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A study group (SG) examined the physical bases and scientific merits 

of combustion experimentation in a space environment. The effort included 

a broad solicitation of the technical views of leading researchers in the 

combust ion comiu~~i ty. Given thk~ opportunity to engage in combust ion 

experimentation which utilizes rhe space laboratory facilities of the 

Space Shuttle, the SG identified a broad range of combustion experimentation 

that is both urgently needed and inaccessible on earth. 

The selection of effective reduced gravitational fields in a space 

laboratory implies the experimental control of "free convection" in 

combustion experimentation. This provi3es unique opportunities in the 

study of a broad range of basic fundamental combustion phencmena. 

The space environment makes possible: 

(a) combustion experiments involvitlg the selected coupling 

(2nd developing) of iree convection to other transpart 

processes 

(b) identif ication of the spec if ic experimental roles of 

free ccnvection in a wide range of combustion phenomena 

and, derivatively, the roles of other combustion sub- 

processes 

(c) systematic experimentation to determice the combustion 

characteristics of two-phase systems. These include 

individual particles and drops, clouds of particles 

and drops, arrays of solid fuel elements, large solid- 

gas and large liquid-gas crmbustiblc systems 



(d) experimentation t o  provide t he  observat ional  bases f o r  

t heo re t i ca l  formulations where cu r r en t  theory is in- 

adequate 

(e) se lec ted  experiments t o  pr0viJ.e s p e c i f i c  answers t o  

key questions f o r  which g= l  experimentation is inadequate 

(g = dime.isionless grav i ta t ion41  cons tan t )  

Earth-based f a c i l i t i e s  f o r  0 e  g 4  1 experimentation (e.g. drop 

towers) have an  important r o i e  t o  play i n  f u t u r e  combustion s tud ies .  

Nevertheless, t h i s  r o l e  is  l imited.  Only an  ortbiiiii a p c e  h k r a t o r y  

can provide t h e  s c a l e s  of t i m e  and space necessary t o  e - -p lo i t  sub- 

c t a n t i a l l y  t he  s c i e n t i f i c  goa ls  i den t i f i ed  by the  SG. These goa ls  

include the  following a reas  of combustion research:  

(a) Premixed Flame Propagation and Ext inc t ion  Limits 

(b) Theory of Noncoherent Flame Propagation 

( c )  Upper Pressure Limit Theory of Ign i t i on  and Flame Propagation 

(d) Autoignition f o r  Large Premixed Gaseous Systems 

( e )  Cool Flames i n  Large Premixed Gaseous Systems 

( f )  Burning and Ext inct ion of T n d i v i d ~ a l  Drops or  P a r t i c l e s ,  

Over Very Large Ranges of Pressure 

(g) Ign i t i on  and Autoignition of Clouds of Drops and!or P a r t i c l e s ,  

Over Very Large Ranges of Pressure . 
(h) T v u  Phase Combustion Phenomena Involving Large Liqujd-Gas o r  

Solid-Gas In t e r f aces  

(I) Radiative Ign i t i on  of Sol ids  and Liquids 

( j )  Pool Burning and Flame Propagation Over Liquids 



(k) Flame Spread and Ext inct ion Over S o l i d s  

(1)  Smoldering and I t s  Transi t ion To Flaming (or Extinction) 

(m) Laminar Gas J e t  Combust ion 

(n) Coupling (or Decoarpling) of  Convect ive'ly-Induced 

Turbulence Involved In Various Combustion Phenomena 

( c )  Transient Responses o f  Flames To Time-Dependent 

( E f f e c t i v e )  Gravitat ional  F i e l d s .  



I. INTRODUCTION 

Background 

I n  t h e  F a l l  of 1973. t h e  Lewis Research  Cen te r  of NASA 

salicited p r o p o s a l s  (RFP N c .  3-574808) f o r  a "STUDY OF COMBUSTION 

L;.SPER3.%,krS I N  SPACE". Under t h e  a e g i s  of P u b l i c  Systems Resear .  h ,  

Pni! . (PSRI) , a s c i e n t i f i c  S tudy  Group was f oi-med t o  respond t o  a 

most i n t e r e s t i n g  set of  c h a r g e s .  I n  p a r t :  

"This  XF'P is concerned w i t h  a n  o v e r s t u d y  o f  b a s i c  

combust ion expe r imen t s  i n  space .  ---- The g e n e r a l  

o b j e c t i v e  o f  t h i s  procurement  is t o  have  r ecogn ized  

e x p e r t s  i d e n t i f y  fundamenta l  expe r imen t s  t h a t  shou ld  

be  performed is a s p a c e  environment--- . ---- I t  is n o t  

t h e  i n t e n t  o f  t h i s  s t u d y  t o  u s e  t h e s e  expe r imen t s  t o  

s u p p o r t  t h e  S h u t t l e  program. But r a t h e r ,  assuming t h a t  

t h e  Space S h u t t l e  and p o t e n t i a l  s p a c e  l a b o r a t o r y  

f a c i l i t i e s  e x i s t ,  what b a s i c  expe r imen t s  i n  combust ion 

should  be performed i f  t h e  o p p o r t u n i t y  p r e s e n t s  i t s e l f .  " 

The PSRI-sponsored s c i e n t i i i - c  S tudy Group t h a t  responded 

( s u c c e s s f u l l y )  t o  t h e  RFP c o n s i s t e d  o f :  

A. L. Be r l ad ,  Chairman ( S t a t e  U n i v e r s i t y  of New York a t  S tony  Brook) 

Clayton  Hugget t ,  member ( N a t i o n a l  Bureau of  S t a n d a r d s ,  Wash., D . C . )  

F r e d e r i c k  Kaufman, member ( U n i v e r s i t y  o f  P i t t s b u r g h )  

George H .  Marks te in .  member (Fac to ry  Mutual Research  Corp.) 

Howard B. Palmer,  member (Pennsylvania  S t a t e  U n i v e r s i t y )  

C. H .  Yang, meml>er ( S t a t e  U n i v e r s i t y  o f  New York a t  S tony  Brook) 



The background of concern in the cornittee's planning included 

the facts that 

(1) Although previous zero-g and related combustion 

studies had been performed (1-18) "---no concerted 

effort has yet been made to solicit suggestions for 

space experiments from the general academic and 

industrial research communities" (Ref. NASA RFP). 

(2) the constraints imposed by an (as yet) incompletely 

defined space laboratory could not be considered to 

be inflexible (19). 

(3)  space laboratory experiments may be conducted 

largely during the 1980's, whereas related ground- 

based facilities (15, 20) are currently operative. 

-4ccordingly, this study sought to encourage the widest inter- 

action between the Study Group (SG) and the Combustion Community (both 

In the U.S. and abroad), and to make a critical, wide-ranging examination 

of possible fundamental bases for combustion experiments in a space 

environment. 

In the following sections, we discuss the study methods employed 

by the NASA-PSRI sponsored Study Group, the interactions within the SC 

and between the SG and the scientific conbustion comunity, the areas 

of fundamental combustion experimentation that are expected to benefit 

from being conducted in a space environment, the scientific bases for 

these expectations, and the currently perceived implications of these 

promising studies. 



Tbis report was prepared by members of the SG, but it also owes much 

to tbe scientific inputs by many individuals of the combustion comnity. 

The "Minireports" of Section IV were prepared (by the authors specif lcally 

noted) in behalf of the Study Group. All portions of the report reflect 

consensus views of the SG, derived according to the working procedures 

adopted (see Sections I1 and 111). 
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I1 .. STUDY GROUP PARTICIPATTON 

The five-month e f f o r t  of t h e  Study Group w b s  p red ica ted  

on s u b s t a n t i a l  i n t e r a c t i o n  wi th  t h e  c o ~ ~ b u s t i ; . ~ i  comuni  t y  . I n  

a d d i t i o n  t o  t h e  membership of t h e  SG {see  S e c t i o n  I ) ,  t h e  

fo l lowing C o ~ m i t t e e  Assoc ia tes  p i r t i c i p a t e d  d i r e c t l y  i n  t h e  

formal d e l i b e r a t i o n s  of t h e  SG: 

D r .  Murty Kanury (Stanford  Research I n s t i t u t e )  

P ro fessor  P. Myers (Univers i ty  of Wisconsir,) 

P ro fessor  E. E. O'Brien ( S t a t e  Univers i ty  o: N.Y.  a t  Stony Brook) 

P r o f e s s o r  Roger A.  Strehlow (Univers i ty  of I l l i n o i s )  

Wr i t t en  and o r a l  c o n t r i b u t i o n s  r--cerning t h e  s c i e n t i f i c  

merits of Combusiion Experiments i n  a Space Environment were 

de r ived  from t h e  follow-ng respondents:  

David Altman 
United Technology Center 
Sunnyvale, C a l i f .  

'o lph Amster 
Navy Department 
Washington, D.C. 

W. H. Avery 
Applied Physics  Laboratory 
The Johns Hopkins Univer- .y 
S i l  ;rer Spring,  Md. 

J .  M. Beer 
Univers i ty  of Shef f i e l d  
England 

David Burgess 
U.S. Bureau of Mines 
P i t t s b u r g h  Penna. 

Richard C o r l e t t  
Univers i ty  of Washingtor 

Ray Edelman 
RLD Assoc ia tes  
San ta  Monica, C a l i f .  

Howard W .  Emrnons 
Harvard Univers i ty  

G. M. Faeth  
Pennsylvania S t a t e  U n i v e r s i t y  

Edward A. F l e t c h e r  
Univers i ty  of Minnesota 

Arthur F o n t i j n  
Aerochem Labora to r i es  
P r ince ton ,  N .  J. 

Raymond Friedman 
Factory  Mutual sea rch  Corp. 

F e t e r  Gray 
The  Univers i ty  of Leeds 
England 

John De Ris  
Factory  Mutual Research Corp. 



Joseph Cruper 
t1.S. Bureau of Mines 

D. li. Herschbach 
Harvard University 

brty A. Kanury 
Sta~rCord Research Institute 

Arthcr S. Kesten 
bnital Aircraft Research Latoratories 

Y.T. k e  
Uaiversi ty of Chicago 

I.1. Sclamkhin 
U.S.S.R. Academy of Sciences 
Novosibirsk 

E.S. Sr.arkman 
Genera 1 Motors 

Roger A. Strehlw 
University of Illinois at Urbana 

Zoltan C. Szabo 
L. Eotvos University 
Budapest 

John P. Longwell T. Paul Torda 
Esso Research 6 Engineer ing Co . Illinois Institute of Technology 

L. A. Lovachev Stewart Way 
Acadeay of Sciences Westinghouse Research Laboratzzies 
Institute of Chemica! Physics 
U.S.S.K. Forman A. Williams 

University of California 
John H. Hacpherson at San Diego 
Chevron Research Co. 

Phillip Myers 
University of Uisconsin 

Lloyd Nelson 
Sandia Laboratories 

E.E. O'Brien 
S.U.N.Y. at Stony Brook 

A. K. Oppenheim 
University of California 
at Berkeley 

Thom s Y . Pa lmer 
U.S. Deprtment of Agriculture 

Richard Rotherme1 
U.S. Department of Agriculture 

Robert F. Sawyei 
University of California 
at Berkeley 



In  most cases ,  respondents carunicated  with one or more SC 

member i n  writing. In many cases,  individual members of the Study 

Croup benefited from d irec t  discussions with various colleagues.  

We apologize for any or i s s i .ms  i n  the previous l i s t i n g .  W e  again 

thank a l l  respondents. 



111. STlfJY PROCEDURE!j AND CHR0WUK;Y 

The study objectives required that the m e t  significant and 

potentially fruitful basic cmbustion experiments in Space be 

identified and critiqued- The Study Croup uas also to provide 

the pertinent scientific analyses, as vell as recarendations 

regarding experimental priorities for the program. In pursuit 

of these objectives. broad interaction with the combustion 

coaunity was planned. 

The general procedures invoked inchded an initial one-day 

meeting ( 3 0  March 1974, at Stony Brook) to allow an exchange of 

views regardfng the seemingly most promising areas for future 

study. At thls meeting, lists of scientists to be contacted vere 

generated. Each such scientist was contacted by an SC member. or 

by the cumittee acting through its chafrman. A copy of the letter 

employed in this broad solicitation is s h m  in Apperrdix A. As a 

result of this first meeting, each member of the SG had his future 

contributions guided in that: 

(a) he knew which areas of ex?erimentation were 

under consideration a5d what his special study 

responsibilities, in one or more of these areas, 

were. 

(b) he had 3n initial list of sciectists whose views 

were to be solicited--and he knew who was to do 

the soliciting. . 



(c) he  u a s  t o  s t a y  i n  c o n t a c t  wi th  o t h e r  r e b e r s  cf 

t h e  Study Croup d u r i n g  t h e  f o l l w i n g  s e v e r a l  months, 

v i a  phone, mail, and v i a  acidi t ional  two f u l l - d a y  

meetings (3 June and 27 Ju':y, i n  Stony Brook). 

Appendixes B c o n t a i n s  h e  m i n u t s  of t h e  t h r e e  f u l l - d a y  

meetir4s. I t  is seen  t h a t  t h e s e  S t u i y  Croup d i s c u s s i o n s  v e r e  

wide-ranging, t h a t  they v e r e  s u b s t a n t i a l l y  enhanced b j  t h e  d i r e c t  

p a r t i c i p a t i o n  of s e v e r a l  g u e s t  s c i e n t i s t s  (Dr .  E. Comay, NASA; 

D r .  H. Kanury, Stanford Research I n s t  i t u s e ;  P r o f e s s o r  Y. Hevers. 

Univers i ty  ~f Wisconsin; P rofessor  E. E. O'Brien, S.U.H.Y. a t  

Stony Brook; Professor  R. Strehlow, Univers i ty  o: I l l i n o i s ) .  I t  

w i l l  be  ev iden t  cha t  t h e  t e c h n i c a l  v i e v s  t o  be repor ted  h e r e i n  

evolved as  a r e s u l t  of d e t a i l e d  s tudy  and broadly-based review a d  

d i scuss ion .  



Il'. FUKDANENTAL AREAS OF COHBUSTION FXPERIHENTATION THAT WILL BENEFIT 

FROn BEINC C O U C T E D  1N A SPACE ENVIRONMENT 

Ten general (necessarily overlapping) areas of combustion 

experimentation embrace the specific fundamental studies uhicth the 

Study Croup believes w i l t  benefit from being conducted in a Space 

Environment. Each of these areas is discussed in the following 

portions of this section. In behalf of the Study Croup, individual 

members have prepared each of these areas of promise, and tor the 

assignment of experimental priorities. are presented therein. 



IV. 1. Gas Jet Combstion 

by H. B. Palmer 

Discuss ion: 

The literature on gaseous diffusion flames is vast. The references. 

however, cite onlv certain studies that bear particularly on the role of 

buoyancy and the effect of a zero-g environment upon gaseous diffusion 

f la.les (1-4). 

Concentrated efforts on zero-g studies of larcinar gas jet ci.mlwstion 

(5,6,8,10-12) cmenced in the late 1960's at NASA-Lewis. clsing their 2.2- 

sec drop tower facility. Experimental data from portions of this work have 

been compared with results of a rather detailed theoretical analysis by 

Edelman et a1 (5,lO). Experimentarion at Lewis is continuing, and analytical 

modeling is also ccnti.nuing, at Imperial College in Spalding's group. The 

available free-fall tine at the Levis Research Center is now ahout 5, sec. 

in a new facility. We do not yet have information an resuits ubtaind using 

the new facility. 

