity carried through 

to estimates of active space, with “long-range” stereotyped calls all containing overlapping, 

independently-modulated high-frequency components (mean estimated active space of 10-

16km in sea state zero) and “short-range” sounds (5-9 km) included all stereotyped calls 

without a high-frequency component, whistles, and variable calls. Short-range sounds are 

reported to be more common during social and resting behaviors, while long-range 

stereotyped calls predominate in dispersed travel and foraging behaviors. These results 

suggest that variability in sound pressure levels may reflect diverse social and ecological 

functions of the acoustic repertoire of killer whales. 

 

Keywords:  communication, ecology, whistle, pulsed call, repertoire 
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Introduction 

The amplitude at which a signal is produced, or source level, is of fundamental 

importance in communication systems, and acoustic signals have the potential to be produced 

over a wide range of levels (Loftus-Hills & Littlejohn 1971; Gerhardt 1975; Prestwich et al. 

1989; Cynx et al. 1998; Bradbury & Vehrencamp 1998; Brumm 2004).  For a signaler to 

benefit from an information transfer, it must produce signals at a sufficient level for an 

intended receiver to detect and decode the signal.  However, signal levels attenuate during 

transmission from the source to the receiver, which must detect the signal in the presence of 

competing background noise.  The benefits of information transfer, therefore, select for 

higher amplitude signals because they are more likely to be detected and decoded by an 

intended receiver (Wiley & Richards 1982).  Energetic costs and the increased risk of 

detection by predators, prey, or social competitors are factors that may select for less intense 

signals (Prestwich et al. 1989; Ryan et al. 1982; Dabelsteen & Pedersen 1990; McGregor & 

Dabelsteen 1996). 

Apparently in response to these balancing selective pressures, signals appear to be 

produced at the appropriate intensity for typical distances to target or intended receivers 

(Wiley & Richards 1982).  Certain signal types within a repertoire may be selected to cover a 

large area while others function over short ranges, reflecting the context and motivation of 

the signaler (Rowell and Hinde 1962; Dittus 1988; Marten et al. 1977).  Blackbirds (Turdus 

merula) switch from loud song to a quieter version of song in close range threat interactions 

with intruders (Dabelsteen & Pedersen 1990).   Several recent studies have also shown that 

songbirds and non-human primates do not routinely maximize the amplitude of their songs, 

but adjust the source level in response to background noise (Sinnot et al. 1975; Cynx et al. 

1988; Brumm & Todt 2002; Pytte et al. 2003; Brumm et al. 2004) and social competitors 

(Brumm & Todt 2004).   
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The range over which a signal can be detected, or ‘active space’, is not solely a 

function of its source level, but also the transmission loss the signal suffers betwen the 

signaler and the receiver as well as the detection threshold of the receiver in varying levels of 

background noise. Therefore, variation in source level cannot be assumed to directly result in 

a matching shift in active space.  Techniques for estimating active space have been used for 

the territorial song display of the red-wing blackbird (Agelaius phoeniceus), which is 

produced at a level sufficient to be heard by neighboring red-wing blackbirds over a range of 

about two territories away (Brenowitz 1982).  The active space of bottlenose dolphin 

(Tursiops truncatus) whistles is estimated to be much larger than that of bird song, partly due 

to reduced sound absorption in seawater (Janik 2000).  Efficient acoustic signal propagation 

increases the potential for large communication networks to exist in the marine environment 

(Myrberg 1980; Janik in press). 

The goal of this study was to measure the sound pressure levels of pulsed calls and 

whistles produced by free-ranging resident killer whales, and estimate the maximum range 

they might be detected by conspecifics in different background noise conditions.  Estimating 

active space links physiological measures of sound production and reception with acoustical 

ecology and habitat to quantitatively predict the distances over which social communication 

might take place.  Because the active space of a signal relates to its function, analysis of 

source level and/or active space can be a useful tool to elucidate the function of signals in a 

repertoire (e.g. Marler 1973; Dittus 1988).   

The vocal repertoire of killer whales consist of various burst-pulse calls and whistles 

(Schevill & Watkins 1966; Watkins 1967; Ford 1989; Ford 1991; Thomsen et al. 2001).  The 

evidence is mixed whether the various signal types in the repertoire or resident killer whales 

reflect the activities or motivations of signalers, as is documented for many primate sounds 

(Dittus 1988; Hauser & Marler 1993).  No whistle or call type correlates exclusively with any 
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particular activity, but relative production rates of different call types and whistles vary with 

broad behavior metrics of the entire group (Bain 1986; Morton et al. 1986; Ford 1989; 

Thomsen et al. 2002).  If the various sound types in the killer whale repertoire primarily serve 

a contact function of signaling group membership, as proposed by Ford (1989, 1991), one 

might expect little variation in the estimated active space of different sound types in the 

repertoire.  Conversely, if sound-type production reflects the behavioral context or motivation 

of the signaler (Bain 1986; Morton 1986; Ford 1989; Thomsen et al. 2002), one may expect 

to find diversity in the estimated active space of types depending on the context or behavioral 

state in which they tend to be produced. 

