37 research outputs found

    Of Keeping and Tipping the Balance: Host Regulation and Viral Modulation of IRF3-Dependent IFNB1 Expression

    Get PDF
    The type I interferon (IFN) response is a principal component of our immune system that allows to counter a viral attack immediately upon viral entry into host cells. Upon engagement of aberrantly localised nucleic acids, germline-encoded pattern recognition receptors convey their find via a signalling cascade to prompt kinase-mediated activation of a specific set of five transcription factors. Within the nucleus, the coordinated interaction of these dimeric transcription factors with coactivators and the basal RNA transcription machinery is required to access the gene encoding the type I IFN IFNβ (IFNB1). Virus-induced release of IFNβ then induces the antiviral state of the system and mediates further mechanisms for defence. Due to its key role during the induction of the initial IFN response, the activity of the transcription factor interferon regulatory factor 3 (IRF3) is tightly regulated by the host and fiercely targeted by viral proteins at all conceivable levels. In this review, we will revisit the steps enabling the trans-activating potential of IRF3 after its activation and the subsequent assembly of the multi-protein complex at the IFNβ enhancer that controls gene expression. Further, we will inspect the regulatory mechanisms of these steps imposed by the host cell and present the manifold strategies viruses have evolved to intervene with IFNβ transcription downstream of IRF3 activation in order to secure establishment of a productive infection

    The herpesviral antagonist m152 reveals differential activation of STING‐dependent IRF and NF‐κB signaling and STING's dual role during MCMV infection

    Get PDF
    Cytomegaloviruses (CMVs) are master manipulators of the host immune response. Here, we reveal that the murine CMV (MCMV) protein m152 specifically targets the type I interferon (IFN) response by binding to stimulator of interferon genes (STING), thereby delaying its trafficking to the Golgi compartment from where STING initiates type I IFN signaling. Infection with an MCMV lacking m152 induced elevated type I IFN responses and this leads to reduced viral transcript levels both in vitro and in vivo This effect is ameliorated in the absence of STING Interestingly, while m152 inhibits STING-mediated IRF signaling, it did not affect STING-mediated NF-κB signaling. Analysis of how m152 targets STING translocation reveals that STING activates NF-κB signaling already from the ER prior to its trafficking to the Golgi. Strikingly, this response is important to promote early MCMV replication. Our results show that MCMV has evolved a mechanism to specifically antagonize the STING-mediated antiviral IFN response, while preserving its pro-viral NF-κB response, providing an advantage in the establishment of an infection

    Mapping inequalities in school attendance:The relationship between dimensions of socioeconomic status and forms of school absence

    Get PDF
    In this article, we investigated whether and to what extent various dimensions of socioeconomic background (parental education, parental class, free school meal registration, housing status, and neighborhood deprivation) predict overall school absences and different reasons for absenteeism (truancy, sickness, family holidays and temporary exclusion) among 4,620 secondary school pupils in Scotland. Students were drawn from a sample of the Scottish Longitudinal Study comprising linked Census data and administrative school records. Using fractional logit models and logistic regressions, we found that all dimensions of socioeconomic background were uniquely linked to overall absences. Multiple measures of socioeconomic background were also associated with truancy, sickness-related absence, and temporary exclusion. Social housing and parental education had the most pervasive associations with school absences across all forms of absenteeism. Our findings highlight the need to consider the multidimensionality of socioeconomic background in policy and research decisions on school absenteeism. A more explicit focus on narrowing the socioeconomic gap in absenteeism is required to close the inequality gap in educational and post-school outcomes

    Of Keeping and Tipping the Balance: Host Regulation and Viral Modulation of IRF3-Dependent Expression.

    Get PDF
    The type I interferon (IFN) response is a principal component of our immune system that allows to counter a viral attack immediately upon viral entry into host cells. Upon engagement of aberrantly localised nucleic acids, germline-encoded pattern recognition receptors convey their find via a signalling cascade to prompt kinase-mediated activation of a specific set of five transcription factors. Within the nucleus, the coordinated interaction of these dimeric transcription factors with coactivators and the basal RNA transcription machinery is required to access the gene encoding the type I IFN IFNβ (IFNB1). Virus-induced release of IFNβ then induces the antiviral state of the system and mediates further mechanisms for defence. Due to its key role during the induction of the initial IFN response, the activity of the transcription factor interferon regulatory factor 3 (IRF3) is tightly regulated by the host and fiercely targeted by viral proteins at all conceivable levels. In this review, we will revisit the steps enabling the trans-activating potential of IRF3 after its activation and the subsequent assembly of the multi-protein complex at the IFNβ enhancer that controls gene expression. Further, we will inspect the regulatory mechanisms of these steps imposed by the host cell and present the manifold strategies viruses have evolved to intervene with IFNβ transcription downstream of IRF3 activation in order to secure establishment of a productive infection

    One Step Ahead: Herpesviruses Light the Way to Understanding Interferon-Stimulated Genes (ISGs).