The role of gravity (i.e. buoyancy) in diffdsional combustion has been 

appreciated for many years (see. e.g., the papers of Hawthorne and Hottel and 

that of Thomas) but has been difficult t o  study because momenta developing 

from density differences are usually small. The fluid dynamics of the laminar 

jet flame are usually dominated by the axial f l o w  nomentrrm of the fuel jet. 

On the other hand. the contribution of buoyancy effects in laminar gas-jet 

combustion normally is such that it  has heen difficult to describe experimentally 

the burning characteristics of a laminar diffusion flame that is fret of buoyancy. 



In  sbor t ,  ef for r  t t o  s o r t  out  the  r e l a t i v e  cont r ibu t ions  of forced and 

kroyant convection have general ly  been only Boderately successfu lL 

l ' b s  zero-g or  variable-g experiments on larinar gas jet combustion 

(u) a r e  extremely valuable.  The turbulent  case  is not  of equal i n t e r e s t  

because forced convection dominates most such flames (but see t h e  note  on 

combustion of wooden c r i b s  by Thomas, Ref. 2). 

The M A  experfPests on & reported t o  d a t e  have involved Hz, CHI, 

C2E4, and C €I as f u e l s  burning i n  normal a i r  and have u t i l i z e d  a con- 2 6 

s ide rab le  range of o r i f i c e  s i z e s  and volumetric flow rates. Observations 

vere  made by cinanatography. 

S t r ik ing  d i f fe rences  i n  flame behavior f o r  the d i f f e r e n t  f u e l s  were 

found. The s t a r t  of an  experiment, i n  which gravi ty  changed abrupt ly from 

1 g t o  0 g, alvays produced a sudden reduct ion i n  flame length, followed by 

an increase i n  length with t i m e  and a change t o  an e s s e n t i a l l y  spher ica l  

shape. Flame luminosity w a s  much reduced. Heavy soot ing was observed i n  

the hydrocarbon flames (Fig. 1). Some flames eventual ly extinguished; 

o the r s  exhibi ted increasing flame length over the  e n t i r e  dura t ion  (2.2 see) 

of the  experiment; while :.n some instances,  s t a b l e  flames were achieved. 

The behavior depended on ! :e fue l ,  the  nozzle diameter, and the  Reynolds 

number of the  fue l ;  a sumnslry appears i n  Fig. 2. 

For the  c ~ s e s  of s t a b l e  flames a t  0 g, co r r e l a t ions  vere  found between 

dimensionless flame lengths ( lengthfnozzle  diameter) and c h a r a c t e r i s t i c  

parameters suggested by theory. These included the Reynolds and S c b i d t  

numbers and the  f u e l  mole f r a c t i o n  f o r  s toichiornet t ic  burning. Likewise, 
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Figure IV.1.2.  Flame condit ions  zncountered i n  zero grav i ty  
a s  funct ion of f low. 
(From Reference 12) 



t h e  d i ~ n e n s i o n l e s s  maxiapum f lanie r a d i u s  was found t o  b e  i n  good agreement 

w i t h  an  e q u a t i o n  of  Edelman et a 1  (Ref. 9) invo lv ing  g and t h e  " f u e l  t i m e "  

( t h e  n o ~ r l e  ~J?!US t o  t h e  l i n e a r  f l ow v e l o c i t y  of t h e  f u e l ) .  

The s u c c e s s  of t h e s e  c o r r e l a t i o n s  i n d i c a t e s  t h a t  t h e  p r i n c  i p a  1 

c o n t r o l l i n g  pa rame te r s  of l& a t  zero-g have been i d e n t i f  id by t h e e r e t i c a l  

c o n s i d e r a t i o n s .  However, a q u a n t i t a t i v e  match between theo ry  and exper iment  

w i l l  r e q u i r e  much more work, b o t h  t h e o r e t i c a l  and expe r imen ta l .  Edelman 

et a1 (Ref. 9) n o t e  t h a t  a c c u r a t e  t h e o r e t i c a l  p r e d i c t i o n s  w i l l  r e q u i r e  

d e t a i l e d  c o n s i d e r a t i o n  of t h e  k i n e t i c s  of  t h e  combustion p rocess .  They 

f u r t h e 1  n o t e  that t h e  e f f e c t  oE oxygen c o n c e n t r a t i o n  h a s  not  been examined 

expe r imen ta l ly ,  t h a t  v a r i a b l e  t r a n s p o r t  p r o p e r t i e s  w i l l  have t o  be  t aken  

i n t o  accoun t ,  t h a t  a x i a l  d i f f u s i o n  h a s  n o t  y e t  been s u f f i c i e n t l y  c o n s i d e r e d ,  

and t h a t  t r a i ~ s i e n t  e f  f ec. ts w i t h  changing  g are p a r t i c u l a r l y  impor tant  : ~ t  

low Reynolds Numbers. We might  add t h a t  no s t u d i e s  have  been made of 

p r e s s u r e  e f f e c t s ,  and of  c o u r s e  t h e  r ange  o f  f u e i s  examined h a s  been v e r y  

1 l r ~ i t e d .  

The t r n n s i e n t s ,  which may lead  t o  ex t inguishment  i n  some c a s e s ,  a r e  

more d i f f i c u l t  t o  a n a l y z e  than  t h e  s t e a d y - s t a t e  combustion. S i n c e  they  a r e  

a s s o c i a t e d  w i t h  t h e  u s e  of  a d r c p  tower,  they  can  be  avoided  i n  a n  o r b i t i n g  

l a b o r a t u r y .  I n  t h e  o r b i t i n g  l a b u r a t o r y ,  one  c a n  e s t a b l i s h  whether  e x t i n c t i o n  

is a consequence of t h e  t r a n s i e n t s  ( i . e .  e s s e n t i a l l y  c o r r e l a t e d  by t h e  r a t i o  

of n f u e l  r e s i d e n c e  t ime t o  t h e  t e s t  t ime,  t r a n s i e n t s  be ing  s e v e r e  when the  

former is of  L!le same c r d e r  a s  o r  l a r g e r  t han  t h e  l a t t e r ) ;  o r  whether  i t  is 

due  t o  a n ~ j t h e r  f a c t o r .  Bonne (Ref. 7) h a s  r epor t ed  an  expe r imen ta l  and 

t h e o r e t i c a l  s t u d y  t h a t  s u p p o r t s  a r a d i - i t i v c  ex t inguishment  mechanism f o r  

I& of metirane, r e s u l t i n g  trom emiss ion  by CO M 0, and s o o t .  2' 2  



Radiation from soot is especially important. His work suggests that 

extinguishment can occur even in a constant 0-g environment. Thus parhaps 

steady-state I& is not possible at 0 R under certain flow conditions. 

This important question should be explored. A complete understanding. of 

it may require further theoretical work on t ilnsients, and wc~lld be 

facilitated by variable-p, experiment61 facilities. 

O f  course the outstanding oppe::uoity i21 the orbiting laboratory is ? 

study of the structure of & flames, which is impossible in drop-tests. 

Temperature composi t ion ( including soot format ion), and radi: cion traverses 

(especially of flat diffusion flames) can be carried out and will add very 

significant information. Measurements of flame dimensions frcm phozographs 

are very useful, h i  provide only limited understanding of the combustion 

process and a relatively crude test of theory. 

Conclusions: 

Our recommendations for experiments on l& in the orbiting laboratory 

include: 

Measurements of steady-ctate flame dimensions on the same flames 

studied in the NASA work. 

Extension of those studies by inclusion o f  flame structure measurements. 

' Extension o f  different oxygen concentrations. 

Extension to lower and higher pressures. 

Extension to other fuel-oxidant combinations. particularly Hz- Br2, for 

which the chemical kinetics and mechanism are quite we1 1 understood. 

(The toxicity of Br may render this impractical .) 
2 

Detailed studies of flame extinction (if i t  occurs), including use of 

soot-promot inp, add i t ives and spec ial radiating environments such as 

multiple flame burners. 

Variable-g studies o f  Q, il feasibie, :;! examine (a) transtents and 

(b) the relationship between forced and buoyant convection. (g~l studies 

would also be useful here.) 



It will be essential to cauple these experiments with a c$>n:inuing 

program of theoretical modeling, as a i l  as ~ontinuing experiments with 

drop-test facilities. 
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Respondents Comments: 

Wri t ten  conrments have been received from two correspondents .  They 

a r e  reproduced below. Severa l  of t h e  i n t e r e s t i n g  i d e a s  t h e r e i n  have no t  

been covered i n  t h e  preceding d i scuss ion .  

The following comments have been received from D r .  Ray Edelman of 

R 6 D Associa tes ,  Santa  Monica, C a l i f o r n i a :  

The r e s u l t s  oi our s tudy (Refs.  9, 10) suggest  a couple  of u s e f u l  

experiments t h a t  a r e  no t  p r a c t i c a l  t o  conduct i n  drop tower f a c i l i t i e s .  

The Space S h u t t l e  would be i d e a l .  

I t  would be u s e f u l  t o  ga ther  inf0rmati .m on t h e  i n i l u e n c e  of chemical 

behavior 'n laminar d i f f u s i o n  f lames under zero-g cond i t ions .  The s t u d i e s  

we were involved i n  ind ica ted  t h a t  t h e  f lame s t r u c t u r e  changed s u b s t a n t i a l l y  

from in tense ,  r e l a t i v e l y  c l e a n  burning t o  "cool", sooty  flames i n  going from 

normal-g t o  zero-g. I n  some c a s e s  quenching occurred.  h a t  is unc lea r  a t  

t h i s  time is t h e  t r a n s i e n t  e f f e c t  up03 t h i s  behav ior ,  (The t r a n s i e n t  I 

r e f e r  t o  is t h a t  which is inheren t  i n  the  drop tower t e s t . )  



A s imple  experiment would invo lve  a t t empt ing  t o  igni:e a j e t  of f u e l  

whi le  under e s t a b l i s h e d  "zero-g" cond i t ions .  Tile c o n f i g u r a t i o n  of s i g -  

n i f  i cance  h e r e  is one which quenched i n  t h e  drop tower test. 

For f lames which d i d  not  quench i t  is d e s i r a b l e  t o  d e f i n e  che change 

( i f  any) i n  the  chemical s t r u c t c r e  o t  t h e  flame. A s  i n d i c a t e d  ahove, "cool" 

flame l i k e  behavior was observed i n  a l l  of t h e  zero-g f lames which d i d  not  

quench. (There may s t i l l  have been a slow adjus tment  occur r ing  which could 

no t  be d e l i n e a t e d  i n  t h e  f i n i t e  t e s t  t ime a s s o c i a t e d  wi th  t h e  drop tower 

f a c i l i t y . )  Our s teady  s t a t e  c a l c u l a t i o n s  i n d i c a t e d  r e l a t i v e l y  l a r g e  flaffies 

w i t h  t h e  same temperature l e v e l s  a s  i n  cormal-g could e x i s t .  Temperature 

measurements would be u s e f u l  h e r e  ( re fe renced  t o  t h e  nomal-g  f lame 

temperature  measured i n  an  i d e n t i c a l  earthbound f a c i l i t y )  . Of course ,  

s p e c i e s  measurements would be r a t h e r  n i c e  10 have. Not knowing what 

ins t rumenta t ion  w i l l  h e  a v a i l a b l e  makes i t  d i f f i c u l t  f o r  m e  t o  put  t h e  

abwle experiments i n t o  pe r spec t ive .  By re fe renc ing ,  say ,  s imple  thermocouple 

measurements t o  the  ground-based normal-g f lame would provide  a  u s e f u l  

r e l a t i v e  measure of f lame i n t e n s i t y .  E r r o r s  a s s o c i a t e d  wi th  us ing  d s imple  - 

thermocouple could thereby be suppressed.  A s i m i l a r  si: l a r i o n  a p p l i e s  t o  

sampling but  t h i s  is a more d i f f ' c u l t  and more c o s t l y  measurement. Of 

course ,  photographs and movies should be ob ta ined .  I n  g e n e r a l ,  thp  output  

of such b a s i c  experiments would not  only be va luab le  f o r  t h e o r e t i c a l  model 

comparisons, but would be of d i r e c t  use  i n  znswering t h e  s e r i o u s  ques t ion  

of flame i n t e n s i t y  under zero ,: cond i t ions .  Repeating tile ahove experiments 

i n  c o n t r o l l e d ,  oxygen enr iched ,  environments would be d i r e c t l y  appI: :aSif t o  

s p a c e c r a f t  a p p l i c a t i o n s .  Th i s  would r e q u i r e  encapsu la t ing  t n e  exper t sen t  hut 

should not  pose any s e v e r e  des ign  problems. 



I 

The f o l l w i a g  c l l r e n t s  have been received Era P r o f e s s o r  J. l4. Beer, 

H& of the Depzrment  of C h e r i c a l  Engineering and Fuel Technology, Unfvers i ty  

of Shef f  i e l d ,  E n g 1 . d .  P rofessor  kef is r e p o r t i n g  on informal  .- d i s c u s s i o n s  

held w i t h  v a r i o u s  c o l l e i g u e s  a t  Shef f i e ld :  
i 

The d i s c u s s i o n s  o b v i e ~ s l y  r e v o h e d  around t h e  ques t ion  of what d i f f e r e n c e  
: ,  

a zero  g r a v i t v  f i e l d  would make t o  sclpe of o u r  combustion phenomena from tw 

p o i n t s  of view: f i r s t l y ,  t h e  c mbust i .m a p p l i c a t i o n s  i n  space,  and a l s o  

i d e n t i f y i n g  resea rch  problems .here experiments would be c a r r i e d  out i n  a 

ze ro  g r a v i t y  f i e l d  which W J ~ L  shed pore l i g h t  on d e t a i l s  of combustion 

processes  us& here  on e a r t h .  What s t r i k e s  one f i r s t  is t h a t  any c o m b u s t i ~ n  

p rocess  which relies o h o l l v  o r  p a r t l y  on buoyancy f=-r t h e  supply of one of 

t h e  r e a c t a n t s  v i l l  he  s i g n i f i c a n t l y  a f f e c t e d  by t h e  l a c k  of g r a v i t a t i o n a l  

acceler i i t ion,  and an) o r  chemical processes  i n  which n a t u r a l  

c o n v a t i o n  p lays  a rale w i l l  be s i m i l a r l y  a f f e c t e d .  Thus, f i r e s  could no< 

burn i n  a ze ro  g r a v i t y  f i e l d  because t h e  buoyant phenomena t h a t  provides  

t h e  d r i v i n g  f o r c e  f o r  t h e  supply of f r e s h  r e a c t a n t  is missing.  T h i s  v i l l  

not a f f ~ c t ,  however. t h e  burning of tu rbu len t  jets where t h e  r a t i o  of t h e  

buoyancy f o r c e  t o  t h e  f o r c e  represented by t h e  momentum f l u x  a t  source  is 

-11. I t  is known, however, t h a t  d e n s i t y  v a r i a t i o n s  ;lave a s i g n i f i c a n t  

e f f e c c  on ch? i n t e n s i t y  of turbulence i n  jets, and i t  is a l s o  known t h a t  

f o r c e  f i e l d s  can be used, p a r t i c u l a r l y  i n  connection wi th  d e n s i t y  g r a d i e n t s  

t o  damp turbulence.  So. i t  uorlld be of some i n t e r e s t  r o  t h e  experimental  

and t h e o r e t i c a l  f l u i d  dynamicist  t o  look a t  t h e  s p a t i a l  d i s t r i b u t i o n  of 

turbulence.  i t s  genera t ion  and diss. ,dt ion i n  f lows wi th  d e n s i t y  g r a d i e n t s  

i n  zero  g r a v i t y  f i e l d s .  Where t h e  v e l o c i t y  is l o u  a s  i n  lamingr f lames,  t h e  

ef f 'ec ts  a r e  expected t o  be s i g n i f i c a n t .  