To measure the source intensity of a sound, it is necessary to measure the received 

sound pressure level of a signal and estimate its transmission loss from the source, which (at 

short ranges) is primarily a function of range.  An established approach is to use multiple 

hydrophones to measure the range from the source to a calibrated receiver (Watkins & 

Schevill 1974; Watkins et al. 1997; Cato 1998; Mohl et al. 2000; Janik 2000).  With this 

technique, source levels can be measured during normal behavior, although it can be difficult 

to observe the orientation of underwater signalers to measure to control for signal 

directionality.  Killer whale calls are directional at higher frequencies (Miller 2002; Schevill 

& Watkins 1966; Bain & Dalheim 1994), so the received level of a sound depends on the 

orientation of the signaler.  The term “apparent source level”, used here, refers to source 

levels measured when signaler orientation is not known (Madsen et al. 2004).   To measure 

apparent source levels of weak signals, the hydrophones must be positioned near the signaler 

and have a small inter-hydrophone spacing (e.g. Watkins et al. 1997).  Such a small array, if 

immobile, will have a small coverage area through which animals could pass quite quickly.  

Larger arrays allow greater spatial coverage, but can only localize relatively intense sounds 

(e.g. Mohl et al. 2000).  In such a case, mean source level represents only a mean of relatively 
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intense sounds, depending on the array geometry (e.g. Janik 2000).  To statistically examine 

the apparent source levels and estimated active space of sounds over a wide range of levels, I 

employed a novel towed two-beamformer array design that can be towed near animals, 

allowing a large ‘coverage’ area with a small (97m) aperture array. 

 

Materials and methods 

Recordings were conducted in Johnstone Strait on September 1 and 7, 1998 while 

killer whales from several different pods were present.  All recordings were taken in low 

noise conditions: sea state 0 with no other vessels within a kilometer of the animals.  The 

recording system consisted of two evenly spaced 8-element (2.6 m) beamforming arrays that 

were towed in series with an inter-array spacing of 97m (Fig. 1).  The arrays were towed 

parallel to the direction of movement of the whales at minimum speed (~1.5 m/s) to minimize 

noise generated by the ship.  The signal from each hydrophone was recorded on a channel of 

two synchronized 16-bit Tascam 8-track digital recorders.   

Data from the recorders was digitally transferred as wav files into computer using a 

precision conversion system that maintains channel synchronization on a sample-by-sample 

basis across both recorders.  Signal analysis was carried out using custom Matlab software 

(see Miller & Tyack 1998 for details). The analog-signal to wav-file conversion was 

calibrated using tones measured on a calibrated LeCroy 9314AM oscilloscope.  The 

hydrophone elements were Benthos AQ-2S hydrophones (nominal sensitivity: –

195dBV/μPa) attached to a custom WHOI preamp (43 dB gain flat from 100Hz to 200 kHz).  

The sensitivity of one hydrophone in the rear array was calibrated in-situ using a 

Brüel & Kjær (B&K) 8105 hydrophone and a B&K 2635 preamp set at a sensitivity of –

160dBV/μPa.  The B&K hydrophone was attached to the array next to one element, and 

several loud sources were used to measure the relative sensitivity of the array element to the 
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calibrated hydrophone.  The relative sensitivities of the remaining elements were measured 

using a transient impact sound containing broadband energy from 1-20kHz produced over 

100m from the array.  The resulting measured sensitivity of –152.7 dBV/μPa was consistent 

across hydrophones and closely matched the expected sensitivity based upon separate 

calibration of the pre-amplifiers and the nominal sensitivity of the hydrophones. 