    Get PDF
    The host immune system is engaged in a constant battle with microorganisms, with the immediate detection of pathogenic invasion and subsequent signalling acting as crucial deterrents against the establishment of a successful infection. For this purpose, cells are equipped with a variety of sensors called pattern recognition receptors (PRR), which rapidly detect intruders leading to the expression of antiviral type I interferons (IFN). Type I IFN are crucial cytokines which exert their biological effects through the induction of hundreds of IFN-stimulated genes (ISGs). The expression profile of these ISGs varies depending on the virus. For a small subset of ISGs, their anti- or even proviral effects have been revealed, however, the vast majority are uncharacterised. The spotlight is now on herpesviruses, with their large coding capacity and long co-evolution with their hosts, as a key to understanding the impact of ISGs during viral infection. Studies are emerging which have identified multiple herpesviral antagonists specifically targeting ISGs, hinting at the significant role these proteins must play in host defence against viral infection, with the promise of more to come. In this review, we will discuss the current knowledge of the complex interplay between ISGs and human herpesviruses: the antiviral role of selected ISGs during herpesviral infections, how herpesviruses antagonise these ISGs and, in some cases, even exploit them to benefit viral infection

    Novel role of bone morphogenetic protein 9 in innate host responses to HCMV infection

    No full text
    Herpesviruses modulate immune control to secure lifelong infection. The mechanisms Human Cytomegalovirus (HCMV) employs in this regard can reveal unanticipated aspects of cellular signaling involved in antiviral immunity. Here, we describe a novel relationship between the TGF-β family cytokine BMP9 and HCMV infection. We identify a cross-talk between BMP9-induced and IFN receptor-mediated signaling, showing that BMP9 boosts the transcriptional response to and antiviral activity of IFNβ, thereby enhancing viral restriction. We also show that BMP9 is secreted by human fibroblasts upon HCMV infection. However, HCMV infection impairs BMP9-induced enhancement of the IFNβ response, indicating that this signaling role of BMP9 is actively targeted by HCMV. Indeed, transmembrane proteins US18 and US20, which downregulate type I BMP receptors, are necessary and sufficient to cause inhibition of BMP9-mediated boosting of the antiviral response to IFNβ. HCMV lacking US18 and US20 is more sensitive to IFNβ. Thus, HCMV has a mutually antagonistic relationship with BMP9, which extends the growing body of evidence that BMP signaling is an underappreciated modulator of innate immunity in response to viral infection

    The Zinc Finger Antiviral Protein ZAP Restricts Human Cytomegalovirus and Selectively Binds and Destabilizes Viral / Transcripts.

    No full text
    Interferon-stimulated gene products (ISGs) play a crucial role in early infection control. The ISG zinc finger CCCH-type antiviral protein 1 (ZAP/ZC3HAV1) antagonizes several RNA viruses by binding to CG-rich RNA sequences, whereas its effect on DNA viruses is less well understood. Here, we decipher the role of ZAP in the context of human cytomegalovirus (HCMV) infection, a β-herpesvirus that is associated with high morbidity in immunosuppressed individuals and newborns. We show that expression of the two major isoforms of ZAP, ZAP-S and ZAP-L, is induced during HCMV infection and that both negatively affect HCMV replication. Transcriptome and proteome analyses demonstrated that the expression of ZAP results in reduced viral mRNA and protein levels and decelerates the progression of HCMV infection. Metabolic RNA labeling combined with high-throughput sequencing (SLAM-seq) revealed that most of the gene expression changes late in infection result from the general attenuation of HCMV. Furthermore, at early stages of infection, ZAP restricts HCMV by destabilizing a distinct subset of viral mRNAs, particularly those from the previously uncharacterized UL4-UL6 HCMV gene locus. Through enhanced cross-linking immunoprecipitation and sequencing analysis (eCLIP-seq), we identified the transcripts expressed from this HCMV locus as the direct targets of ZAP. Moreover, our data show that ZAP preferentially recognizes not only CG, but also other cytosine-rich sequences, thereby expanding its target specificity. In summary, this report is the first to reveal direct targets of ZAP during HCMV infection, which strongly indicates that transcripts from the UL4-UL6 locus may play an important role for HCMV replication.IMPORTANCE Viral infections have a large impact on society, leading to major human and economic losses and even global instability. So far, many viral infections, including human cytomegalovirus (HCMV) infection, are treated with a small repertoire of drugs, often accompanied by the occurrence of resistant mutants. There is no licensed HCMV vaccine in sight to protect those most at risk, particularly immunocompromised individuals or pregnant women who might otherwise transmit the virus to the fetus. Thus, the identification of novel intervention strategies is urgently required. In this study, we show that ZAP decelerates the viral gene expression cascade, presumably by selectively handpicking a distinct set of viral transcripts for degradation. Our study illustrates the potent role of ZAP as an HCMV restriction factor and sheds light on a possible role for UL4 and/or UL5 early during infection, paving a new avenue for the exploration of potential targets for novel therapies