Fol loviag t h e  s t u d i e s  mans has  c a r r i e d  o u t  on t h e  f i r e  w h i r l ,  w e  

have s t u d i e d  a s m i l i a r  system where a pure  t. ,rbulent d i f f u s i o n  flame w a s  

i n  t h e  c e n t r e  of a r o t a t i n g  screen.  I t  could be shown t h a t  t h e  r a d i a l  

d e n s i t y  g r a d i e n t  coupled wi th  the c e n t r i f u g a l  f o r c e  f i e l d  c0ui.i completely 

l aminar i se  t h e  flame. I n  a l l  t h e s e  experiments, i n  Emons ' s  and a l s o  i n  

ours ,  t h e  so-called E c b a r .  boundary l a y e r  (a r a d i a l  inflow on t h e  base  

p l a t e  p e r p e ~ d i c u l a r  t o  t h e  r o t a t i n g  s c r e e n  produced b3 t h e  r o t a t i n g  

envirourent)  provided a d d i t i o n a l  supply  at oxidant  ts t h e  f u e l  and I 

b e l i e v e  that t h i s  could s u b s t i t u t e  f o r  t h e  buoyancy i n  keeping a laminar 

jet flame o r  a f i r e  going. I th ink  t h e r e f o r e  t h a t  a system ~f t h i s  5-.ind 

would be a good cand ida te  f o r  combustion s t u d i e s  i n  t h e  Space S h u t t l e  

Laboratory. 



IV. 2. Single Drop and Single Particle Combu.stion 

by H. B. Palmer 
' - 
i 
f 
f - 
I Discussion: 
f 
I 

i Literature on the burning of Jroplets is extensive. We cite four 

; general references. In additicn, four that relate to gravitational effects 

I 
g are also listed. These latter are the principal works known to the vriter. 

! 
The opportunity to study burning cf single drops and particles at 

near-zero gravity provides the means to explore several basic questions 

reiaeed to heterogeneous combustion. In experiments at 1 g ,  the burnin$ 

of drops ar.d particles ~~sually is strongly in€ luenced By natural convection. 

Only in the case of very small (diameter* microns) drops or particles. 

which are very difficult to pzoduce and to study, does the effect of 

natural con~ection become slight. Classic~l theories of droplet burning 

have been developed assuming spherical sy~mnetry (i .e. including neither 

natural nor forced convection) and qxasi-steady conditions (essentrally 

ass'iming that the rate of vaporization is small). Experimental studies 

of droplet combustion in falling chambers have produced almost spherically 

symmetric burning, but the dur6tion of the experiments probably has not 

been adequate to establish the validity of the quasi-steady assumption. 

Furthermore, drop tests inevitably i~ivolve an abrupt change from 1 g to 

lower (usually zero) g. Transients are introduced into the combustion 

behs-ri.or in this process. Attempts to introduce corrections to 1-g 

observations that take inco account natural and forced convection have 

been based on useful but approximate theoretical treatments and empirical 

correlations. They are not sufficiently reliable to permit a rigorous test 

of the basic convection-free theory. 



Conc l u s  ions : 

Thus e s s e n t i a l l y  t h e  a v a i l a b i l i t y  of long-duration, near-zero ,: e x p e r b e n t s  

sbould o f f e r  t h e  chance to e s t a b l i s h  

t h e  ex is tence  o r  non-existence of quasi-steady d rop le t  burning a t  zero y 

- the  accuracy of quasi-steady theo r i e s  

- the e f f e c t  of forced convection on burning r a t e s  

t he  e f f e c t  of n a t u r a l  convection (espec ia l ly  i f  vzriable-g condi t ions 

are ava i lab le )  oa burning r a t e s  

Related or  concomitant s t u d i e s  can examine 

f l a a e  s t r u c t u r e  (including flame r a d i i  f o r  burning d rop le t s  and d e t a i l e d  

s t r u c t u r e s  f o r  simulated d rop le t s  using porous spheres) 

e f f e c t s  of pressure and, perhaps, composition of t he  surrounding atmosphere 

(It has been suggested by at l e a s t  one expert  t h 2 t  t he  e f f e c t s  of pressure 

should be extended up t o  t he  c r i t i c a l  conditions because of t h e  importance 

of t h i s  in p r a c t i c a l  systems.) 

ex t inc t ion  of droplets as a funct ion of d rople t  s i z e ,  pressure,  and o t h e r  

paFameters 

e f f e c t s  of additives i n  the  surroirnding atmosphere 

vs.porization of drops ,in t he  absence of combustion 

e f f e c t s  of drop-drop *.creractions ( s tud ies  of small  a r r a j s ,  s t a r t i n g  

v i ch  two drops) 

formation of soot  and NO, during combustion of hydrocarbon d rop le t s  

- i gn i t i on  delays and a s soc i a t e  ignitJ.on t r a n s i e n t s  

Opportunities i n  t h e  szudy of s o l  id s ing le -par t ic le  combustion w i l l  be 

s imi l a r  t o  these  f o r  d rople t s ,  i n  the sense t ha t  na tu ra l  convection a l s o  

a f i e c t s  p a r t i c l e  f l anes  when the  p a r t i c l e s  a r e  of subs t an t i a l  s i z e  (L 1 tom diameter).  

The add i t i ona l  complexities i n  burning of coa l  or metal p a r t i c l e s  (devo la t i l i z a t i on .  



formation of oxide izyers, etc .) beyond those normally encountered in liquid 

droplet combustion suggest that study of drops may be the more fruitful. 

Droplet studies are u c h  lore likely to provide a definitive test of the 

idealized theory and thus to provide the foundation needed to construct a 

detailed model of burniug in the presence of gravity. Nevertheless, the 

hportaact of particularo combustLon is such that zero-g measurements of 

burning tirse; certainly should be performed (tninkiog tr;pecially of coal 

particlcsj, as a test of burning constant data obtained at I-g conditions. 

["he hrning constant is the constant K in the equation, D ~ ~ - D ~  = k(t-to). 

which is usually a s s 4  to govern the burning of particles as well as drops. 

D is diaaeter and r is time. Actually, there is some question about the 

applicability of this relation to hrning of coal particles. Removal of 

natural convection effects may elucidate this question.] 
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Respondents C-ents: 

Copaents and suggestions related particularly to droplet or particulate 

burning hage been received fruc few well-known experts in the field. They 

underscore certain paints made previously and include a number of additional 

ideas of considerable merit- Their communications follow: 

From Professor G. H. Faeth, Pennsylvania State University: 

The major advantage of experimentation under these conditions is the 

absence of gravitational forces. This allows the elimination of natural 

convection effects which always tend to complicate the interpretation of 

combuszion phenomena (since combustion intrinsically involves large 

temperature, and thus large buoyancy. gradients). 

In the area of droplet combustion, the Collwinp; possibilities could 

be considered. 

1. The Structure of Droplet Combustion 

The objective of this investigation would be to examine the detailed 

structure of the droplet comhustion process. Of particular importance 



vould  b e  t h e  c h a r a c t e r i s t i c s  of s c o t  and NOx formation.  Experimentally,  

t h i s  vould  invo lve  t h e  use  of a porous sphere  t o  simulate t h e  d r o p l e t  

i n  o r d e r  t o  eliminate t r a n s i e n t  phenomena dur ing  t h e  s tudy of t h e  s t r u c t u r e .  

I n i t i a l  work could b e  accomplished most e a s i l y  i n  a co ld  g a s  environment, 

advanced w r k  might c o n s i d e r  environments more t y p i c a l  of a combustion 

c h d e r .  C a p a b i l i t y  f o r  v a r i o u s  t o t a l  p r e s s u r e s  ( a t  least over  a 

range of  a few atmospheres) vculd  be d e s i r a b l e .  

For t h e  c o l d  g a s  environment, p rov i s ion  should be made f o r  us ing  a 

v a r i e t y  of g a s  compositions. I n  p a r t  i c u l a r  , low oxygen concent r a t  i o n s  

w i l l  cabse  t h e  flame zone t o  l i e  f u r t h e r  from t h e  s u r f a c e  of t h e  sphere  

s o  t h a t  s t r u c t u r e  can b e  measured more r e a d i l y .  I t  would a l s o  b e  d e s i r a b l e  

t o  examine t h e  s t a b i l i t y  o f  t h i s  combustion p rocess  a s  t\e sphere  s i z e ,  

oxygen concen t ra t  ion  anfl t o t a l  pressur..  w a s  va r i ed .  Steady flame p o s i t i o n s  

f o r  va r ious  oxygen c o n c e n t r a t i o n s  would a l s o  b e  u s e f u l  f o r  t h e  t h e o r i s t s .  

The f u e l s  considered shodld  invo lve  hydrocarbons, (cryogenics  a s  w e l l  

s o  t h a t  t h e o r e t i c a l  models can be  t e s t e d  on systems w i t h  r e l a t i v e l y  

uncomplicated k i n e t i c s )  inc lud ing  heav ie r  hydrocarbons of t echno log ica l  

importance. 

The s t r u c t u r e  measurements shoulri invo lve  temperatures ,  s p e c i e s  con- 

c e n t r a t i o n s ,  s o o t  c o n c e n t r a t i ~ n s ,  as w e l l  as t h e  r a t e  of g a s i f i c a t i o n  

i t s e l f .  For cryogenic m a t e r i a l s ,  condensat icn  of combustion products  

( p a r t i c u l a r l y  wa te r )  should a l s o  b e  considered.  

With t h e  s ~ e a d y ,  g r a v i t y - f l e e  t e s t  environment, d a t a  can be  obta ined 

f o r  t e s t i n g  c o m b u s t i o ~  models of d i f f u s i o n  flames i n  a s imple  con- 

f i g u r a t i o n .  Ear th  based experimer,ts cannot accomplish t h i s .  While 

t h e  use of very  smal l  d r o p l e t s  can minimize nat .ural  convect ion e f f e c t s  

on Ear th ,  t h e  needed s i z e s  are too  small f o r  the  sampling and measuring 

requirements of a s t r u c t u r e  experiment.  While opposed j e t  d i f f u s i o n  flames 



provide a means of working at a reasonable s i z e  f o r  s t r u -  &tu re  measure- 

m e n t s ,  convection and l ack  of one-dimensionalicy complicate t he  in te r -  

p r e t a t i on  of these  r e s u l t s .  

This  same arraugement ( p o ~ ~ u s  sphere) could a l s o  be used f jr s t a 5 i l i t y  

and s t r u c t u r e  measurements of gaseous fue l s ,  i f  ex t e rna l  spher? cooling 

w a s  provided. 

Coal P a r t i c l e  Combustion 

A study s imi l a r  t o  the  one described above, h o ~ e v e r ,  f o r  coa l  p a r t i c l e  

combustion would have s i m i l a r  advantages f o r  cont r ibu t ing  LC t h e  

understanding of t h i s  fundamental combustion process. I n  t h ~ s  case a 

t r u l y  s teady combustion process could not be obtained s i c  t h e  f u e l  

is consumed, hwever ,  t he  c o ~ u s t i o n  r a t e  of coa l  is low enough (and 

t h e  reac t ion  region s u f f i c i e n t l y  c lo se  t o  rhe sur face)  s o  t h a t  near ly  

quasi-steady condi t ions would be a v a i l a b l e  f o r  study. 

Convection Ef fec ts  f o r  Droplets a t  Lou Reynolds Numbers 

An i n t e r e s t i n g  extension of  t h e  experiment described i n  Par t  1 would 

involve low Reynolds number d rop le t  combustion. This  condi t ion is 

d i f f i c u l t  t o  achieve on Earth s ince  v e l o c i t i e s  must be kept high so 

t h a t  na tu ra l  convection remair-s in s ign i f i can t  i n  comparison t o  forced 

convection phenomena (or conversely very small p a r t i c l e s  must be used). 

In the weight less  environment, near  zero Reynolds numbers can be considered. 

This regime w i l l  al low examination of t h e  more completo convection theo r i e s  

of d rople t  combustion which a r e  l imi ted  t o  t h e  low Reynolds umber  regime. 

Porous sphere experiments, with flame shape as t h e  most s e n s i t i v e  t e s t  

of any model, should be used f o r  simple, unambiguous, steady s t a t e  r e s u l t s .  

The basic  mearurements would involve drag and gas i f i ca t i on  r a t e .  The 

s t r u c t u r e  a t  low Reynolds number should a l s o  be masu red ,  including 



p o l l u t a n t  and s o o t  concen t ra t ions .  In  t h i s  manner, t h e  in f luence  of 

i n c i p i e n t  convection on k i n e t i c  processes  could be  examined f o r  t h e  

sphere.  Since  t h e  flow process  is most e a s i l y  analyzed under t h e s e  

cond i t ions ,  t h e s e  d a t a  would be  nwsr u s e f u l  f o r  developing models of 

t h e  process.  

Unsteady phenomena, and t h e  e f f e c t  o f  i n t e r n a l  d rop le t  c i r c u l a t i o n  

(o r  cond i t ions  f o r  t h e  appearance o t  c i r c u l a t i o n )  cou ld  be examined 

us ing  a c t u a l  d r o p l e t s  wi th  modest d r i f t  v e l o c i t i e s .  

From Professor  F. A. Williams, Univers i ty  of C a l i f o r n i a  at San Diego: 

Buoyancy u s u a l l y  is a dominant aspec t  o f  l a b o r a t o r y  di f fus ion-f lame com- 

bust ion.  Drop-tower a t t empts  t o  remove it have produced unsteady £ l a n e  s t r u c t u r e .  

Only very smal l  d r o p l e t s  seem t o  have s p h e r i c a l  f lames i n  t h e  l abora to ry .  A 

b a s i c  quest ion t h a t  many have r a i s e d  concerns t h e  e x i s t e n c e  of quasi-steady d i t t u s i o n  

flame d r o p l e t s  a t  ze ro  g. I f o r  one am c ~ n v i n c e d  t h a t  they e x i s t ,  a l though recent  

azzalyses (e.g., Waldman, 1511; Symp.) suggest  t h a t  unsteady condi t ions  may be  tile 

r u l e .  I t  would be  very i n t e r e s t i n g  t o  burn s i n g l e  d r o p l e t s ,  s lze;  from 1 mm t o  

1 cm, i n  ze ro  g in a chamber of t h e  o r d e r  of 100 cm i n  diameter,  wi th  c a r e  t?ken 

t o  avoid a l l  nonspher ical  convection.  The flame s tandof f  d i s t a n c e  (flame r a d i ~ s )  

should be measrl-zd and compared w i t . 1  c l a s s i c a l  theory.  The p ressure  silould b e  

v a r i e d  LO *:drify t h a t  t h e r e  is no p r e s s u r e  dependence ( a s  p red ic ted  by theory)  ; 

t h i s  has not  been p o s s i b l e  i n  earthboucd l a b s ,  s ince  p ressdre  always in f luences  

buoyancy wless d r a p l e t s  a r e  s o  small t h a r  it  i n f l u s . l r c a  chemical k i n e t i c s .  

