884 research outputs found
Validated environmental and physiological data from the CELSS Breadboard Projects Biomass Production Chamber. BWT931 (Wheat cv. Yecora Rojo)
This KSC database is being made available to the scientific research community to facilitate the development of crop development models, to test monitoring and control strategies, and to identify environmental limitations in crop production systems. The KSC validated dataset consists of 17 parameters necessary to maintain bioregenerative life support functions: water purification, CO2 removal, O2 production, and biomass production. The data are available on disk as either a DATABASE SUBSET (one week of 5-minute data) or DATABASE SUMMARY (daily averages of parameters). Online access to the VALIDATED DATABASE will be made available to institutions with specific programmatic requirements. Availability and access to the KSC validated database are subject to approval and limitations implicit in KSC computer security policies
Corn Yield Potential and Optimal Soil Productivity in Irrigated Corn/Soybean Systems
In 1999, an interdisciplinary research team at the University of Nebraska established a field experiment to (1) quantify and understand the yield potential of corn and soybean under irrigated conditions, (2) identify efficient crop management practices to achieve yields that approach potential levels, and (3) determine the energy use efficiency, global warming and soil C-sequestration potential of intensively managed corn systems. The experiment compares systems that represent different levels of management intensity expressed as combinations of crop rotation (continuous corn, corn-soybean), plant density (low, medium, high) and nutrient management (recommended best management vs. intensive management). Detailed measurements include soil nutrient dynamics and C balance, crop growth and development, nutrient uptake and components of yield of corn and soybean, radiation use efficiency, soil surface fluxes of greenhouse gases, root biomass, C inputs through crop residues, translocation of non-structural carbohydrates, and amount, composition and activity of the microbial biomass. Selected results for corn are presented
Corn Yield Potential and Optimal Soil Productivity in Irrigated Corn/Soybean Systems
In 1999, an interdisciplinary research team at the University of Nebraska established a field experiment to (1) quantify and understand the yield potential of corn and soybean under irrigated conditions, (2) identify efficient crop management practices to achieve yields that approach potential levels, and (3) determine the energy use efficiency, global warming and soil C-sequestration potential of intensively managed corn systems. The experiment compares systems that represent different levels of management intensity expressed as combinations of crop rotation (continuous corn, corn-soybean), plant density (low, medium, high) and nutrient management (recommended best management vs. intensive management). Detailed measurements include soil nutrient dynamics and C balance, crop growth and development, nutrient uptake and components of yield of corn and soybean, radiation use efficiency, soil surface fluxes of greenhouse gases, root biomass, C inputs through crop residues, translocation of non-structural carbohydrates, and amount, composition and activity of the microbial biomass. Selected results for corn are presented
Copper effect on the protein composition of photosystem II
The definitive version is available at:
http://www.blackwell-synergy.com/doi/full/10.1111/j.1399-3054.2000.1100419.xWe provide data from in vitro experiments on the polypeptide composition, photosynthetic electron transport and oxygen evolution activity of intact photosystem II (PSII) preparations under Cu(II) toxicity conditions. Low Cu(II) concentrations (Cu(II) per PSII reaction centre unit≤230) that caused around 50% inhibition of variable chlorophyll a fluorescence and oxygen evolution activity did not affect the polypeptide composition of PSII. However, the extrinsic proteins of 33, 24 and 17 kDa of the oxygen-evolving complex of PSII were removed when samples were treated with 300 μM CuCl2 (Cu(II) per PSII reaction centre unit=1 400). The LHCII antenna complex and D1 protein of the reaction centre of PSII were not affected even at these Cu(II) concentrations. The results indicated that the initial inhibition of the PSII electron transport and oxygen-evolving activity induced by the presence of toxic Cu(II) concentrations occurred before the damage of the oxygen-evolving complex. Indeed, more than 50% inhibition could be achieved in conditions where its protein composition and integrity was apparently preserved.This work was supported by the Dirección General de Investigación CientÃfica y Técnica (Grant PB98-1632).Peer reviewe
Attenuated and Protease-Profile Modified Sendai Virus Vectors as a New Tool for Virotherapy of Solid Tumors
Peer reviewe
Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice
BACKGROUND: An epidemiological study conducted in Italy indicated that coffee has the greatest antioxidant capacity among the commonly consumed beverages. Green coffee bean is rich in chlorogenic acid and its related compounds. The effect of green coffee bean extract (GCBE) on fat accumulation and body weight in mice was assessed with the objective of investigating the effect of GCBE on mild obesity. METHODS: Male ddy mice were fed a standard diet containing GCBE and its principal constituents, namely, caffeine and chlorogenic acid, for 14 days. Further, hepatic triglyceride (TG) level was also investigated after consecutive administration (13 days) of GCBE and its constituents. To examine the effect of GCBE and its constituents on fat absorption, serum TG changes were evaluated in olive oil-loaded mice. In addition, to investigate the effect on hepatic TG metabolism, carnitine palmitoyltransferase (CPT) activity in mice was evaluated after consecutive ingestion (6 days) of GCBE and its constituents (caffeine, chlorogenic acid, neochlorogenic acid and feruloylquinic acid mixture). RESULTS: It was found that 0.5% and 1% GCBE reduced visceral fat content and body weight. Caffeine and chlorogenic acid showed a tendency to reduce visceral fat and body weight. Oral administration of GCBE (100 and 200 mg/kg· day) for 13 days showed a tendency to reduce hepatic TG in mice. In the same model, chlorogenic acid (60 mg/kg· day) reduced hepatic TG level. In mice loaded with olive oil (5 mL/kg), GCBE (200 and 400 mg/kg) and caffeine (20 and 40 mg/kg) reduced serum TG level. GCBE (1%), neochlorogenic acid (0.028% and 0.055%) and feruloylquinic acid mixture (0.081%) significantly enhanced hepatic CPT activity in mice. However, neither caffeine nor chlorogenic acid alone was found to enhance CPT activity. CONCLUSION: These results suggest that GCBE is possibly effective against weight gain and fat accumulation by inhibition of fat absorption and activation of fat metabolism in the liver. Caffeine was found to be a suppressor of fat absorption, while chlorogenic acid was found to be partially involved in the suppressive effect of GCBE that resulted in the reduction of hepatic TG level. Phenolic compounds such as neochlorogenic acid and feruloylquinic acid mixture, except chlorogenic acid, can enhance hepatic CPT activity
- …