    The murine cytomegalovirus M35 protein antagonizes type I IFN induction downstream of pattern recognition receptors by targeting NF-κB mediated transcription.

    Get PDF
    The type I interferon (IFN) response is imperative for the establishment of the early antiviral immune response. Here we report the identification of the first type I IFN antagonist encoded by murine cytomegalovirus (MCMV) that shuts down signaling following pattern recognition receptor (PRR) sensing. Screening of an MCMV open reading frame (ORF) library identified M35 as a novel and strong negative modulator of IFNβ promoter induction following activation of both RNA and DNA cytoplasmic PRR. Additionally, M35 inhibits the proinflammatory cytokine response downstream of Toll-like receptors (TLR). Using a series of luciferase-based reporters with specific transcription factor binding sites, we determined that M35 targets NF-κB-, but not IRF-mediated, transcription. Expression of M35 upon retroviral transduction of immortalized bone marrow-derived macrophages (iBMDM) led to reduced IFNβ transcription and secretion upon activation of stimulator of IFN genes (STING)-dependent signaling. On the other hand, M35 does not antagonize interferon-stimulated gene (ISG) 56 promoter induction or ISG transcription upon exogenous stimulation of the type I IFN receptor (IFNAR). M35 is present in the viral particle and, upon MCMV infection of fibroblasts, is immediately shuttled to the nucleus where it exerts its immunomodulatory effects. Deletion of M35 from the MCMV genome and hence from the viral particle resulted in elevated type I IFN transcription and secretion in vitro and in vivo. In the absence of M35, lower viral titers are observed during acute infection of the host, and productive infection in the salivary glands was not detected. In conclusion, the M35 protein is released by MCMV immediately upon infection in order to deftly inhibit the antiviral type I IFN response by targeting NF-κB-mediated transcription. The identification of this novel viral protein reinforces the importance of timely countermeasures in the complex relationship between virus and host

    M35 targets NF-κB- but not IRF-mediated transcription.

    No full text
    <p>(A) 293T cells were co-transfected with expression plasmids for either cGAS (stimulated) or GFP (unstimulated) together with mCherry-STING, the p125 and pRL-TK luciferase plasmids, and V5-tagged M35 or empty vector control (pcDNA). At 20 hours post transfection, cells were lysed for analysis of luciferase production. Luciferase fold induction was calculated based on firefly luciferase values normalized to Renilla luciferase from stimulated samples divided by corresponding values from unstimulated samples. The p125 reporter contains the IFNβ enhancer consisting of PRD-IV, -III, -I and -II (sequence of the IFNβ enhancer is shown below). (B) As for (A) except with the luciferase reporter pNF-κB instead of p125. (C) As for (A) except with the p125-AA luciferase plasmid instead of p125. p125-AA contains two nucleotide exchanges within the NF-κB binding site in the PRD-II region (highlighted in red). (D) As for (A) but with the p55-CIB luciferase plasmid instead of p125. p55-CIB contains 8 tandem repeat motifs (AAGTGA, highlighted in bold in the PRD-I region), corresponding to 7 repeats of an IRF binding element. Data is combined from three (A-C) or four (D) independent experiments and shown as mean ± SD. For all, n.s. indicates not significant, **p<0.01, ****p<0.0001.</p
    corecore