P ressures  from 1/10 t o  2 atm. would be reasenable ,  wi th  a i r  o r  oxygen-nitrogen 

o r  oxygen-argon mixtures  con ta in ing  l e s s  oxygen than a i r ,  be iag  employed. ( I n  

pure  oxygen, f o r  example, flame temperatures are so high tha t  d i s s o c i a t i o n  complicates  

mat te r s . )  
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The o ther  question of i n t e r e s t  is ext inc t ion .  This g e t s  a t  chemical k i n e t i c s  

(at least i n  an ove ra l l  sense). It would be of i n t e r e s t  t o  observe ex t inc t ion  

r a d i i  of drople t s  a s  function8 of pressure and t o  c o r r e l a t e  these  with Arrhenius 

expressions. The reason is that theory is much mre prec ise  i n  spher ica l  syollaetry, 

so  results of g rea t e r  accuracy can be obtained. 

There are numerous o the r  exc!.ting things. Concentration p r o f i l e s  , temperature 

p ro f i l e s ,  etc. ,  could be checked aga ins t  theory t o  improve understanding. Addition 

-. o i  re ta rdants  such a s  CFlBr is in t e re s t ing ,  both i n  respect  t o  s t r u c t u r e  changes 
i 

and in respect t o  ertlnci:: 
. ! 

Small metal p a r t i c l e s  seem t o  be influenced very l i t t l e  by gravi ty  on t h e  

ear th.  However, l a r g e r  cars, ?. am and up, would be q u i t e  i n t e r e s t i n g  t o  study 

at zero g, with methods as indicated above. 

Coccerning drople t s ,  I think t h a t  porous-sphere experiments would be i n t e r e s t i n g  

too. I f  steady s t a t e  is not es tab l i shed  with drople t s ,  it  sure ly  should be with parous 

i spheres. 
! 

From M r .  Lloyd Nelson of Sandia Laboratories,  Albuquerque, New Mexico: 

I s e e  these  a reas  of combustion science which might be benefi ted by weightlessness: 

I. Combustion of arrayed s o l i d s  o r  l i qu ids  - 
These could be aerosols ,  p a r t i c l e s ,  drops, f i laments ,  co i led  f i b e r s  and 

f i r e  wires gauzes, e t c . ,  i n  gaseous o r  l i q u i d  oxidizers .  Weightlessness 

would held a r rays ,  which would normally be physical ly  unstable,  i n  a 

f ixed posi t ion f o r  measuremmts ( l i g h t  s ca t t e r ing ,  op t i ca l  meaouremebtu, 

e t c . )  p r i o r  t o  i gn i t i on  and would keep products i n  pos i t ion  a l so .  

Applications: dust explosions, photof l a sh  devices,  a i l  burners, pro- 

pe l l an t s ,  pyrotechnics. 

11. Combustion of Levitated S a q l e s  - 
This would use fixed posl.tlon of  a sample, a t  very high temperatures i f  

desired,  to make carefu l  measurements during the  combustion. Sample could 



be large or small, suspended in a liquid or gas, at high or low pressures. 

Applications: Optical measurements on burning metal drops, e.g. spec tro- 

scopy of burning particle at focus of a spectrograph, measurements 3f 

emittances during combustion of a metal drop; observation of nucleation 

phenomena during drop combust ion, e-g. fog layer condensation, bubbling or 

explosions durirtg combustion of a metal drop; separation of a phase, e.g. 

slag formation on surface of a decarburizing iron drop. Holography would 

be an interesting technique here because 7f its ability to observe self 

luminous objects. 

111. Preparation of Molten Oxides -- at Very High Tersperatures by Combustion 

Could be used to prepare drops of oxides of metals with high solubility 

of oxygen e.g., rare carths, (Lu & Ac) Tc, Zn, Hf. at temperatures up to 

their boiling points. Careful control of stsichio~etry would bc possible. 

Applications: Could be used for casting; quenching (splat cooling); 

interaction with solids (e.g. sea iing leads) and 1 iquids (e. g .  rhcrmal 

explosionj; studies of mixed oxides by combustion of alloys; studies of 

oxynilridcs, oxycarbldes, oxyhalides by using mixed oxidizers; making 

n~easurements, e.g. density, surface tension. heat capacity, thermal 

conductivity; fiher spinning and so on. 

/ 
From Professor M. M. Beer, University of Sheif i ~ 1 . d :  

On the question of droplets or particles, there are again some rather obvious 

concli~sions one may come to. Firstly a z s r i  gravity field could provide an excellent 

experimental facility to study the combustion of droplets or particles with the 

camplete absence of convection. One could also study the combustion of assemblies 



of d r o p l e t s  and p a r t i c l e s  f a r  below t h e  t e rmina l  v e l o c i t y  of t h e  cloud of drops 

o r  p a r t i c l e s .  L t  is known t h a t  convect ive  c u r r e n t s  i n  t h e  l i q u l d  phase of an 

evaporat ing p a r t i c l e  p lay a  r o l e  in reducing t h e  r a d i a l  temperature g rad ien t  in  

t h e  drop. Such c u r r e n t s  would n o t  e x i s t  i n  a Lero g r a v i t y  f i e l d .  There is i a r z r e ~ t  

a l s o  i n  t h e  e f f e c t  upon t h e  drag of t h e  g r a v i t a t i o n a l  a c c e l e r a t i o n .  I t  is known 

t h a t  drag c o e f f i c i e n t s  o f  d r o p l e t s  and p a r t i c l e s  a r e  a f f e c t e d  by f o r c e  f i e l d s  

a c t i n g  upon them. 

There a r e  heterogeneous combustion systems d l i c h  r e l y  g r e a t l y  on buoyancy. 

In a f l u i d i s e d  bed t h e  d e n s i t y  d i f f e r e n c e  between the  dense phase and t h e  bcbble 

phase p lays  a s i g n i f i c a n t  r o l e  in t h e  mechanism of t h e  process.  The g r a v i t a t i o n a l  

f o r c e  f i e l d  can be s u b s t i t u t e d  by c ~ n x r i f u g a l  f o r c e  f i e l d  and t h e r e  a r e  known 

a t t empts  t o  make f l u i d i s a t i o n  work udder such cond i t ions .  The p o s s i b i l - i t i e s  of 

developing a  c e n t r i f u g a l  f o r c e  f i d d  c o n t r o l l e d  f l u i d i s e d  bed system might be  

f u r t h e r  i n v e s t i g a t e d  i n  a zero  g r a v i t y  f i e l d  r h e r e  one could look a t  t h e  e f f e c t  

of very small c e n t r i f u g a l  f o r c e s  i n s t e a d  of t h e  l a r g e  ones w e  have t o  cons ider  

when on t h e  e a r t h ' s  s u r f a c e  we want t o  make one f o r c e  f i e l d  doniinant over  the 

other .  



I V .  3. Combustion of Porous S o l i d  Ar rays  

by A .  L. B e .  'ad 

D i scuss ion :  

Ar rays  of l a r g e  numbers of s o l i d ,  s m a l l  f u e l  e l e m e n t s  burn ,  w i t h  a 

gaseous  o x i d i z e r ,  i n  a coupled  f a s h i o n .  Wi -h in  t h e  non i so the rma l  a r r a y ,  

each  f u e l  e lement  u n d e r g o s  l o c a l  v a p o r i z a t i o n  and p y r o l y s i s  and t h e  

r e s u l t i n g  e f f l u e n t s  i n t e r a c t  w i t h  t h e  gaseous  o x i d i z e r  t o  s u p p o r t  a  f l ame  

phenomenon of a  p h y s i c a l  s c a l e  t h a t  is much l a r p z r  t han  t h e  c h a r a c t e r i s t i c  

s i z e  af a  t y p i c a l  f u e l  e lement .  Examples of t h e  many a r r a y  m a t e r i a l s  t h a t  

a r e  o f  fundaurental and p r a c t i c a l  combust ion i n t e r e s t  i n c l u d e  c e l l u l o s i c  

f i 5 r e s  ( e - g .  f o r e s t  f l o o r  f i r e  bhenomena), s y n t h e t i c  f i b r z s  and foams ( e .g .  

c a r p e t i n g  ?nd m a t t r e s s  f i r e  phenomena), and me ta l  ( o r  me ta l  hyd r ide )  p a r t i c l e  

packed beds  (e .g.  hydrogen r e s e r v o i r  f i r e  phencmena). Combustion s t u d i e s  

t h a t  r e l a t e  t o  t h e  s p e c ~ a l  f e a t u r e s  of t h i s  i n v e s t i g a t i o n  a r e  d i s c u s s e d  i n  

t h e  r e f e r e n c e s .  

I n  t h e  r e f e r e n c e s ,  Experiment ,  C o r r e l a t i o n ,  and Theory emphasize t h e  

r o l e  of f r e e  convec t ion  i n  a r r a y  bu rn ing ,  or c a r e f u l l y  s e l e c t  a  s p e c i a l  

combust ion . a s e  where t h e  , o l e  of f r e e  convec t ion  i s  t o  b e  s u p p r e s s e d .  

F i g u r e  ! ( r e f e r e n c e  1 ) i n d i c a t e s  a n  expe r imen ta l  a r r d y  burn ing  se t -up  

f o r  which f r e e  corivec t i o n  .'s c l e a r l y  impor t an t .  A t  reduced g r a v i t a t i o n a l  

l e v e l s ,  i t  is expec ted  t h a t  b o t h  t h e  "burn ing  r a t e "  (mass l o s s  r a t e  p e r  

u n i t  a r e a  of a r r a y )  and t h e  " sp read  r a t e "  ( r a t e  of sp read  of t h e  phenomenon 

ove r  t h e  c .ombust ible  medium) w~ .u ld  b e  d i f f e r e n t .  The f lame s t r u c t u r e  would 

be  d i f f e r e n t  a l s o .  F u r t h e r ,  - a l :  of t h e s e  c h a r a c t e r i s t i c s  ( s t r u c t u r e ,  burn ing  



rate, spread rate) could be systematically varied by a selected series of 

variations of the gravitational field. Additionally, the array parame?ers 

which prescribe the extinction conditions for the figure 1 phenomena at 

g = 1 are expected to be characterized by ne~mcrically differerlt icrirical) 

values for g~ 1. Figure 2 (reference 20) correlates the radiative ignition 

characteristics of cellulose at g = 1. Here, convective transport ?lays a 

role in the evolution af the quasi-steady flame structdre, duling ignition 

at 2 = 1. Were variations in g (gel) to be carried out, one may exrect 

major changes in the characteristic appearance of Figure 2 .  Fig~re 3 

(reference 7) shows the characterl stic downward propagating structure of 

a g = 1 flame supported by a (structurally collapsing) sheet of pape;. 

Clearly, both the cmbustion and structural collapse characteristics are 

expected to te profoundly altered as g-0 from g = 1 .  

Typically, experimental arrangenents for the study nf  the cornt~ustion 

of various condensed phase arrays empahsize a diverslc. or . urpc~ses: i i i ~  

rate of flame proy~agation over (and through) a cellulosic array, as , 

function of array surface inclination, array density, ambient wind conditions, 

moisture content, gas phase composition, etc; the temperature structure of 

a fire spraac, wave; the critical o~cygen index, moisture content and bulk 

density for quasi-steady flame propagation; the effect of radiation on 

ignition and/or Flame propagation; :he effects of pressurp, characteristic 

dimensions, gravitational andlor other accelerating fields on flame 

propagation rates; the fundamental effects and practical utility of 

chemical inhibitors and quenching agents; the wish to delineate the 

interplay of molecular, turbulent. convective and radiative transport 

phenomena; the need tt) understand fundamental chemical kinetic processes. 
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fORN SECTION 

b L P ~ Y S I S  ZONE 

Figure IV.3.3. Deta i l  i n  the v i c i n i t y  of the downward spreading f l a m e .  
(Froa R e f .  7 )  



These experiments, performed in normal (1-g) gravicational fields, strongly 

display the effects of free convection. The dainant feature of a large 

stationary forest fire is the convective plume. The contrasting flame 

structures of lnupuard~ln VS. nldouaward~lp propagation, a "rising strand" of 

smoke so characteristic of a -11, smoldering fire, the phenoeena of 

"ceiling fires" and "roolp flash-over" all imply strong convective effects 

in normal (1-g) gravitationai fields. Current theoretical and expert.er.ta1 

results shov the burning of solid arrays to be extremely complex phenomena. 

Free convection, couples with a diverse range of transport, kinetic and 

fluid mechanical processes to prescribe the usual experimental observatioss. 

The theoretical burden of simultaneously accounting for all these inter- 

acting pracesses has generally proved insuperable, to date. This is 

particularly true of the criticality conditions previously cited (ignition, 

extinction, smoldering transition). 

Limited cmbust ion experimentation under reduced gravitational f ields 

has been carried out (e-g. References cited in Section I ) .  Some observations 

of flame propagation, extinction, ignition, and reignition in varying g-fields 

have been reported. Nevertheless, there are no acceptable theories or 

definitive experiments which enable an investigator to: 

(1) predict the structure of smoldering combusti~n, and to 

predict the critical conditions for the transition to 

flaming combustion and the transition to extinction. 

(2) predict the relative roles of free convection, radiation, 

molecular transport, oxidative and pyrolysis kinetics in 

determining flame spread rates anci extinction associated 

with porous solid arrays. (e.g. vary array thickness and 

optical aspect ratios). 



(3)  evaluate, by a predictive thctry. the utility of a 

chemical flame inhibitor. By definition, such an in- 

hibitor affects the chemistry of one or more important 

copbustior subprocesses. But the coupled processes 

(iten 2, above) and their interactions have not been 

unraveled (e-g. vary mcisture content. haicgenated 

Gr other agent content. Determine extinction conditions). 

(4) construct a set of material hazard characteristics which 

reflect the cbemical and physical properties of the considered 

materials rather than the (1-g) burning of a given sample 

(e-g. autoignition characteristics of arrays). 

( 5 )  prescribe, in a radiative ignition experiment, the 

transition to steady burning via the time-dependent 

inclusion and coupling of the other transport processes 

(e-g. detailed flame structure measurements during the 

igni t i ~ n  process). 

These deficiencies typify the current state of our limited under- 

standing of the igqition, burning, and extinction of solid arrays of 

fuel elements. Tr~ncated theories art useful in the correlation 

of limited data regimes, but rhe data we ~wrrently work with are at 

normal (1-g) conditions. The dominance of Crashof number (Gr) 

correlations for array burning SllSReStS the deficiency o f  our 

understandir~g at small values of this parameter 

(Cr + 0 as R -b o). 

The structur;~l propert ies oi array miterials are not generally 

recognized in c,yr an.1 lvt ic interpretat ions -.)i cnmbust ion experiments. 



Yet, the structural collapse of paper sheets. cellulosic fibres, 

etc., during combustion degradation of the burning material is 

well documented. This structural collapse at normal (1-g) conditions 

is quite different than tirat to be erpected at other gravitational 

conditions. Inasmuch as the array structure strongly influences 

i:s combustion properties, experinental variation of gravitational 

fields in combustion experimentation may be expected to help define 

such effects. 

Our current understanding on the combustion r f  p~rous arrays 

of solids may be thought of as limited and trapented. The question 

of the utility of variable gravitational field experimentation 

(particularly in the neighborhood of zero-g) relates critically 

to the possible provision of current unavailable fundamental information. 

Under (zero-g) conditions, arrays may be studied whose (1-g) structural 

integrity (or lack of) makes combustion experimentation difficult. 

presently. In fact. arrays that nay prove to be "fire hazards" in 

a "space environmer.r" may include many of just such a class. 

Conclusions: 

Most importan:, then, zero-g experimentation permits the 

suppression of free convection effects. With this in mind, a 

promising program of reduced-g combustion experiments involving 

arrays of solid fuel elements is anticipated. 



(1) smoldering cornbustlon. Does it exiet (stably) at 

zero-g? At other low values of g? (Shat are the experi- 

mental conditions for transit ion to extiqction or to 

flaming combustion! What role is played by forced 

convec:ton? 