All whale sounds with a received sound pressure level at least 3 dB above background 

noise on the rear array were extracted from the recordings and a calibrated received spectrum 

was calculated from 1 to 20 kHz in 1/3-octave bands.  One-third octave bands were used 

because they represent the logarithmic shape of auditory filters in the mammalian ear 

(Fletcher 1940).  Calibrated spectra were calculated from the most intense subsection of each 

sound, and portions of the sound that were overlapped by extraneous sounds (such as 

echolocation clicks) or that were attenuated by surface diffraction were not included.  The 

subsection used for the analysis was always greater than 100ms in duration.  The +3dB 

criteria was implemented by assessing the background noise level just prior to the signal 

onset, and discarding signals where signal plus noise levels were <5dB greater than noise 

levels alone. The low-frequency cutoff of 1 kHz was chosen because killer whale hearing is 

much less sensitive below 1 kHz (Hall & Johnson 1972; Symanski et al. 1999), there is little 

energy in killer whale sounds below 1 kHz (Fig.1; Ford 1987), and it is desirable to eliminate 

the low-frequency noise below 1 kHz in calculating RL.  The high-frequency cutoff of 20 

kHz bounded a 1/3-octave band and was chosen to reduce the effects of filter roll-off near the 

Nyquist frequency of 24 kHz.  

Sounds were classified as whistles or calls based upon their harmonic structure 

(Watkins 1967).  Calls were further classified to call type (Fig. 2; Ford 1987; 1991; Miller & 

Bain 2000).  Any calls that did not clearly fall into one of the types described by Ford (1987) 

were classified as ‘variable’ calls.  
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Source Level Calculation 

The source level (SL) in dB re 1μPa @ 1m of each sound was calculated as: 

SL = RL + 20log(R) – k 

where RL is the received level in dB, R is the measured range from the vocalizing whale to 

the center of the rear array, and k is the near-field anomaly which represents the mean 

contribution to the field of the multiple bottom and surface reflections. A calibrated source 

spectrum was calculated for each 1/3-octave band, which was summed to calculate the 

broadband source level.   

This simple transmission loss equation is valid when range is less than water depth 

and short enough that frequency-dependent absorption can be ignored (Urick 1981; Marsh & 

Shulkin 1962).  In sea-state zero, k is estimated by Marsh and Shulkin (1962) to be 5.4dB at 

2.0kHz and 3.8dB at 8.0kHz (which is the primary energy band in killer whale calls).  Since 

the ranges used here are only the shortest of the possible valid range (out to 400m rather than 

to 3000m), the proportion of energy in the reflections versus direct path should be corrected 

to be somewhat less than the typical value given by Marsh and Shulkin.  Thus, this study set 

the value of k to be equal to 3dB. 

The -3 dB value reflects the expectation that transmission loss will not be that fully 

predicted by spherical spreading.  This value specifically subtracts non-correlated broadband 

energy that arrives at the receiving hydrophone after being reflected from the sea surface 

(Charif et al. 2002) assuming that the path lengths of the direct and surface paths are roughly 

identical, that reflection from the surface is lossless, and that the reflection will not 

destructively or constructively interfere with the direct path.   Frequency-specific interference 

was clearly apparent in portions of some of the analyzed signals, and such portions of the 

sounds were specifically not included in the source level calculation.  While the transmission-

loss equation used to calculate apparent source level was probably not exact for all sounds 
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analyzed, it is unlikely to be strongly biased and should be within ~3dB for sounds measured 

at the ranges reported here. 

Range from the rear array to the vocalizing animal was calculated by intersecting the 

angles-of-arrival of the sound on the two in-series beamforming arrays (Fig. 1).  The angle-

of-arrival was calculated for each array using a broadband frequency-domain beamforming 

algorithm that measures the amount of energy coming from each direction at each frequency 

(Miller & Tyack 1998; Thode et al. 2000b).  This technique does not obtain a 3-D 

localization of a sound because the linear arrays cannot resolve the left-right (and depth) 

ambiguity.  However, the range estimate is valid for any position or depth of the signaler.  

With an inter-array spacing of 97m, 0 and +3 dB signal-to-noise ratio requirements for the 

front and rear arrays, respectively, and background noise near 90 dB in the 1-20kHz band, the 

lower limit of apparent source levels measurable by this system is roughly 127 dB @1m. At 

the greatest range from the rear array from which sounds were analyzed (410m), sounds with 

an apparent source level below 142 dB @1m would have insufficient SNR to be analyzed, 

and may be underrepresented in the sample.   

