251 research outputs found

    Study of combustion experiments in space

    Get PDF
    The physical bases and scientific merits were examined of combustion experimentation in a space environment. For a very broad range of fundamental combustion problems, extensive and systematic experimentation at reduced gravitational levels (0 g 1) are viewed as essential to the development of needed observations and related theoretical understanding

    Ultrasonic in-situ determination of the regression rate of the melting interface in burning metal rods

    Get PDF
    Results of tests in which metallic rods are burned in oxygen enriched atmospheres often include the determination of the regression rate of the melting interface for the burning test specimen. This regression rate is used as an indication of a metallic material's relative flammability and its general ability to sustain burning under the test conditions. This paper reports on the development and first application of an ultrasonic measurement system that enables in situ measurement of the regression rate of the melting interface in burning metal rods. All other methods currently used for determining this parameter are based on posttest, visual interrogation, which is costly and often inaccurate. The transducer and associated equipment used to drive and record the transducer's output signal are described and typical results for iron rods burning in pure oxygen at different gauge pressures are given along with a comparison of these results with regression gates obtained from visual interrogation. The excellent sensitivity, accuracy and reliability of the new ultrasonic transducer are demonstrated, thus indicating the transducer's great potential. (C) 1999 Acoustical Society of America. [S0001-4966(99)00702-X]

    Nonlinear equation for curved stationary flames

    Get PDF
    A nonlinear equation describing curved stationary flames with arbitrary gas expansion θ=ρfuel/ρburnt\theta = \rho_{{\rm fuel}}/\rho_{{\rm burnt}}, subject to the Landau-Darrieus instability, is obtained in a closed form without an assumption of weak nonlinearity. It is proved that in the scope of the asymptotic expansion for θ1,\theta \to 1, the new equation gives the true solution to the problem of stationary flame propagation with the accuracy of the sixth order in θ1.\theta - 1. In particular, it reproduces the stationary version of the well-known Sivashinsky equation at the second order corresponding to the approximation of zero vorticity production. At higher orders, the new equation describes influence of the vorticity drift behind the flame front on the front structure. Its asymptotic expansion is carried out explicitly, and the resulting equation is solved analytically at the third order. For arbitrary values of θ,\theta, the highly nonlinear regime of fast flow burning is investigated, for which case a large flame velocity expansion of the nonlinear equation is proposed.Comment: 29 pages 4 figures LaTe

    Hydrodynamic Stability Analysis of Burning Bubbles in Electroweak Theory and in QCD

    Full text link
    Assuming that the electroweak and QCD phase transitions are first order, upon supercooling, bubbles of the new phase appear. These bubbles grow to macroscopic sizes compared to the natural scales associated with the Compton wavelengths of particle excitations. They propagate by burning the old phase into the new phase at the surface of the bubble. We study the hydrodynamic stability of the burning and find that for the velocities of interest for cosmology in the electroweak phase transition, the shape of the bubble wall is stable under hydrodynamic perturbations. Bubbles formed in the cosmological QCD phase transition are found to be a borderline case between stability and instability.Comment: preprint # SLAC-PUB-5943, SCIPP 92/56 38 pages, 10 figures (submitted via `uufiles'), phyzzx format minor snafus repaire

    Anomalous roughness with system size dependent local roughness exponent

    Full text link
    We note that in a system far from equilibrium the interface roughening may depend on the system size which plays the role of control parameter. To detect the size effect on the interface roughness, we study the scaling properties of rough interfaces formed in paper combustion experiments. Using paper sheets of different width \lambda L, we found that the turbulent flame fronts display anomalous multi-scaling characterized by non universal global roughness exponent \alpha and the system size dependent spectrum of local roughness exponents,\xi_q, whereas the burning fronts possess conventional multi-affine scaling. The structure factor of turbulent flame fronts also exhibit unconventional scaling dependence on \lambda These results are expected to apply to a broad range of far from equilibrium systems, when the kinetic energy fluctuations exceed a certain critical value.Comment: 33 pages, 16 figure