(2) ignition. Radiative (or other) ignition of an array 

implies the rapidly growing interplay of various transport 

processes. Uhat dynamics results, for the reduced (or 

elhindted) free convective conditions? 

(3) flame spread, inhibition, and extinction. Flame spread 

supported by a range of forced convective fields at zero-g. 

Uhat are the limits on existence of such flames? What 

combustion roles are played by radiative and molecular 

transport? What "oxygen index", moisture content, or 

inhibitor concentration is critical to existence/nonexistence? 

Why? 

These and related experiments await the availability cf a 

space-orbiting combustion laboratory. The few seconds of experimental 

time available in drop twors is inadecuate for this kind of experi- 

ment. The extreme case, smoldering, is one for which experimental 

times of hours may be necessary. 

Experimen~s of this kind promise to provide observations that 

are directly useful. As important, the theorist can represent these 

experiments more completely and simply than is the case for (1-g) 

experimentation. I t  is expected that successful theoretical repre- 

sentations that need not entertain free convection (for zero-? 

experiments) are then extensible to 0 f g 1 conditions, in 

accordance wi th observations. 
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?f , Respondents Cotmnentst. 

Comments from Professor Robert F. Sabytr 
Un: versity of California, Berkeley 

I: . . . .There are s m e  i~i:?rest ing experiments ytlich might 
make use of the uniq~e space environment. l'he mcl*:t ~bvious are thcsc 

which involve sc~ling problems a? ising from gravitation.-, effects. 

The hand1 ing oi tuoyancy in f ire research. is pel haps the mcrs t 

direct e~apli." 

Corrarents from Professor F.C. C~rlett 
University of Washington, Seattle 

"The problem I have in mind is the manner in which free- 

burning f ii es approach effectively gravity-f ree conditions in the 

limit as diameter 0.: oiher fuelbed length scale approaches zero. 

T11is is the sma!l Grashof number limit. In principle, burning 

rates of low boi 1 ing (or low--subliming) fuels should vary inversely 

with length scale in this limit. a stanmrd result of corresponding 

droplet burnink theory. itowever, it appears ihat in most statidard 

atmosphere laboratory situations. othel- characteristic lengths 

(derived from flilite rate klnetics or real-world apparatus 

fabrication ~onstraints) enter into the problem in a difficult 

to resolve manner. .... A controlled series of small iire 

exper'ments in which the Grashof number vas varied independently 

by adjustment of the ambient gravity level would greatly help 

I to clarify the situation (Ref. R.C. Corlett. Combustion and 

Flame L2_, 1 (1968,. Also see P.I.. Blackshear, Jr. and K.A. 

Murty, Eleventh Symposium (Internat ional) on Combustion, 

p.545)). 



IV. 4. Large Surface Solid-Gas Unpremixd Combustion 

by C. li. Narkstein 

Discussion: 

Previous fundamental studies of surfecc combustion of large solid 

fuel elemcnrs have been heaviiy motivated by the need to understand the 

nature of unwanted fire Free convective effects are so significant in 

the burning of large selids ( a t  p i )  that m e  may question the utility of 

cs5ustio.l studies in which (for, 0 d gllr 1) free convection is st;-ongly 

suppressed. The considerations provided in the previous subsection 

(IV-3.) for porous solid arrays generally apply here. As before, the 

present limited understarding of the interactions of various transport 

processes, the criticality conditions of combustion phenomena and the 

lack of "complete" theoretical formulations argue for this range of 

supportive experimentation. Of course, conbustion experiments in space 

are indispensable to an understanding of fire phenomena in spacecraft. 

But the broad value of reduced gravitational field combustion studies 

lies in their reia~i?? to the ultimate aim of providing J basic under- 

standing not otherwise accessible. 

Drop tower studies (1,2) have provided valuable, gravi ty-f ree 

combustion information on flame spread over solid fuels. However, 

testing times provided by such facilities are very.limited (less than 

10 seconds). 



In sharp contrast to the absence of natural corivection in the 

gravity-free conditions present in spacecraft, terrestrial burning of 

large solids is strongly influenced by buoyancy-induced convection. 

One of the most instructive demonstrat.ions of the dominant in£ luence 

of buoyancy is provided by the wccess of pressure modeling of firer 

( 3 ) .  vhich depends on the fact that among the many participating di- 

menaicnless parameters, only the Grashof number, 

and tte Reynolds number, 

were required to represent the experimental results given in reference 

(3). Eere ( A P  ) i r  .he density change over the characteristic dimension 

( 1 ) ;  ( ,o ) is density; ( 9  ) is the gravitational acceleration; 'r 
is the viscosity and ( V ) is the velocity. 

The rationale :or reduced g-studies lies in the incomplete state of 

current understanding of flame spread over solid-fuel surfaces. Thus, 

analyses that are mathematically exact (4) thus far can deal only with 

laminar spT.ead with p:c.cribed convective flow parallel to the fuel 

surface. S-lch analyses thirefore do not even describe terrestrial flame 

spread, and the limits of their validity ccii1.d be tested more rigorously 

in the gravity-free space environment. Moreover, in tht practically most 

interesting case of turbulent upward fire spread, natural convection strongly 

controls the feedback of heat from the gas-phase flame to the f~el, frequently 



causing t h t  process t o  become of a t r ans i en t  acce le ra t ing  nature ,  both 

i n  the  cases of thermally t n i n  (5) and th i ck  f u e l  (6). These cases  have 

thus f a r  been t r ea t ed  only by semiempirical analyses  (5,6).  Experiments 

under gravi ty-free space conot t ions could rep lace  the closed-loop ac- 

ce l e r a t i ng  feedback process by a s teady-state  open-loop flame spread with 

forced convective flow under  he cont ro l  of the  experimenter. 

Even i n  the case  OF convective flow p a r a l l e l  t o  t h e  f d c l  su r f ace  

(i.e. v e r t i c a l  upward o r  downward spread) forced convective flow can 

never model t he  condi t ions of na tura l  convection exact ly .  Even l e s s  

s a t i s f a c t o r y  would be any attempts t o  v.odel the  cases  oC p a v l t y  accel- 

e r a t i o n  or iented normal t o  the  f u e l  surace ("pool-burnirrg" and c e i l i n g  

::ires, respec t ive ly) ,  o r  intermediate  o r i en t a t i ons  of the f u e l  bed (7 ,8 ) ,  

by meanr of forced convection i n  a grav i ty- f ree  envirorslen:. 

I n  s~mmary, one must conclude tha t  experiments i n  space can make a 

cont r ibu t ion  t o  t he  understanding of the burning of l a rge  s o l i d s ,  pr imari ly  

by permitting systematic v e r i f i c a t i o n  and enlargement of analyses  of flame 

spread. 

There is a consider-.ble number of experiments of po t en t i a l  i n t e r e s t .  

Among them a r e  the  following: 

1) Determination of steady fl .me spread r a t e  over a so l id- fue l  

su r f ace  a s  a funct ion of s teady convective flow ve loc i ty ,  both fo r  flow 

i n  t he  d i r e c t i o n  and opposi te  t o  the  d i r ec t i on  of flame spread. 



2) Study of transients of flame spread rate that may occur upon 

a sudden change of convective flow. Of particular interest would be 

the case of sudden shutdown of the flow, which may caue extinction 

after a characteristic relaxation the, due to accumulation of combustion 

products and lack cL oxygen access to the fuel. Conversely, if the flow 

is re-established af ter a shutdown of 1.imited duratjor,, a re-ignition 

transient might occur. (These cases have obviou~ significance for iire 

in spacecraft). The alternative possibility of studying such ~cceleration 

effects directly, rather than by simulating them with forced convection, 

is discussed in Section 9. Obviotsly, a great variety of fuel materials 

and sample geometry may be of interest. The choice presumably will be 

influenced partly by suitable burning characteristics and simplicity of 

geometry, but should primarily be dictated by the iheoretical objectives 

of the experimentation. Both thermally thick and thermally thin fuel 

samples will be ok interest. 

In addition to flame spread measurements, determipations of mass 

burning rates are desirable. In contrast to terrestrial conditions, the 

continuous measurement of mass loss poses a fairly difficult problem in 

a gravity-free environment. Instrumentation to meet such needs is dis- 

cussed In Section V. 
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I V .  5. Droplet Spray aad P a r t i c l e  Cloud Combustion 

by C. 8. Pang 

The a ? s m l o n  of corbust ible f i n e  l iquid  d rop le t s  end so l id  

p a r t i c l e s  i n  a gaseous a m s p b e r e  may r e s u l t  i n  sudden explosion under 

su i t ab le  conditions- In order t o  prevent these catastrophies from 

happening i n  f a d u s t r i a l  p lants  aad c o a 1 m i r . e ~  r;nderstading of the  

c a b u s t i o n  process i n  ttUK Y d i a  is necessary aad esse-tial: la 

many hae  heating wits, indus t r i a l  porrcr generating engines, a i rp lane  

jet engines and rockets, chemical energy is released through flames 

yopagating thmugh f u e l  drople t  sprays. Knowledge of the c a b u s t i o n  

process is needed :I, achieve proper designs tha t  have s t a b l e  aperatfan 

a d  high eff iciency.  Current u~ersiamdirtg. hovever, is far  froa 

complete. Burning ve loc i t i e s  of these ilames a r e  nat  adequately prc-. 

dicted. b a y  oi the observed c t iarac ter is t ics  such as the d r a r a r i c  

var ia t ion  of the  lwer  f u e l  coacentration l i z a i ~  with fue l  droplet s i z e ,  

the stronz dependence cf  the suppression of f l t r ~ t s a t i l i t y  by iner t ing  

on r a r c i c l e  s i ze ,  an@ The sarprisinglg high bar~?ing ~ * e l c c j  I.;, ceasurecf 

(1) For flames propasating throug? droplets art: l o t  y e t  e x ~ ! . a i n r d .  

Exanining the cu r res t  theories of : :=es i n  dro2l.cr- 5pr:ays ,-r +irt.icle 

clouds, a one-d i.mei..siona tac,~~~?isl;?rse -aei I s  r~niv ----' . a& , :.y ' a~opced.  

The vork of  Will tams ( 2 )  denis  &:ir.ly vitic lue\ d i v t l e t .  :!;i3ya in an 

., oxidizing a -sp?ii?re. He pr,-~:~osed a quasi -heti; je;-eu;-s" i?,iiory &hi;:: 



considers  t h e  c a k r s t i o a  and heat evolutfon t o  take  place wer the  gas 

v o l m e  homogeneously a f t e r  f u e l  is evaporized f r a  d r o p l e t s  and mixed 

v i t h  the oxidizer .  The mode of c a b u s t i o n  is q u i t e  s imi l a r  t o  t h a t  of 

p r a i x e d  gaseous flames. For very f i n e  d rop le t s  of e a s i l y  vaporized 

fue l ,  this is a s a t i s f a c t o r y  character izat ion.  According t o  erperimental 

s tud ie s  of Burgoyw et al.  ( 1 . 3 . 4 ) .  t he  0Sserved f l a a e  bebavior f o r  

t e t r a l i n  sprays with drople t  s i z e  smaller than 3.01 r is very c l o s e  t o  

that of *he prenixed gases  of t h e  same f u e l  and oxfdant. I t  follows, 

then, that t h e  aforementioned theory is not expected t o  apply f o r  d r o p l e t s  

that. exceed ch i s  s ize  limitation. Recently, Yoshie and Oshima ( 5 )  and 

Vainshtein and Nigmatulin (6) proposed more general  t heo r i e s  f o r  flames 

propagating i n  a --phase medium. These =>re recent  theor fes  a r e  in- 

tended t o  be appl icable  t o  a l l  three  Limiting nodes observed i n  e x p e r i r e ~ t s :  

T i e  "quasi-kirnogeneous" flame i n  very f i n e  d rop le t  sprays, t he  flame with 

pure heterogeneous cGlbustion on the  sur face  of the  condensed phase i n  

p a r t i c l e  c louds a d  the  flame v i t h  t h in  s h e l l  reac t ion  zoae surrounding 

esch f u e l  drop i n  sprays of medium and l a rge  d r c p l e t  s i ze s .  Ign i t i on  of 

the unburned d r o p l e t s  o r  p a r t i c l e s  ( i n  t he  l a t t e r  theor ies )  Is induced by 

the temperature r i s e  i n  t he  gaseous phase with heat conducted f r o a  the  

i m e d i a t e  flame zone. This  propag3cion rechanism, however, is not  completely 

cons is ten t  v i t h  experimental observation. Burgoync and Cohen (1) pointed 

out t h a t  f a r  a t e t r a l i n  spray v i t h  drople t  s i z e s  g rea t e r  than 0.053 mm a 

burning drop ma3 d i r e c t i y  i g n i t e  its ad! lcent  i~eighbor with its own flame 

s h e l l  while the  average temperature of the  gas between the d rop le t s  remains 

r e l a t i v e l y  low. The propagation of the  flame f ron t  appears t o  be i r regular .  



Xlgutaln and Ogasarara (7) a l s o  obtained d i r e c t  photographs t o  show that 

each drople t  Is surrounded by an ladlvidual  flame zone v i t h  no apparent 

c a b r s t i o n  taking place In  the interdroplet  space. Yoshle a d  Oshima (5) 

a d  Vaushteln and Nlgmatulin's (6) theories us t  be tested against  ex- 

perimental seawrrsen t s .  Unfortunately, f o r  droplet  o r  partfcl . .  sixes 

grea ter  than 0.02 r, a d  a t  g-1, docmrard flame propagation In  a v e r t i c l e  

tube o r  horizontal flame propagation In  a l eve l  tube cannot be obtained 

on account cf s e t t l i n g  of tbe  condensed phase. Current da ta  a r e  generally 

measured v i t h  flames propagating upward i n  a v e r t i c a l  tube. The r e l a t i v e  

velucfry betueea the drople ts  (or par t ic les)  and surrounding gases i n  such 

a c?se ccmplicates the  flame mechanism so  severely tha t  a reasonably simple 

one-dimensional model no longer appears t o  be sui table.  

Wgutain and Ogasavara (7) took a novel approach and forar la ted  a 

theory f o r  upuard propagating flames. Their e f f o r t s  a r e  not par t icular ly  

successful as many of the experimental observations a r e  still unexplained. 

I t  appears tha t  a f lape  theory along the  l i n e s  of Yoshie and Oshima ( 5 )  c r  

Vainshtein and Nigmatulin (6) ust  be constructed without the cmpl ica t ions  

of p a r t i c l e  s e t t l i n g  ef fec ts .  After its v a l i d i t y  is successful ly established 

by experiaentai measurements (which can be performed i n  a zero-g emrironnent) 

it  may then be modified for  upward propagating flames. The zero-g measure- 

ments, no doubt, w i l l  a l s o  be very useful  i n  guiding the  i n i t i a l  phase of 

the theore t tca l  development. The s h u t t l e  program of NASA o f f e r s  a unique 

opportunity l o r  such a study which may potent ia l ly  benef i t  p l b l i c  sa fe ty  

from d i s a s t e r s  and st imulate technical advances in  industry. 



Conclusions : 

Fuel and Oxidant Material 

The study should be made with monodisperse sprays and clouds with 

droplet and particle sizes ranging f r a  0.01 to 0.50 r. Monodisperse 

arrays with droplets of a desired size may be separated froa a jet stream 

of a fuel atomizer with an elutriation tunnel. Burgoyne and Cohen's (1) 

technique of preparing lodisperse spray through condensation of super- 

saturated fuel vapor is probably more precise but the apparatus required 

may be cumbersome for the space laboratory. hnodisperse solid particles 

may be prepared beforehand and brought to the shuttle laboratory. 