The accuracy of the range estimate was calibrated using a sound source deployed 

from a stationary boat.  Several simultaneous acoustic and visual fixes were taken as the two-

array system was driven past the sound source.  Visual fixes were taken using a laser-range 

finder and a hand-held compass as well as by ship’s radar.  At each of these points the range 

error was calculated and expressed as the source level error that would result from the range 

error.  Calibration results of 8 separate passes showed that range errors contribute less than 

±3dB error to the source level estimate over a 500m x 200m body of water on both sides of 

the array (Fig. 3).  Animal sounds that came from outside the calibrated region were excluded 

from analysis.  Because range errors should not be correlated with errors in transmission loss, 

the apparent source levels presented here should typically be accurate to within ±3dB. 
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Active space estimation 

The active space of each sound was estimated as the maximum range at which its 

apparent source level minus transmission loss exceeded the whale’s detection threshold in at 

least one 1/3-octave band under different background noise conditions.  The noise scenarios 

modeled were sea-state 0 and sea state 6 background noise, which have been well 

characterized and summarized for naturally occurring sea states (Knudsen et al. 1948).  In sea 

state zero, noise levels range from 44 dB re 1μPa2/Hz at 1kHz to 20 dB at 20kHz (see also 

Erbe 2002).  Noise levels in sea state 6 are roughly parallel, in frequency, to those at sea state 

0, but are about 26dB higher.   

The relatively simple transmission-loss equation used for calculation of source level 

ignores propagation effects that become prominent over longer distances.  The appropriate 

empirically derived equation for intermediate-range transmission loss in a shallow 

environment is: 

TL = 15log(R) + αR + αT(R/H-1) + 5log(H) + 60 - kL

where TL is the transmission loss (dB), R is the range (km), α is the absorption coefficient of 

seawater, H is a function of water depth, αT is the shallow-water attenuation coefficient and 

kL is a near-field anomaly (Marsh & Shulkin 1962).   The absorption coefficient was 

calculated using an emprically-derived formula (Francois & Garrison 1982).  The values for 

αT and kL assuming a sand bottom (Erbe 2002) and sea states 0 or 5, as well as the equation 

to calculate H based on a water depth of 100m are given in Marsh & Shulkin (1962).  This 

equation accounts for spreading loss, frequency-dependent absorption, and surface/bottom 

interactions.   

Transmission loss was subtracted from the source spectrum in each 1/3-octave band at 

range steps of 100m.  A signal was judged to be detectable by another killer whale when the 

received level in at least one 1/3-octave band exceeded the hearing threshold of killer whales 
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or 6 dB below the background noise level, whichever was greater.  There are few 

measurements of the hearing abilities of killer whales in noise (Bain and Dalheim 1994) and 

no explicit measurements of critical ratios, so I used Fletcher’s (1940) equal power 

assumption with a correction for binaural hearing capabilities to estimate a detection 

threshold in noise (Erbe 2002).  Bain and Dalheim (1994) found that masking sources needed 

to be 4-40dB more intense to mask natural calls when they were placed to the side or behind 

an animal. Similar results have been found for human ability to detect speech in cluttered 

environments (Kidd et al. 1998).  Sea generated noise arrives from broad azimuth angles, 

while the conspecific call arrives from one direction primarily.  There is also evidence that 

humans and birds can use energy in different harmonic bands to improve detection thresholds 

(Hall, 1984; Klump & Langemann, 1995), which is ignored here.  Thus, the -6dB signal to 

ocean-noise criterion adopted here is a best-guess given current information. New 

information on the ability of a killer whale to detect a call in background noise would be 

useful to assess the validity of this criterion. 

The auditory threshold at the center of each 1/3-octave band was obtained by fitting a 

third-order polynomial curve to the auditory threshold points reported in the literature (Hall 

& Johnson 1972; Symanski et al. 1999).  This threshold comparison assumes that the energy 

in a band of noise that is just audible is equal to the threshold energy of the pure tone at the 

center of the band, as appears to be the case for human speech (Hawkins and Stevens 1950). 

Because killer whale hearing becomes less sensitive at low frequencies, the detection 

threshold was always hearing-threshold limited below 9 and 5 kHz in sea-states 0 and 6, 

respectively (see also Janik 2000).   
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Results 

I recorded killer whale sounds for a total of five hours on two different days from five 

different pods (Table 1), though effort was focused on animals from pods A1 and A5.   

Because the arrays were towed parallel to the direction of movement of the whales and 

sounds were localized broadside to the array (Fig. 1), animals most often surfaced with a 

sideways orientation to the receiver.  It is therefore reasonable to consider the apparent source 

levels to primarily represent off-axis levels, with occasional sounds from animals oriented 

directly toward or away from the receiver.   

The same 12 animals from pods A1 and A5 were present on both recording days and 

the arrays were positioned to obtain sounds primarily from these animals.   The animals were 

traveling in subgroups and vocally active throughout both recording sessions.  Although I 

could not identify the individual producing each sound, calls were often produced by whales 

in multiple locations in clear vocal exchanges (Miller et al. 2004), so the sample contained 

calls produced by multiple individuals in the group.  The apparent source levels of 819 pulsed 

calls and 24 whistles were measured.  Of the 819 pulsed calls, 60 did not clearly correspond 

to one of the call types defined by Ford (1987) and were classified as variable calls. 