    The Thermonuclear Explosion Of Chandrasekhar Mass White Dwarfs

    Get PDF
    The flame born in the deep interior of a white dwarf that becomes a Type Ia supernova is subject to several instabilities. We briefly review these instabilities and the corresponding flame acceleration. We discuss the conditions necessary for each of the currently proposed explosion mechanisms and the attendant uncertainties. A grid of critical masses for detonation in the range 10710^7 - 2×1092 \times 10^9 g cm3^{-3} is calculated and its sensitivity to composition explored. Prompt detonations are physically improbable and appear unlikely on observational grounds. Simple deflagrations require some means of boosting the flame speed beyond what currently exists in the literature. ``Active turbulent combustion'' and multi-point ignition are presented as two plausible ways of doing this. A deflagration that moves at the ``Sharp-Wheeler'' speed, 0.1gefft0.1 g_{\rm eff} t, is calculated in one dimension and shows that a healthy explosion is possible in a simple deflagration if the front moves with the speed of the fastest floating bubbles. The relevance of the transition to the ``distributed burning regime'' is discussed for delayed detonations. No model emerges without difficulties, but detonation in the distributed regime is plausible, will produce intermediate mass elements, and warrants further study.Comment: 28 pages, 4 figures included, uses aaspp4.sty. Submitted to Ap

    Resolvent methods for steady premixed flame shapes governed by the Zhdanov-Trubnikov equation

    Full text link
    Using pole decompositions as starting points, the one parameter (-1 =< c < 1) nonlocal and nonlinear Zhdanov-Trubnikov (ZT) equation for the steady shapes of premixed gaseous flames is studied in the large-wrinkle limit. The singular integral equations for pole densities are closely related to those satisfied by the spectral density in the O(n) matrix model, with n = -2(1 + c)/(1 - c). They can be solved via the introduction of complex resolvents and the use of complex analysis. We retrieve results obtained recently for -1 =< c =< 0, and we explain and cure their pathologies when they are continued naively to 0 < c < 1. Moreover, for any -1 =< c < 1, we derive closed-form expressions for the shapes of steady isolated flame crests, and then bicoalesced periodic fronts. These theoretical results fully agree with numerical resolutions. Open problems are evoked.Comment: v2: 29 pages, 6 figures, some typos correcte

    Finite size effects near the onset of the oscillatory instability

    Get PDF
    A system of two complex Ginzburg - Landau equations is considered that applies at the onset of the oscillatory instability in spatial domains whose size is large (but finite) in one direction; the dependent variables are the slowly modulated complex amplitudes of two counterpropagating wavetrains. In order to obtain a well posed problem, four boundary conditions must be imposed at the boundaries. Two of them were already known, and the other two are first derived in this paper. In the generic case when the group velocity is of order unity, the resulting problem has terms that are not of the same order of magnitude. This fact allows us to consider two distinguished limits and to derive two associated (simpler) sub-models, that are briefly discussed. Our results predict quite a rich variety of complex dynamics that is due to both the modulational instability and finite size effects

    Geometry-controlled kinetics

    Full text link
    It has long been appreciated that transport properties can control reaction kinetics. This effect can be characterized by the time it takes a diffusing molecule to reach a target -- the first-passage time (FPT). Although essential to quantify the kinetics of reactions on all time scales, determining the FPT distribution was deemed so far intractable. Here, we calculate analytically this FPT distribution and show that transport processes as various as regular diffusion, anomalous diffusion, diffusion in disordered media and in fractals fall into the same universality classes. Beyond this theoretical aspect, this result changes the views on standard reaction kinetics. More precisely, we argue that geometry can become a key parameter so far ignored in this context, and introduce the concept of "geometry-controlled kinetics". These findings could help understand the crucial role of spatial organization of genes in transcription kinetics, and more generally the impact of geometry on diffusion-limited reactions.Comment: Submitted versio
    corecore