Tetralin, metal powders, a d  coal dust (8) should be among the 

first to be considered as the fuel material as they have been comonly 

used in the past. Air and pure oxygen may be used as oxidants and 

nitrogen is a convenient choice ior inert dilution. 

Flame flash back in monodisperse droplet spray and particle cloud 

in tubes of about 5 cm diameter and 1 meter long are adequate for the 

study. Measurements should include burning velocity, flame structure, 

lower fuel concentration limit and inert dilution limits. C1ou:Js of 

drops and particles and combust:on systems mentioned il, previous dis- 

cussions (e-g. Section IV. 2 .) are of parr_icul.ar interest. 
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Respondents Comments: 

The following coments were received from Professor P. S. Myers 

(University of Wisconsin): 

"One of the criteria for judging of experiments is that the 

experiment when conducted in space vould yield results unobtainable 

with gravity. Within this criterion. I would give first priority to 

those experiments yielding information having the most extensive 

application." 

"I would put single droplet combustion, especially at high press-~res, 

in this high priority classification. Theoretical analysis of droplet 

vaporization near the critical point is complicated by uncertainty regarding 



absorption of the  ambient gas  i n  t he  vaporizing l iqu id ,  and uncertainty 

of drop shape due t o  diminution o r  disappearaace of sur face  tension. When 

gravf ty  is present,  t he re  is inevi tab ly  flow pas t  t he  drop which, at lw 

surface  tension, d i s t o r t s  t he  drop. I n  a zero g rav i ty  f i e l d  t he  v a p r i z z t i o n  

of a s i n g l e  drop without convection could be observed. The equations of 

change can be solved numerically f o r  t h i s  s i t u a t i o n  s o  t h e o r e t i c a l  r e s u l t s  

could be d i r e c t l y  c a p a r e d  with experimental r e su l t s .  The vaporizat ion of 

l i qu id  f u e l s  a t  both low and high pressures  is of considerable  p rac t i ca l  

importance s o  the  r e s u l t s  vould be of immediate i n t e r e s t .  I vould put 

t h i s  experiment w e l l  towards the  top of the list on both caunts." 

"I would a l s o  put  burntng s i n g l e  p a r t i c l e  (coal,  f o r  example) ex- 

periments w e l l  a t  t he  top of t he  list f o r  the  same reasons. I vould include 

a r r ay  s tud ie s  once the  s i n g l e  drople t  s tud ie s  were completed. A second 

s e r i e s  of experiments I think ought t o  receive serior*s considerat ion is 

the  e f f e c t  of convection on the spread of f i r e s  on s o l i d  o r  l i qu id  surfaces.  

A zero gravi ty  f i e l d  would enable the  problem t o  be s tudied without convection 

while increasing of g rav i ty  could increase  cocvection t o  separa te  out  d i f f e r e n t  

e f f ec t s .  Again, bnderstanding the  spread oE flames on s o l i d  and l iqu id  surf aces  

is of cons:derable p r a c t i c a l  importance." 

Turbulent two phase combustion processes have not been discussed here,  

but important e f f e c t s  have been noted by severa l  respondents. 

From Professor E. E. O'Brien 

S t a t e  University c,f Hew York a t  Stony Brook 



The rotion of a particle in a turbulent fluid can be desc9.-ibed 

with reasonable generality by an equation of the type (1) 

where T is a particle characteristic t i w  carrying the inertial 

property of the particle [for example 

for a solid spherical particle when D is its diameter, v is the 

fluid viscosity, o the fluid density and o the particle density], 
P 

xi is the particle displacement vector, 

u is the fluid velocity, i 

g the acceleration due to gravity, and 

the dot indicates a time derivative. 

There are two parameters in (1). T and g. In the event that 

both are negligible ii = u. (x ,t) and the particle simply follows the 
1 j 

fluid trajectories in a passive way. 

nore conmonly of course neither T nor Tg, the d r i f t  velocity, 

are negl ig ib le .  Earth-bo~nd turbulence experiments on part ic le  

trajector ies  (2) run into  two complicating e f f e c t s  which cannot be 

decoupled. Namely, an iner t ia l  e f f e c t  due to the f i r s t  t e a  in  

equation (1). and a "crossing trajectories" e f f ec t  due t o  the d r i f t  

ve loc i ty  Tg i n  the l a s t  term i n  (1). 



It has long been established (3) that the crucial quantity de- 

termining particle transport properties in turbulence is the particle 

autocorrelation function, vhich has to be determined experimentally (2). 

Some discrepancies (2.4) have appeared in these experiments with regard 

to the roles the two effects ~e~ticned above play in determining the 

autocorrelation function. I space vehicle experiment utilizing zero g 

and variable g capabilities could serve to distinguish between the t w  

parameters T and Tg and allow a clear cut understanding of their role in 

turbulent diffusion of condensed phase particles. The applicability to 

combustfon is of course indirect. For those problems in which particle 

migration is important one must be able to determine where a particle, 

or cloud of particles, will be before inserting the chemical parameters 

vhich vary locally. It is also a problem of very general importance for 

transport processes in turbulent fluids. Experimental attempts to obtain 

truly passive particles in earth-bound experiments seem not to be fruitful 

(2) 
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Also, see camnerits by Frofessor J. M. Beer, given in Section IV.2. 



IV. 6. Source I g n i t i o n  and ). . t o ign i t i on  i n  Premixed 

Cases a d  Condensed Fuel Sprays 

by C. H. Yang 

Discussion: 

Uhea a source of energy is introduced i n t o  a fuel-oxidant mixture, 

i g n i t i o n  may occur. The success fu l  i g n i t i o n  o f t e n  depends on the  quant i ty  

of energy introduced by the  source. For a s p e c i f i c  system, t he re  e x i s t s  

a minimum i g n i t i o n  energy below which t h e  source w i l l  f a i l  t o  provide 

successful  ign i t ion .  The s i z e  of t h e  minimum i g n i t i o n  energy, on t he  

o ther  hand, depends on the  composition and s t a t e  of t h e  mixture, t h e  

geometry of t he  container  a i ~ d  energy d i s t r i b u t i o n  of t he  source. Uhen 

c r i t i c a l  condi t ions a r e  approached, t he  minimum i g n i t i o n  encxgy may 

become zero. The system au to ign i t e s  o r  explodes under such circumstances. 

The s t a t e  of t h e  mixture is r e f e r r ed  t o  a s  explosion ib i :~  of t he  system. 

Both t h e  source i g n i t i o n  and au to ign i t i on  phenomena have been extensively 

s tudied (1-17) i n  the pas t .  Feas ib le  t heo r i e s  have been constructed t o  

explain t h e  general  physical mechanism of the  i g n i t i o n  phenomenon. Only 

the  de t a i l ed  k i n e t i c s  fo r  many of t h e  c m b u s t i b i e  systems remain unclear  

and many of the  numerical va lues  of rhe r a t e  cons tan ts  involved a r e  s t i l l  

uncertain.  Care tu l ly  measured explosion l i m i t s  o f t e n  a r e  e s s e n t i a l  f o r  

furn ish ing  t h i s  type of L ine t ic  knowledge. 

The comprehensive study by Gray e t  a l .  (8-12) on thermal explosions,  

ind ica tes  t h a t  t h e  e f f e c t s  of t he  convection process due t o  buoyant forces  

generated from d i f f e r e n t i a l  heat ing a r e  s i g n i f i c a n t  e spec i a l l y  whefi the 



dens i ty  of t h e  mixture is  high. To avoid these unce r t a in t i e s ,  experiments 

are i d e a l l y  performed i n  a zero-g environment. The Space laboratory of 

t h e  NASA s h u t t l e  program o f f e r s  a uniq.;~ opportunity f a r  t h i s  type of 

experimentation. 

Currently,  measurements of minimum i g n i t i o n  energy and explosion 

limits f o r  condensed f u e l  sprcys a r e  almost non-existent. The sedimentation 

of t he  condensed phase prevents  a meaningful experiment from being performed 

i n  ordinary experimental condi t ions.  Again, these  d i f f i c u l t i e s  may be 

e a s i l y  avoided iii I zero-g environment. Information obtained w i l l  d e f i n i t e l y  

a i d  the  understanding of flame propagation i n  f u e l  d rople t  spray o r  p a r t i c l e  

cloud discussed i n  t he  previous sect ion.  

Conclusicna: 

Source I g n i t i o n  Experiment 

Source ' sn i t i on  experiments may be considered f o r  both premixed gases 

and condensed f u e l  sprays.  There a r e  many premixed gaseous systems t o  chose 

from. For condensed fue l  sprays,  coa l  dus t s  and t e t r a l i n  d r o p l e t s  proposed 

i n  the previous sec t ion  again deserve considerat ion.  Three types of i gn i t i on  

sources m y  be used: spark, hot w l r  s and hot gas  (or hot s o l i d  body) . These 
Z 

sources a r e  expected t o  provide a wide range of efiergy diutr i5: :r fnn.  

Autoignition or  Explosion Experiment 

For premixed gases,  only thermally explosive systems should be se lec ted .  

Gray e t  a l .  (11) used ch lor ine  dioxide,  methyl n i t r a t e  and diet i lyl  peroxide. 

Thermal e f f e c t s  f o r  the  H2-O2 and CO-O2 system a l s o  become important a t  high 

pressures .  The most i n t e r e s t i n g  expiosion experiment is probably wiih f u e l  

d rqple t  spray and p a r t i c l e  cloud. Te t r a l i n  d rop le t s  and coa l  dus t s  a r e  among 

w i t a b l e  choices  of condensed f u e l s .  
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I?. 7. Premixed Gaseous F l m e  Propagat ion and E x t i n c t i o n  L i a i t s  

by A. L. Berlad 

D i s c u s s i z  

Once s u c c e s s f u l  i g r . i t i o n  of a premixed combust ib le  g a s  is  achieved,  

a broad range 3f time-varying flame propagat ion phenomena is poss ib le .  

However, where apparen t ly  s t eady  (quasi-steady) f lame propagat ion r e s u l t s ,  

t h e  phenomenological p o s s i b i l i t i e s  a r e  few. The unperturbed quasi -s teady 

flame, whatever i ts i n v a r i a n t  multidir.onsicjna1 temperature  and composit ion 

s t r u c t u r e ,  propagates  a t  a  f i x e d  flame speed. General ly ,  quas i -s teady 

f lames are obs  -ved a s  mul t id imensional  flnmes propagat ing i n  long tubes ,  

o r  a s  " f l a t "  o r  "conical" f lames s t a b i l i z e d  on t h e  1: ps  of tubx la r  bu. a s .  

For a g iven s i z e ,  shape, and temperature  of exper imenta l  appara tus ,  t h e r e  

e x i s t  l i m i t s  of ambient temperature,  p ressure ,  fuel -oxidant  r a t i o ,  and 

d i l u e n t  c o n c e n t r a t i o n  beyoqd which quasi -s teady flame propagat ion is not  

pr a s i b l e .  Beyond t h e s e  e x t i n c t i o n  c o n d i t i o n s ,  quas i -s teady f lames cannot 

be e s t a b l i s h e d  on burners  o r  caused t o  propagate  through long tubes .  

Fur the r ,  t h e  s i z e ,  shape and temperature  of t h e  exper imenta l  appara tus  

i n f l u e n c e  t h e  e x t i n c t i o n  cond i t ion .  S p e c i a l  names have come i n t o  use  

f o r  s p e c i a l  e x t i n c t i o n  cond i t ions .  Flammabil i ty l i m i t s  g e n e r a l l y  r e f e r  

t o  t h e  c r i t i c a l  v a l u e s  of f u e l  lehn ( o r  f u e l  r i c h )  composit ion,  which, 

f o r  a 5 cm. i .d .  tube  and a p r e s s u r e  of 1 atm., correspond t o  quasi -  

s t e a d y  flame e x t i n c t i o n .  quenching limits g e n e r a l l y  r e f e r  t o  t h e  c r i t i c a l  

v a l u e s  of appara tus  s i z e  which correspond t o  f lame e x t i n c t i o n .  P r e s s u r e  



l i m i t s  :efer to  c r i t i c a l  lower (or upper)  v a l u e s  of ambient p r e s s u r e  

which correspond t o  f lame e x t i n c t i o n ,  having f i x e d  t h e  o t h e r  exper imenta l  

parameters.  I t  is now known t h a t  t h e s e  v a r i o u s  exper imenta l ly  determined 

e x t i n c t i o n  l i m i t s  a r e  no t  u n r e l a t e d .  Figure  1. ( r e f e r e n c e s  8,201 shows 

t h a t  p ressure ,  q ~ ~ e n c h i n g  oad f  lannnabil i ty l i m i t s  r e p r e s e n t  s p e t : i t l  c . .  : 

of a mul t id imensional  e, i n c t i o n  l i m i t  diagram def ined  by t h e  thermo- 

chemical and phys ica l  parameters of t h e  problem. 

A number of t h e o r i e s  a t t empt  t o  i n t e r p r e t  obse rva t  ~ n s  ofi f lame 

propagat ion and e x t i n c t i o n .  D e t a i l s  and emphases va ry ,  but  c e n t r a l  

agreement e x i s t s  r ega rd ing  t h e  n a t u r e  of e x ~ ~ n c t i o n  l i n i t s .  2uasi- 

s teady  flame propagat ion is nonadiaba t i c ,  and l o s s e s  of hea t  (and 

r e a c t i v e  spec ies )  from flame t o  ( f i n i ~ e - s i z e d )  appara tus  n e c e s s a r i l y  

r e s u l t s .  I t  is t h e s e  l o s s e s  which necessarily l i m i t  quas i -s teady 

flame plopagat ion and p r e s c r i b e  e x t i n r  t i o n  l i m i t s .  

The t e r s e  sunnnary s t a t ements ,  provided above, d e r i v e  d i r e c t l y  from 

the  informat ion given i n  t h e  r e f e r e n c e s .  

There a r e  s e v e r a l  propagat ion modes f o r  nocad iaba t i c  f lames.  

There a r e  s e v e r a l  t r a n s p o r t  mechanisms through which a given mode of 

propagat ion s u s t a i n s  t h e  l o s s e s  which a f f e c t  t h e  e x t i n c t i o n  ,:ondi&ions. 

G r a v i t a t i o n a l  e f f e c t s  e n t e r  both a s  a  mechanism importan- t o  f lame 

s t r u c t u r e  and a s  a  l o s s  mechanism. Accordingly, f lame propagat ion 

and e x t i n c t i o n  can be s u b s t a n t i a l l y  inf luenced by f r e e  convect ive  

e f f e c t s .  S t r i k i n g  examples of t h e  p f f e c t s  of g r a v i t y  on f l a s e  

propagat ion and e x t i n c t i o n  include:  
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(1) Upuard flame propagatioc (in tub-) is c b r a c t e r i z e d  

by a d i f fe ren t  flame structure.  speed, a d  lean er- 

t i nc t ion  lhits than those obtained f o r  davmrard 

propagation, a t  g-l. 