Apparent source levels 

The apparent source levels in the 1-20 kHz band of all sounds ranged from 131 to 168 

dB @1m (Fig 4).  Whistles had the lowest mean (± s.d.) apparent source level (140.2±4.1 dB 

re 1μPa @1m), followed by variable calls (146.6±6.6 dB), with stereotyped calls being the 

most intense (152.6±5.9 dB).  These differences by sound type were statistically significant 

(F2,840 = 76.1 p<0.0001, Tukey post-hoc p<0.0001).  Sounds were occasionally observed on 

only one array when animals were quite close, suggesting that some sounds were produced 

below the threshold of 127 dB to be localized with the system. All of these faint sounds were 

either whistles or variable calls, none were stereotyped calls. 
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Within the stereotyped calls, the eight most common call types produced by pods A1 

and A5 accounted for 618 of the 759 stereotyped calls.  I compared the apparent source levels 

and estimated active space of these calls (Fig. 4, see Fig. 2).  Significant differences in 

apparent source level were found across types (F7,611 = 54.6, p<0.0001), with a mean of 156.5 

and 145.4 for the most (N4) and least (N3) intense call types, respectively (Fig. 4).  

Clustering using Tukey post-hoc probability of 0.01 resulted in four clusters, suggesting 

diversity in the level of different call types.  Though differences were significant, calls of the 

same type were produced over a rather wide range of source levels, with standard deviations 

ranging from 2.7 to 5.4 dB for call types N8 and N4, respectively.   

Estimated active space 

In sea-state zero noise conditions, estimated active space of all sounds ranged from 

1.9 to 25.8 km (Fig. 5).  Whistles had the smallest average estimated active space (6.4±2.4 

km), followed by variable calls (7.8±3.7 km), with stereotyped calls having the largest 

average estimated active space (11.0±4.7 km).  The mean estimated active space of 

stereotyped calls was greater than that of variable calls and whistles (F2,840  = 23.40, p<0.001, 

Tukey post hoc p<0.001), but the contrast between variable calls and whistles was not 

statistically significant (Tukey post-hoc p=0.46).  Significant differences across the eight 

most common call types were also apparent (F7,611 = 31.77, p<0.0001), with a mean of 12.8 ± 

4.7 km and 6.1 ± 1.6 km for the longest (N2) and shortest range (N3) call types, respectively.  

Clustering using Tukey post-hoc probability of 0.01 resulted in two clear clusters: a long-

range cluster consisting of call types N2, N4, N1, N9, and N5 (combined mean of 12.4 ± 4.3 

km), and a short-range cluster consisting of call types N7, N8 and N3 (combined mean of 6.8 

± 3.1 km).  Note that all the call types in the long-range cluster contain a separately-

modulated high frequency component, while all those in the short-range cluster do not. 
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Source level, detection threshold, and water depth variables were perturbed for the 

long and short-range call groups to determine the sensitivity of the model to the input 

variables.  As expected, the active space estimate was equally sensitive to perturbations in 

source level and detection threshold.  A 6dB increase in source level (or decrease in 

threshold) resulted in increases in estimated active space of 26% and 37% for long- and 

short-range call types, respectively, while a 6dB decrease in source level (or increase in 

threshold) resulted in a corresponding decrease of 24% and 30%.  Increasing water depth to 

500m resulted in increases of estimated active space of 16% and 9% for long- and short-

range call types, respectively, while decreasing water depth to 20m resulted in corresponding 

decreases of 25% and 19%.   

Relative to the sea-state 0 scenario, estimated active space in sea state 6 noise 

conditions was 75%, 83% and 91% lower for combined stereotyped calls, variable calls and 

whistles, respectively (Fig. 5, top).  Within the eight most common stereotyped calls (Fig. 5, 

bottom), sea state 6 conditions resulted in reductions of 74% and 81%, respectively for long 

and short-range call types.  The percentage reduction in estimated active space was smallest 

for the most intense calls, and greatest for the lower-intensity whistles. 

 

Discussion 

The apparent source levels of all measured sounds ranged from 131-168 dB re 1 μPa 

@1m, with statistically significant differences in the levels of different sound types in the 

repertoire (Fig. 4).  Supported by similar results from the active space model (Fig. 5), the 

acoustic repertoire of this group of resident killer whales can be partitioned into two primary 

groups: ‘long-range’ sounds including call types N4, N2, N5, N9 and N1 (all contain a 

separately-modulated high-frequency component), and ‘short-range’ sounds including 

whistles, variable calls, and call types N7, N8 and N3 (all without a high-frequency 
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component).  Relative to low-noise sea-state 0 conditions, the estimated active space of 

whistles, variable calls and stereotyped calls was 91%, 83% and 75% less in sea-state 6, 

respectively, suggesting that repertoire diversity in active space is preserved or possibly 

enhanced under higher noise conditions. 

