8 research outputs found

    Ювілей Галини Василівни Карпової

    Get PDF
    4 квітня 2008 р. відсвяткувала свій ювілейний день народження Галина Василівна Карпова — відомий мінералог-літолог, доктор геолого-мінералогічних наук, професор, почесний член Українського мінералогічного товариства

    Meta-Analysis of Mitochondrial DNA Reveals Several Population Bottlenecks during Worldwide Migrations of Cattle

    Get PDF
    Several studies have investigated the differentiation of mitochondrial DNA in Eurasian, African and American cattle as well as archaeological bovine material. A global survey of these studies shows that haplogroup distributions are more stable in time than in space. All major migrations of cattle have shifted the haplogroup distributions considerably with a reduction of the number of haplogroups and/or an expansion of haplotypes that are rare or absent in the ancestral populations. The most extreme case is the almost exclusive colonization of Africa by the T1 haplogroup, which is rare in Southwest Asian cattle. In contrast, ancient samples invariably show continuity with present-day cattle from the same location. These findings indicate strong maternal founder effects followed by limited maternal gene flow when new territories are colonized. However, effects of adaptation to new environments may also play a rol

    Meta-Analysis of mitochondrial DNA reveals several population bottlenecks during worldwide migrations of cattle

    Get PDF
    Several studies have investigated the differentiation of mitochondrial DNA in Eurasian, African and American cattle as well as archaeological bovine material. A global survey of these studies shows that haplogroup distributions are more stable in time than in space. All major migrations of cattle have shifted the haplogroup distributions considerably with a reduction of the number of haplogroups and/or an expansion of haplotypes that are rare or absent in the ancestral populations. The most extreme case is the almost exclusive colonization of Africa by the T1 haplogroup, which is rare in Southwest Asian cattle. In contrast, ancient samples invariably show continuity with present-day cattle from the same location. These findings indicate strong maternal founder effects followed by limited maternal gene flow when new territories are colonized. However, effects of adaptation to new environments may also play a role.Facultad de Ciencias VeterinariasInstituto de Genética Veterinari

    Meta-Analysis of mitochondrial DNA reveals several population bottlenecks during worldwide migrations of cattle

    Get PDF
    Several studies have investigated the differentiation of mitochondrial DNA in Eurasian, African and American cattle as well as archaeological bovine material. A global survey of these studies shows that haplogroup distributions are more stable in time than in space. All major migrations of cattle have shifted the haplogroup distributions considerably with a reduction of the number of haplogroups and/or an expansion of haplotypes that are rare or absent in the ancestral populations. The most extreme case is the almost exclusive colonization of Africa by the T1 haplogroup, which is rare in Southwest Asian cattle. In contrast, ancient samples invariably show continuity with present-day cattle from the same location. These findings indicate strong maternal founder effects followed by limited maternal gene flow when new territories are colonized. However, effects of adaptation to new environments may also play a role.Facultad de Ciencias VeterinariasInstituto de Genética Veterinari

    On the History of Cattle Genetic Resources

    No full text
    Cattle are our most important livestock species because of their production and role in human culture. Many breeds that differ in appearance, performance and environmental adaptation are kept on all inhabited continents, but the historic origin of the diverse phenotypes is not always clear. We give an account of the history of cattle by integrating archaeological record and pictorial or written sources, scarce until 300 years ago, with the recent contributions of DNA analysis. We describe the domestication of their wild ancestor, migrations to eventually all inhabited continents, the developments during prehistory, the antiquity and the Middle Ages, the relatively recent breed formation, the industrial cattle husbandry in the Old and New World and the current efforts to preserve the cattle genetic resources. Surveying the available information, we propose three main and overlapping phases during the development of the present genetic diversity: (i) domestication and subsequent wild introgression; (ii) natural adaptation to a diverse agricultural habitat; and (iii) breed development

    On the Breeds of Cattle—Historic and Current Classifications

    No full text
    Classification of cattle breeds contributes to our understanding of the history of cattle and is essential for an effective conservation of genetic diversity. Here we review the various classifications over the last two centuries and compare the most recent classifications with genetic data. The classifications devised during the 19th to the late 20th century were in line with the Linnaean taxonomy and emphasized cranial or horn morphology. Subsequent classifications were based on coat color, geographic origin or molecular markers. Several theories were developed that linked breed characteristics either to a supposed ancestral aurochs subspecies or to a presumed ethnic origin. Most of the older classifications have now been discarded, but have introduced several Latin terms that are still in use. The most consistent classification was proposed in 1995 by Felius and emphasizes the geographic origin of breeds. This is largely in agreement with the breed clusters indicated by a biochemical and molecular genetic analysis, which reflect either groups of breeds with a common geographic origin or single breeds that have expanded by export and/or crossbreeding. We propose that this information is also relevant for managing the genetic diversity of cattle

    On the history of cattle genetic resources

    No full text
    Cattle are our most important livestock species because of their production and role in human culture. Many breeds that differ in appearance, performance and environmental adaptation are kept on all inhabited continents, but the historic origin of the diverse phenotypes is not always clear. We give an account of the history of cattle by integrating archaeological record and pictorial or written sources, scarce until 300 years ago, with the recent contributions of DNA analysis. We describe the domestication of their wild ancestor, migrations to eventually all inhabited continents, the developments during prehistory, the antiquity and the Middle Ages, the relatively recent breed formation, the industrial cattle husbandry in the Old and New World and the current efforts to preserve the cattle genetic resources. Surveying the available information, we propose three main and overlapping phases during the development of the present genetic diversity: (i) domestication and subsequent wild introgression; (ii) natural adaptation to a diverse agricultural habitat; and (iii) breed development
    corecore