(2) Uhere a propagating f l a r e  ay-rs t o  have a simply- 

c o ~ e c t e d  surface, i t  is :erred "coherent". Flame 

propagation m y  proceed v i a  "coherent" o r  "noncoherent" 

aodes. Both modes of propagation, a d  t h e i r  associated 

lean e x t i ~ c t f o n  limits are significantly influenced by 

free convective ef fec ts .  I n  f ac t ,  f a r  the  case o I  

hydrogen-air f l a e s ,  reference (8) provides the  

follovfng suaary of data, a t  g=l. 

percent hvdrogen in air 

Upward Propagatio~ [ Soncaherent Coherent Fiar######r' Flame 

Downward Propagation i 9.0 
I I - 

There apFnars to be an important cou~ling of selective diffusion, 

flame front stability, and free convection effects in t k e  neighborhood 

of the noncoherent f~aamability limit (4.0 percent H 2 i .  Because of the 



l u h  b u k r  ~ 1 e c u l . r  d l f f u s l v l t y  of H2. compared t o  that of 02. a 

nomroherent flame mluc has Its B2 concentrat ion enriched by diffusion. 

Based on the Initial s t o l c h l a e t r y  cf  t he  mixture, t he  (free con- 

vect ively)  rlslng w ~ c o h e r e n t  £1- volume burns a t  a r i c h e r  f u e l  

concentration, leaving l n c a p l e t e l y  burned gases  behiad. 

( 3  A s  the  c h a r a c t e r i s t i c  s i z e  of apparatus is increased, convectively 

induced "noncoherent flames" (above) as w e l l  a s  " f l a r e  ba l l s"  ( r e f .  4) 

a r e  observed. Lavachev s d  coworkers ( re f .  19) consider a s impl i f ied  

theory of "convective i l s z s a b i l i t y  lirits" wherein the  l i r i t i n g  

fundamental flame speed depends upon the acce lera t idn  due t o  gravi ty.  

Here, i s  the  thermal conductivity,  c the  heat capaci ty,  h' 
the i n i t i a l  d*nsity, the hot gas d e n s i t y . /  is a viscous R liT 
coef f i c ienc ,  a heat re lease  coe f f i c i en t ,  and 3- the accelera- 
t i on  due t o  grav i ty .  Elements of a Grashof number co r r e l a t ion  a r e  

recognizable i n  the  expression Lor ( U. h ~ u t  only g-1 da ta  a r e  now 

ava i l a3 l e .  

(4) Complicate4 flame shapes, convectively r e l a t ed ,  have been observed 

(pa r t i cu l a r ly  near ex t inc t ion  l imi t  condi t ions)  f o r  hydrogen-air, 

methane-air, carbon monoxide-air, heavier nydrocarbon-air, e t c .  for 

a rar.ge of apparatus s i z e s  and shapes, a t  g = l .  



(5) In  some of the  cases c i t ed  above, quasi-steady flame propagation is 

associated with s ign i f i can t ly  incomplete combustion of the  InitLi! 

reactants.  

This consequence is examined i n  reference (22) and is re la ted  t o  the  

notwoherent phenomena tha t  Lovachev (3) has reviewed. Reference (22) 

provides a d i f fe ren t  representation, based on flame f ront  s t a b i l i t y  

argusents, f rae tha t  given i n  reference (3) . 

(6) Despite the c l e a r  rul t idimensionali ty of propagating (or aear  

ext inct ion) flames, current  "complete" theories of f lane propagation 

a d  extinct ion a r e  one-dirensional and ignore gravational e f fec t s .  

Table (1) shovs that only a f eu  siaplifiled theor i r s  (those not 

s t a r t i n g  with the  general conservation equations! attempt t o  

include free convective ef fec ts .  

Conclusiocs: 

The major r o l e  played by gravi ta t ional  e f f e c t s  i n  many flume 

propagation and extinct ion phenomena--and the lack of adequate theory 

t o  deal  with these complex flame systems-suggests the  need a 

systematic invest igat ion along the  following l ines:  

(1) Experimental determinations ( a t  g=:O) of gravity 

independent f l a s e  propagatim acd extinct ion phenomena, 

including flame s t ruc tures ,  propagating speeds, propagating 

modes and the f u l l  range of ext jnct ion l i m i t s .  Par t icular ly  

important a r e  the previously-cited combustion systems. 

(2) Experimental determinations, a s  indicated above, repeated 

over the range O <  g e 1, thereb, -rtermining the onset and 

manner whereby f r e e  convection e f f e c t s  enter  these phenomena. 
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(3) Experimental determinations,  a s  indicated above, repeated 

f o r  g) 1. 

(4) A t h e o r e t i c a l  program aimed a t  debeloping "complete" 

t heo r i e s  of flame propagation and ex t inc t ion  t h a t  are 

adequately r ep re sen t a t i ve  of t he  complex phenomena 

obsemed. Table I s u m a r i z e s  t h e  cur ren t ,  notably 

de f i c i en t ,  state of a f f a i r s .  

It is clear t h a t  the t i m e  s c a l e s  f o r  t h e  i n i t i a t i o n ,  developreat  and 

observat ion of the propagation and ex t inc t ion  phemmena may vary widely. 

I n  some cases ,  drop twer s t u d i e s  may prove ex t rene ly  usefu l .  'In a l a r g e  

number of cases  ( s l w l y  developing phenomena i n  l a rge  apparatuses) ,  ex- 

peripentht ion i n  and with a space o r b i t i n g  laboratory appears t o  o f f e r  t he  

cn ly  approach f o r  d e f i n i t i v e  study. 
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I V .  8. Large Sur face  Liquid-Gas Unpremixed Cmbust ion 

bx Clayton Huggett 

Discussion: 

Cambustion a t  l i q u i d  s u r f a c e s  h a s  been s t u d i e d  e x t e n s i v e l y  i n  t h e  

terrestrial environment. Deta i led  phenomenologfcal d e s c r i p t i o n s  of t h e  

v a r i o u s  s t a g e s  of t h e  process ,  i g n i t i o n  (1.2.3). flame spread (4,s). 

s teady  burning (6,7), and extinguishment,  are a v a i l a b l e  and a cons iderab le  

degree  of thec  retical understanding has  been achieved.  Limi t a t i c n s  on 

observa t ion  time and t h e  s i z e  and complexity of appara tus  has prevented 

rhe  ex tens ion  of t h e s e  s t u d i e s  t o  c o n d i t i o n s  of ze ro  g r a v i t y  except f o r  

l i m i t e d  observa t ions  of t h e  burning of smal l  l i q u i d  d r o p l e t s  ( s e e  Sect .  I V . 2 ) .  

The problem of burning a t  a l i q u i d  s u r f a c e  is, i n  some r e s p e c t s ,  

s impler  than  t h a t  of combustion a t  s o l i d  s u r f a c e s  s i n c e  l a r g e  a r e a .  

undis t rubed,  l i q u i d  s u r f a c e s  w i l l  assume a p lanar  c o n f i g u r a t i o n  normal 

t o  t h e  d i r e c t i o n  of t h e  g r a v i t a t i o n a l  f i e l d .  Experimental r epresen ta t1o .a~  

of t h i s  arrangement a r e  r e f e r r e d  t o  a s  pool f i res  o r  pan f i r e s .  Chanf,es 

i n  o r l e n t a t i o n  o r  geometry do not  e n t e r  i n t o  t h e  p i c t u r e .  The p rocess  of 

vo!at f l iza t ion of a l i q u i d  is a l s o  s impler  and mcre asenable  t o  q u a n t i t a t i v e  

d e s c r i p t i o n  than t h e  p y r o l y s i s  of a s o l i d .  Mobi l i ty  w i t h i n  t h e  l i q u i d  phase 

does provide a complication which is absent  i n  s o l i d  combustion. 

I n  the  absence of a g r a v i t a t i o n a l  f i e l d  t h e  s i t u a t i o n  is q u i t e  

d i f f e r e n t .  A s o l i d  f u e l  (o r  a confined gas)  w i l l  r e t a i n  t h e  same shape 

t h a t  i t  occupies  on e a r t h .  An unconfined l i q u i d ,  on t h e  orher  hand, i n  

the  absence oi h y d r o s t a t i c  f o r c e s  Jue  t o  g r a v i t y ,  w i l l  assume a spherics: 



c o n f i g u r ~ t i o n  due t o  s u r f a c e  tens ion.  I n  c o n t a c t  w i t h  a s o l i d  s u r f e c e  

t h a t  is wetted by t h e  l i q u i d ,  t h e  s u r f a c e  c o n f i g u r a t i o n  w i l l  be  determined 

by t h e  c o n t a c t  a n g l e  and s u r f a c e  t e n s i o n  f o r c e s .  Thus i n  a "pan" whose 

w a l l s  are wet ted ,  t h e  l i q u i d  s u r f a c e  w i l l  assume a concave hemispher ica l  

conf igura t ion .  To observe  s u r f a c e  burning phenomena under c o n d i t i o n s  

approximating a p lane  s u r f r c e  ( r a d i u s  of c u r v a t u r e  l a r g e  w i t h  r e s p e c t  t o  

t h i c k n e s s  of t h e  r e a c t i o n  zone) l a r g e  s c a l e  experiments may be  required.  

Large s c a l e  experiments may a l s o  be d e s i r a b l e  t o  avoid edge e f f e c t s .  

I n  t h e  c a s e  of f lame spread,  a t r a y  width of about 20 cm is necessa ry  

be fo re  such e f f e c t s  become n e g l i g i b l e  (8). I n  t h e  c a s e  of  s t e a d y  s t a t e  

burning t h e  burning r a t e  dec reases  w i t h  increased pool d iameter  i n  t h e  

small diameter  laminar f low r e g i c n ,  i n c r e a s e s  through a t r a n s i t i o n  region,  

and then l e v e l s  off - pool d iamete r s  g r e a t e r  than about 100 cm vhere  t h e  

f lame is f u l l y  t u r b u l e n t  and r a d i a n t  energy t r a n c f e r  p l a y s  a dominant r o l e  

(6). Such l a r g e  s c a l e  experiments v i l l  p r e s c n t  obvious problems i n  t h e  

environment of t h e  svace  s h u t t l e .  

S e v e r a l  methods of s t a b i l i z i n g  a p lanar  s u r f a c e  can be considered.  

A g e l l i n g  agen t  may be used i n  a g r a v i t a t i o n a l  f i e l d  t o  p repare  a p lane  

s u r f a c e  which would r e t a i n  i ts c 0 n f i g u r a t i . n  in t h e  absence of g r a v i t y .  

The low concen t ra t ion  of g e l l i n g  agent  r l q u i r e d  would be expected t o  have 

a minor e f f e c t  on s t eady  s t a t e  burning,  but  would s e r i o u s l y  a f f e c t  s t u d i e s  

of i g n i t i o n  and flame spread where l i q u i d  mobi l i ty  p lays  a mzjor r o l e .  

The use  of wicks o r  porous p l a t e s  would have s i m i l a r  l i m i t a t i o n s .  S i n c e  

s u r f a c e  t ens ion  f o r c e s  a r e  r e l a t i v e l y  weak i n  many l i q u i d s ,  however, a 

r e l a t i v e l y  smal l  a c c e l e r a t i o n  f o r c e  would cavJse t h e  l i q u i d  s u r f a c e  t o  



assume a n e a r l y  p lanar  c o n f i g u r a t i o n  i n  a pan o r i e n t e d  normal t o  t h e  

a c c e l e r a t i o n  v e c t o r .  The u s e  of near-zero g r a v i t a t i o n a l  c o n d i t i o n s  w i l l  

have o t h e r  a t t r a c t i v e  f e a t u r e s  i n  t h e  s tudy  of combustion processes .  

The s u i t a b i l i t y  of tile space  s b t t l e  f o r  t h i s  mode of o p e r a t i o n  should 

be i n v e s t i g a t e d .  

I t  is convenient  t o  cons ide r  t h e  combustion of l i q u i d s  i n  two 

regimes: l i q u i d s  a t  temperatures  above t h e i r  f l a s h  p o i n t ,  and l i q u i d s  

below t h e i r  f l a s h  p o i n t  (9). When 3 l i q u i d  s ~ r f a c e  is i n  c o n t a c t  wi th  

a i r  a t  a temperature  above t h e  f l a s h  p o i n t ,  a  combustible a i r -vapor  

mixture  w i l l  e x i s t  above t h e  l i q u i d  s u r f a c e .  I g n i t i o n  and flame spread ,  

under t h e s e  c o n d i t i o n s ,  resemble t h e  phenomena which occur i n  premixed 

g a s  combustion d i s c ~ l s s e d  i n  S e c t i o n  IV.7. However, t h e  r a t e  of f lame 

spread over t h e  l i q u i d  s u r f a c e  may be  as much a s  f i v e  t imes  t h e  maximum 

flame speed observed i n  premixed g a s e s  (10). Th i s  h a s  been a t t r i b u t e d  

t o  a two-dimensional s t r u c t u r e  of t h e  advancing flame f r o n t  wi th  rhe  

maximum flame v e l o c i t y  a t  a  d i s t a n c e  from the  s u r f a c e  correspondinb. 

approximately t o  t h e  format ion of a s t o i c h i m e t r i c  mixture.  S i n c e  t h i s  

flame s t r u c t u r e  has  been :hough t o  be independent of buoyancy e f f e c t s ,  

the  measurement of s u r f a c e  f lame speeds under c a d i t i o n s  of ze ro  g r a v i t y  

could provide  a n  important  check on t h i s  hypothes is .  

For l i q u i d s  a t  temperatures  below t h e i r  f l a s h  p o i n t ,  energy must be 

supp l i ed  t o  'he s u r f a c e  of t h e  l i q u i d  t o  evaporate  s u f f i c i e n t  f u e l  t o  form 

a flammable f u e l - a i r  mixture  be fo re  combustion can t a k e  p l a c e .  I n  t h e  c a s e  

of i g n i t i o n ,  t h i s  energy is suppl ied  by an e x t e r n a l  energy source  alld t h e  

time t o  i g n i t i o n  is determined by t h e  balance  between energy f l u x  t o  r!:e 

l i q u i d  and energy d i s s i p a t i o n  w i t h i n  t h e  l i q u i d .  The l a t t ; ? r  is too g r e : t  



t o  be  accounted f o r  by thermal conduc t iv i ty ,  and has  been a t t r i b u t d  

t o  a c e l l u l a r  flow due t o  a combination of s u r f a c e  and buoyancy f o r c e s  

(2).  Since  t h e  s u r f a c e  f o r c e  w i l l  be independent of g r a v i t y ,  i g n i t i o n  

experiments a t  low o r  ze ro  g r a v i t y  o f f e r  a promise of increasc i L rider- 

s t a n d i w  . ~ f  t h e  i g n i t i o n   h hen omen on. 

Flame spread over t h e  <;urface of a l i q u i d  a t  temperatures  below 

t h e  f l a s h  p o i n t  depends on th;? prehe ' t i n g  of t h e  l i q u i d  s u r f a c e  :.nead 

of t.he advancing flame f r o n t .  Yhe r e l a t i v e  importance of t h e  v a r i o u s  

aoisa of energy t r a n s f e r ,  r ad ia t io r ,  from t h e  flame, gas  phase convection,  

l i q u i d  phase cr;nr:uctitn tnd  convection.  is still a matter of d i s p u t e  ( 5 ) .  

Glassman and h i s  a s s o c i a t e s  p resen t  convi.~cing evidence t h a t  s u r f a c e  

t ens ion  d r i v e n  flows play an  important r o l e  i n  t h i s  process  ( 9 , l l ) .  

Buoyancy e f fec . t s  w i l l  a l s o  play a r o l e .  Torrance has  c a r r i e d  o u t  a 

d e t a i l e d  m a t h e m z i c a l  a n a l y s i s  of these  flows and "htained good agree- 

ment wi th  experimental  obse rva t ioao  (12) .  Again, t h e  s tudy of f l a e  

spread over l i q u i d  s u r f a c e s  i n  t h e  absence of a g r a v i t a t i o n a l  f i e l d  r a n  

be expected t o  provide informat ion which w i l l  c o n t r i b u t e  t o  t h e  

development of b e t t e r  theoretics: models and lead t o  a b e t t e r  under- 

s t and ing  of t h e  flame spread phenomenon. 