The range of apparent source levels reported here is similar to those reported for other 

large delphinids (Watkins et al. 1997; Fish & Turl 1976; Janik 2000).  Erbe (2002) used the 

received level of 105-124 dB as a minimum estimate of killer whale call source levels. 

Adding 40dB of transmission loss for whales sighted roughly 100-200m away during those 

recordings, Erbe’s (2002) results are consistent with those reported here.  The whistles in my 

sample were more intense than whistles produced by resting spinner dolphins in Hawaii (109-

125 dB @1m; Watkins & Schevill 1974), but were less intense than those reported for 

traveling spinner dolphins (mean 150-154 dB; Lammers & Au 2003).  Whistles produced by 

bottlenose dolphins in Moray Firth (134-169 dB) were more intense than the whistles 

reported here, but were quite consistent with the overall range of sound source levels in this 

study (Janik 2000).  Whistles were roughly 10 dB less intense than burst-pulse sounds in a 

sample of sounds collected from the melon-headed whale (Watkins et al. 1997).   

Despite statistically strong differences across sound types, the range of apparent 

source levels within each type was large, with >20dB between the most and least intense 

exemplars in many cases (Fig. 4).  Only about 3dB of variability is expected from errors in 

range measurement or inaccuracies in the transmission loss model.  Though signalers may 

have the ability to modify the source level of a sound depending on their motivation, there 

may be other features of sound production that add variability to apparent source levels. As 

killer whale calls are directional at high frequencies (Schevill & Watkins 1966; Bain and 

Dalheim 1994; Miller 2002), apparent source level should vary as a function of signaler 

orientation, which we could not control or measure. During the recordings, most whales 
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surfaced with a sideways orientation to the array, so the average values measured here are 

certainly below the on-axis source level.  Some analyzed calls contained clear high-frequency 

components, so were likely to be from individuals oriented more directly toward the array 

(Miller 2002).  Additional variation could be due to individual differences in body size, 

which varies greatly with age and sex of killer whales (Matkin & Leatherwood 1986).  

Source levels appear to increase with body size across cetacean species (Patterson & 

Hamilton 1967; Cummings & Thompson 1971; Thode et al. 2000a; Cummings & Holliday 

1985; Schevill & Watkins 1972; Cummings et al. 1968; Dawbin & Cato 1992).    

The results of the active space estimation suggest that killer whales may be able to 

detect communication sounds produced by conspecifics over large distances in quiet 

conditions. Overall estimated active space ranged from 1.9-25.8 km in sea-state 0 conditions.  

The maximum estimated active space closely matches maximum active space estimates of 20 

to 25 km calculated for a bottlenose dolphin whistle using the same transmission loss model 

in sea state 0 conditions (Janik 2000). While observers have anecdotally noted cases in which 

killer whales apparently reacted to sounds of other whales greater than 10km distant, 

carefully controlled observations or experiments to measure the distances over which killer 

whales react to conspecific sounds are lacking.   

The active space model estimates the distance over which communication may occur, 

and is useful to demonstrate differences within the repertoire, but its accuracy is limited by 

the lack of information on detection thresholds of calls in noise. This simple model using 

average conditions ignores variability in the statistics of background noise, propagation 

conditions, and physiological characteristics of signalers and receivers that undoubtedly lead 

to a much larger scale of variability in the true active space of each communication signal. 

Sensitivity analyses suggest that the active space estimates fluctuate by roughly ±30% with 

±6 dB changes in SL or auditory sensitivity.  Water depth of 100m assumed in the model is 
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valid over many near-shore areas that killer whales inhabit, but active space estimates 

increase in deeper water, and decrease in shallower water, due to loss from surface and 

bottom reflection (Marsh & Shulkin 1962).   The depths of the signaler and receiver 

themselves also influence signal propagation, with lower frequencies being relatively more 

attenuated when signalers or receivers are near the surface (Mercado & Frazer 1999).   

Directionality of signal transmission and hearing sensitivity are also expected to 

influence active space (Bain and Dalheim 1994).   Although I could not directly observe the 

orientation of signaling animals in this study, most sounds were likely received from an off-

axis orientation with some sounds produced by animals facing directly toward or away from 

the array.  Thus, the mean active space estimated in this study is likely to be intermediate to 

the extremes when an animal is facing directly toward or away from the receiver.  While the 

radiation pattern of killer whale calls has not been measured, the high-frequency component 

of stereotyped call types are directional, with differences of ±6dB for animals moving toward, 

versus away from, a receiver (Miller 2002).  Assuming the 1-5 kHz band is omni-directional, 

front-to-back differences of at least ±30% in active space can be predicted.  Actual front-to-

back differences are probably greater than this as the 1-5 kHz frequency band may not be 

omni-directional.  The orientation of the receiving animal is also likely to be an important 

factor in the shape of active space in animals with directional hearing (Bain and Dalheim 

1994).  Receiver directivity has been measured at high frequencies for dolphins (Au 1993), 

but little information is available for the low frequencies at which killer whale calls are 

produced (Bain & Dalheim 1994). 

Estimated active space decreased strongly in noisy sea state 6 conditions, with short-

range sound relatively more affected than the long-range stereotyped calls.  Strong predicted 

impacts of naturally-occurring noise may imply mechanisms to adaptively modify signals in 

response to background noise would be selectively advantageous.  Mossbridge & Thomas 
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(1999) found that frequency modulations of Antarctic killer whale calls shifted away from the 

2.8-3.8 kHz band seasonally used by calling leopard seals.  Killer whales in three different 

pods increased the duration of their most common call type in the presence of boat noise 

(Foote et al. 2004).  It is important to emphasize that the source levels reported here were 

produced in sea state 0 conditions with little nearby vessel traffic, except the research vessel 

itself.  Given the documented compensatory mechanisms in call frequency and duration, it 

seems plausible that killer whale may also have mechanisms for amplitude regulation of their 

calls in noise (Cynx et al. 1988; Brumm & Todt 2002; Brumm et al. 2004).  Measurement of 

the source level of sounds produced by killer whales in varying noise conditions could test 

this possibility. 

The result that sound pressure levels and active space estimates can be used to 

partition the acoustic repertoire of resident killer whales into at least two sound classes is 

strongly corroborated by observations of sound-type production in different behavioral states 

of killer whale groups.  Resident killer whales do not appear to produce any sound type 

exclusively in association with a particular behavioral category, but do alter the rates of 

sound-type production in different behavior states (Bain 1986; Morton et al. 1986; Ford 1989; 

Thomsen et al. 2002).  Thomsen et al. (2002) found that resident killer whales produced 

short-range whistles and variable calls most commonly in socializing contexts, while 

stereotyped calls predominated in foraging and travel contexts.  In his study of behavior and 

sound production of pods A1, A4, and A5, Ford (1989) found significant increases in the 

production of the short-range whistles, variable calls, and the N3 call type during beach-

rubbing, socializing, and group-resting behaviors.  In these behavioral states, animals tend to 

be closely spaced and interactions between group members appear to be primarily affiliative.  

The intense, long-range call types N2, N4, N5, and N9 were used more during behaviors 

where group members are dispersed, including travelling, foraging, when different pods were 
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meeting, or in large aggregations of animals (Ford 1989, pg 737).  In a study of two captive 

whales from A5 pod, call-type clusters associated with high activity levels (assessed by 

respiration rate) included call types N4, N2, and N9, while lower-activity clusters contained 

call types N7, N8, N3 and whistles (Bain 1986).  Though there is a clear division in both the 

estimated active space and behavioral context of production of long-range and short-range 

sound classes, it is interesting that these animals have a repertoire of sound types within each 

class.  Thus, the functional aspect of active space described here does not fully explain why 

killer whales produce a repertoire of whistles and burst pulse calls (Ford 1989). 

The precise function(s) of calling by killer whales remains unknown. Ford (1989, 

1991) proposed that discrete stereotyped call repertoires function primarily to maintain pod 

cohesion and coordinate activities.  Individuals within groups regularly exchange calls, often 

immediately matching the call type produced by another individual (Miller et al. 2004). Such 

interactive calling behavior suggests that communication is at least partly directed to other 

killer whales within the group.  Given that group members rarely separate by more than a few 

kilometers, why should resident killer whales produce calls that can be detected at much 

greater distances?  The simple explanation that signalers should simply always maximize 

signal level seems inconsistent with the result of this study which demonstrates that killer 

whales often produce calls with less active space than their maximum capability.   

The ability of a killer whale to detect a conspecific at 10’s of km may be a 

consequence of the signal level required for detailed information (group membership, Ford 

1991; direction of movement, Miller 2002) to be reliably transferred over shorter typical 

separation distances to intended receivers within the group (McGregor and Dabelsteen 1996).  

Alternatively, calling may have inter-group functions such as spatial competition (Miller and 

Bain 2000) or mate attraction (Yurk et al. 2002) that select for longer-range signals.  In the 

fjord-like inland waters of the coastal NE Pacific, with numerous islands, continuous sections 
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of water are often considerably shorter than the estimated active space of loud calls.   In such 

a habitat, a direct signal path may often be as important as ‘staying within range’ for 

members of stable social groups to maintain acoustic contact with each other.  If the intended 

receivers of killer whale calls are the members of other groups, we might expect calling to 

occur in ‘hot-spots’ where acoustic propagation conditions are good or from which there 

exists a direct path to larger areas of killer whale habitat.  A detailed analysis of the 

geography of call production by these mobile animals may help elucidate intra-group and 

inter-group functions of calling. 
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Figure Legends 

Figure 1.  Schematic of the research vessel and two-array system used to make calibrated 

recordings.  Range from the rear array to a sound source is calculated using measured angles 

(θ, in radians) and the inter-array separation (d), which was 97m.  The dashed lines and 

lighter oval illustrate the consistency of the range estimate despite the left-right (and depth) 

ambiguity of the linear arrays. 

 

Figure 2.  Spectrograms of the eight most common call types recorded and a whistle.  Note 

that call types N1, N2, N4, N5 and N9 all contain a separately modulated high frequency 

component, while call types N3, N7 and N8 do not.  The effective filter bandwidth was 97 

Hz. 

 

Figure 3. Calibration results of the range measurement of the 2-array system.  The front array 

is centered on (0,0) and the rear array on (97,0).  The Δ symbols mark where calibration 

measurements were taken and the * symbols mark the position of all killer whale sounds for 

which an apparent source level was calculated.  Calibration measures were taken on both 

sides of the array system, but are plotted together because the left-right ambiguity is not 

resolvable using this linear array system.  The grayscale background is the interpolated range 

error on source level (in dB) between measured points. Note that all sounds were within or 

near the calibrated region, and that the range error did not exceed ±3dB in the region from 

which apparent source levels were calculated. 
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Figure 4.  Left: the apparent source levels of stereotyped calls, variable calls and whistles. 

Right:  source levels of the eight most common stereotyped calls recorded from pods A1 and 

A5 (see Fig. 2).  Note the diversity of average source level among the different sound types.   

 

Figure 5.   Box plots of estimated active space of whistles, variable calls, and group 

stereotyped calls (top), and stereotyped calls classified by type (bottom) in sea-state zero (left 

half of both panels) and sea state six (right half) background noise scenarios. The center of 

each box is the median value, and the upper and lower box borders are the first quartiles of 

the data.  The whiskers extend to the most extreme datum within the inter-quartile range 

defined by the box borders, and more extreme data are plotted as symbols. Note the bimodal 

structure of the estimated active space.  The short-range sound class includes whistles, 

variable calls and call types N3, N7, and N8. The long-range sound class consists of 

stereotyped call types N1, N2, N4, N5 and N9.  
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Table 1.   Group composition and sample size from recording effort.  The same 12 animals 

present on 9/1/98 were also present on 9/8/98.  *The number of animals on 9/8/98 was 

estimated based upon identified groups as all individuals were not separately identified. 

Date: 9/1/98 9/8/98
Pods Present: A1, A5 A1, A5, B1, C1, I15
# of Animals: 12 46*

Hours Recorded: 2 3
Calls analyzed 334 485
Whistles analyzed 15 9
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	Signal source intensity and detection range, which integrates source intensity with propagation loss, background noise and receiver hearing abilities, are important characteristics of communication signals.  Apparent source levels were calculated for 819 pulsed calls and 24 whistles produced by free-ranging resident killer whales by triangulating the angles-of-arrival of sounds on two beamforming arrays towed in series.  Levels in the 1-20 kHz band ranged from 131-168 dB re 1(Pa @1m, with differences in the means of different sound classes (whistles: 140.2 ( 4.1 dB; variable calls: 146.6 ( 6.6 dB; stereotyped calls: 152.6 ( 5.9 dB), and among stereotyped call types.  Repertoire diversity carried through to estimates of active space, with “long-range” stereotyped calls all containing overlapping, independently-modulated high-frequency components (mean estimated active space of 10-16km in sea state zero) and “short-range” sounds (5-9 km) included all stereotyped calls without a high-frequency component, whistles, and variable calls. Short-range sounds are reported to be more common during social and resting behaviors, while long-range stereotyped calls predominate in dispersed travel and foraging behaviors. These results suggest that variability in sound pressure levels may reflect diverse social and ecological functions of the acoustic repertoire of killer whales.
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