Steady s t a t e  pool burning of l i q u i d s  d e p m d s  011 t h e  entrainment 

of a i r  i n  t h e  buoyan: convect ive  p luse  t o  provide t h e  oxygen t o  re;ct 

wi th  t h e  f u e l  vapor ( 7 ) .  I t  appears  t h a t  l a r g e  s t a b l e  pool f i r e s  w i l l  

not be p c s s i b l e  i n  t h e  absence of an a c c e l e r a t i o n  fie!d t r  d r i v e  t h e  

convect ive  plume. If t h e  g r a v i t a t i o n a l  f i e l d  is decreased t ~ o m  i t s  

normal value ,  t b e  Grashof number which c o n t r o l s  t h e  convect ive  plume 

v e l o c i t y  w i l l  dec rease  p ropor t iona te ly .  The onse t  of tu rbu lence  w i l l  



be delayed, and the  t r a n s i t i o n  from laminar t o  turbulent  con t ro l  of t h e  

burning r a t e  can be s tudied over a range of f i r e  diameters.  This  should 

permit a b e t t e r  d i f f e r e n t i a t i o n  between r a d i a t i v e  and convective energy 

t r ans fe r  t o  thc  l iqu id  pool. 

Since s t a b l e  pool f i r e s  cannot e x i s t  ander condi t ions of zero 

gravi ty ,  t he  quest ion of e x t i n g u i s b e n t  under these condi t ions  is moot. 

Extingu;a!zw~t of f i r e s  at low g w i l l  involve the  in te rvent ion  of some 

ex te rna l  agent. Unless ca re fu l iy  z ~ g l i e d ,  t h i s  may induce acce l e r a t i on  

fo rces  which may enhance the  combustion. *.is w i i i  be of p r a c t i c a l  

importance i n  designing f i r e  extinguishment systems f o r  spacecraf t .  but 

it  is not  apparent t h a t  i t  w i l l  increase our understanding of combustion 

processes. 

Conclusions: 

The following types of exyeriments involving l a rge  sur face  l iqu id-  

gas  unpreolixed combustion a r e  suggested f o r  the  space s h u t t l e .  

T le possibi l3t . ies  f o r  cod,uct ing experiments i n  a constant  low g 

a c c ~ l e r ~ c i o n  f i e l d  shol~ld be thoroughly evaluated. This mode of operat ion 

appears t o  o f f e r  imrortant  advantages i n  studying the  r o l e  of buoyant 

convection i n  a v s r i e t y  of combustion processes. 

Measurerents of flame spread r a t e s  over the  su r f aces  of l i qu ids  a t  

t eapcra tures  above t h e i r  f l a s h  point  should be made t o  provide information 

on the  struct!ire of the  gas phase f l a n e  f ron t .  

Scudics of the  i gn i t i on  of l i q u i d s  a t  temperatures below t h e i r  f l a s h  

; 3 i c t s  should be ca r r i ed  out  t o  show the  r e l a t i v e  importance of b-~oyancy 

and sur face  tension f l w s .  



'cudies of flame spread over the surfaces oE liquids at 

temperatures below their flash point should be made to provide an 

input t c  the development of better theories of flame spread- 

Steady state pool burning should be investigated under conditions 

of low g to assess the role of buoyant convection in controlling the 

rate of combustion in pool fires. 
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I V .  9. Experiments Performed I n  A Low- O r  

Var iable-Accelera t ion Env i roment  

by G. H. Markstein 

Discussion.  

Preceding subsec t ions  have d e a l t  s u b s t s n t i a l l y  w i  , :ombustion 

experiments performed under g r a v i t y - f r e e  c o n d i t i o ~ ~ s .  The scope of  

s e v e r a l  of  t h e s e  s t u d i e s  can be g r e a t l y  expanded by us ing  t h e  propuls ion 

system of t h e  Space S h u t t l e  e i t h e r  t o  main ta in  a :onstant  low l e v e l  of 

a c c c l e r a t i o n ,  o r  t o  perform experiments dur ing  a c c e l e r a t i o n  t r a n s i e n t s .  

While t h i s  extension of t h e  work could i n  p r i n c i p l e  be app l i ed  t o  

any of t h e  coinbustion expar ' .  ,-:rts discussed  a a r l i e r ,  i t  is  undoubtedly 

of g r e a t e s t  i n t e r e s t  i n  those  c a s e s  i n  which t h e  e f f e c t  of a c c e l . .  i ~ l o n  

is  d ~ m i n a n t .  Th i s  is t h e  c a s e  primari1:r f o r  unpremjxed combuscion i n  

t h e  absence,  o r  a t  low  level^, of forced-convection flow. Under t h e s e  

c i rcumstances  n a t u r a l  convect ion may be r e q u i r e 1  r \r the  cont inuous  

hccess  of oxygen t o  t h e  r e a c t i o n  zone and t h e  remnval of combustion 

produt:-s from i t .  I n  some c a s e s ,  under zero-g c o n d i t i o n s .  combustion 

cannot. be maintained indef i n l t e l y ;  i n  o t h e r  words, absence of q rav i  t y  

c o n s t i t u t e s  a s i n g u l a r  c a s e .  

Consider,  as a s p e c i f i c  example, an experiment on s teady burning 

of a s o l i d - f u e l  s u r f a c e .  A s  d iscussed i n  s e c t i o l ~  4 ,  t o  mainta1.r. r.t..;i::r 

combustion 111 a g iven g r a v i t y - f r e e  environment, forced convect ive  f iou  

must be provided.  I f ,  however, t h e  s h u t t l e ' s  p l s i o n  system is used 



to produce a steady lw level of acceleration. steady-burning ex- 

periments could readily be performed without forced convection. By 

varying :he magnitude of acceleration. a reiationship between burning 

rate and acceleration level could be determined, and the possible 

existence and magnitude of a lover acceleration limit could be 

cstablished. belov which steady combustion cannot be maintained. 

Moreover, in addition to experiments during steady ecceleration, 

effects of accele~at ion transients could be investigated . Of special 
interest in connec:ion d t h  fire in spacecraft are two cases: 1) 

sudden rcaoval of as. ration, causing extinction of the fire after 

a reiaxation period, and 2) reignition of a nearly extinguished fire 

after re-estakl$shment of a finit. acceleraticn level. 

A5 discussed in sectfon 4, effects of both steady and transient 

acc:eleratioo can be simulated to sclme extent by forced convection. 

However, the modeli~g of free convociion by forced convection is 

never exact, and particularly unsatisfactory when the acceleration 

vector is normal to the fuel surlace. Thus, studfes involving the 

use -:f acceleration rather than forced conv6c:ion are certainly more 

realistic. Foreover. since tire need for 3 blo -er fiicility is eliminated. 

tb.e apparatus is considerably simplified and its cost ;educed. The 

need f . ~  additional fuel to operate the propulsion systea. during che 

expe imrnts would be compensated by eliminating the pouet- requirements 

of the blnuer facility. The ~ n l y  ccnceivable coeplicatim nff-setting 

these adbarlca~e~ b i d  be the need for  :lose cooperation between the 

s: icnt:ist ~eriorming the exper iffient and an astronaut operating the 

Frbpalslon sysren. 



Yhile  t h e  preceding d iscuss ion  has singled oltt tbe case  of 

s teady burning of a s o l i d  fue l ,  i n  which the  advantages of vorklng 

wlth l o r l e v e l  o r  va r i ab l e  acce lera t ion  a r e  pa r t i cu l a r ly  obviouc, 

similar advantages may accrue i n  var ious  o ther  c a b u s t i o n  s tud ie s  i n  

the Space S b t t l e .  Since t n e  use of t he  e r i s t i n g  propulsion system 

requi res  w add i t i on  t o  the  apparatus,  except f o r  t h e  poss ib le  

addi t ion  of a n  accelerometer, it is recomended t h a t  t he  p o s s i b i l i t y  

of t h i s  extension of t h e  exper i rea ts  be considered i n  the  planning of 

many of t he  s t u d i e s  discussed i n  preceding sec t ions .  

Since t h e  e f f e c t  of acce lera t ion  is de ter r ined  by the  Crashof 

number, a change of acce lera t ion  i n  t h e  r a t i o  a / a  is equivalent t o  
0 

a cblnge of length sea l  e Sy (a/.,)-'I3 - Thus. t he  sca l ing  a spec t s  

of lov-acceleration experiments w u l d  he  of va lue  f o r  studying d e t a i l s  

of flame s t r u c t u r e  a t  an  increased s c a l e  (1). (in the  orher hand, a 

primary i n t e r e s t  i n  f i re  research is i n  reducing the  length sca l e ,  so 

ttat acce lera t ions  ic  excess of g would be required. I t  appears 

therefore  unl ikely t h a t  t h i s  pa r t i cu l a r  appl ica t ion  of f i n i t e  acce lera t ion  

i n  coakestion experiments hn space would o f f e r  any advantages ovet the  

successful  method of pressure sca l ing  (2) . 
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IV. 10. Large Chemical B e a r  Combastion 

by Y. Kaufmao 

Discussion: 

Combustion proce~ses in pre-mixed gases take place in three partially 

overlapping stages which may be characterized as follous: In the initiation 

or preheat zone, heat conduction and diffusion of reactive cpecies bring 

about chemical reactions which are either sufficiently exothermic to prodxce 

an exponential temperature rise or produce a net increase of reactive 

radicals by chain-branching reactions. In the main reaction or flame zone 

reactants are substantially used up in fast. two-body reactions which do 

not necessarily lead to the stable combustion products. particularly when 

recombination steps are required as in the formation of H 0 .  Such exothermic 2 

recombinations occur relatively slowly in the b~rnt or post-flame gas at 

high and rising ttmperatures. 

It is the general idea of this proposed experiment chat the nearly 

infinite pumping capacity afforded by the space enxironment be used to extend 

the traditional range of the crossed molecular beam technique (1) in an 

attempt to study multiple collision events roughly corresponding to flame 

zone reactions. This may be brought about by an increase of reactant 

densities in large nozzle beams to a value where the mean frce path for 

reaction is smaller than the linear dimension of the beam intersection 

volume sn that s, ndary reactidn products may be observed. Atoms or 

radicals generated prior to and during beam product ion ~ u l c  be used to 

initiate tile reaction chain within tht beam intersectfon v ~ l t m e .  



I n  t h e  experiment, a l a r g e  superson ic  nozz le  beam is crossed by a 

second beam, e i t h e r  a smal l - to- large  nozzle  beam o r  a capil1ar:r-array 

e f f u s i v e  beam, t o  produce j o i n t  d e n s i t y  i n  t h e  i n t e r a c t i o n  reg ion  s u f f i c i e n t  

t o  r e s u l t  i n  a r l t i p l e  r e a c t i v e  c o l l i s i o n s .  3ne o r  both  of t h e  beams c o n t a i n  

r e a c t i v e  r a d i c a l s .  Excited primary, secondary, e t c .  c m b u s t i c n  i ~ t e n t e d i a t e s  

are d e t e c t e d  by observing t h e i r  c h e m i l a i n e s c e n c e  whereas graund s t a t e  product 

s p e c i e s  are observed by t h e  u s e  of resonance f luorescence  where poss ib le .  

The beam sources ,  c o l l i m a t o r s  and d e t e c t o r  a r r a y  a r e  mounted on a s c a n t  but 

r i g i d  framework designed t o  t a k e  maxi- advantage of space vacuum. 

Product ion of sugersonic  nozzle  beams of high i n t 2 n s i c y  (2)  d a t e s  back 

t o  t h e  e a r l y  sixties, bu t  is still an  a r e a  of a c t i v e  a d  expanding resea rch .  

The main c r i t e r i a  f o r  o p t L m .  perfomlance a r e  now r e l a t i v e l y  w e l l  e s t a 'n l i sh td  

(2b):the importact parameLers a r e  t h e  nozzle  diameter ,  d .  t h e  nozzle-ckinuer 

d i s t a n c e ,  1,  t h e  skimmer a p e r t u r e  d iamete r ,  ds, t h e  e x t e r i o r  a d  i n t e r i o r  

sk imer -cone  ha l f -ang les ,  a and 0 r e s p e c t i v e l y ,  E I ? ~  t h e  skicmer l e n g t h  OS. 

Uost  experimental ev idence  l e n d s  credence ta s c a l i n g  o f  a l l  l i n e a r  dimensions 

vith d,  which o f  course ,  is c r i t i c a l  t o  the  des ign  o f  a l a r ~ e  n o z z l e  beam. 

S e p a r a t e  exper iments  t e s t i n g  t h i s  ex tens fon  aay be necessa ry .  As p o s s i b l e  

exper imental  c o n d i t i o n s  we take  d = 1 cm, E/d = 10 t o  100 ( a d j u s t a b l e ) ,  and 

pre-expansion p r e s s u r e  po = 100 c o r r  a t  300°K. The volume flow r a t s  is then 

1 ST? Olsec and a t y p i c a l  beam f l u x  (50% of t n e o r e t i c s i  e f f i c i e n c y )  would 

be -la2€ m o l e c u l e s / ~ e c - s r  wi th  a n  es t imated  iiach nunber ?I = 110, and a high 

degree  of focuss ing  (hal f -angle  of d ivergence < l o ) .  Skimmer des ign  should 

probably a l l o w  f o r  a d j u s t a b l e  a F e r t u r e  (probably - 2 cm i n  t h i s  c t s e )  whi le  



the angles a and 8 can be established a priori. Aszuming 213 = i00, the 

expected density at the scattering center is ri 2 1016 rnolecules/cm3, or 

about 0.1 to P torr partial pressure. Attenuation by backgro~nd gas 

(-10'~ torr at -60O0K.) will lower the estimate somevhat. Near-idzal 

nozzle performance is anticipated since nozzle and skimmer inperfections 

can 5r m d e  negligible compared to d. Radicals within the beam can be Prc- 

ducd by heating the nozzle < 3 ) .  naintaining a high pressure DC discharge(;) 

kinlch is prcbably not fezsible considering the power requirements and 

an3 fl3v rates),or by chenical reaction within the nozzle. The last 

possibili~y has not been previously explored. The generation of F-at- by 

pre-nozzle reaction of F2 with SO nay be particularly worthy 3f consideration. 

If co-pletely mixed, two intezsectinf n3zzle hems as described above 

would produce primary products n e ~ l y  stoichionctrically for a cross 

section sR = 1i2 2r gre~ter . A problem arises, Lowever, because of :he high 

probability of nonreactive ccllisions; one bean might be conpletelv 

attenuated by the other within a fraction af a m, although the proposed 

linear "~ollisian volume" dincnsions are at leasr -2 cm. Since attenuation 

varies exponentially with cross section, the probability of attenuation by 

elastic scattering with c!.pical cross sections of 3C to 10012 is very cuch 

larger than that for reactive scattering with zR - d and hence inplics 

be= deflection icstead of mixing. The attenuation vo111d be reduced 

coasiderably were the reactive and elastic cross seccions cure caparahle; 

certain classes of fast reactions, e.g. metal - oxidizer, are likely to t e  

of :his type (see Section 3). The use of one a3justab:e weak bc3z cight 

allow manning of :he transition from slngle to oul'iple reactive collisions 

If appreciable conversion of thc limiting reagent beam to primary products 



has occurred, the most likely observable secondary reactions are those 

involving molecules froa the large beam; again, if the secondary reactions 

proceed with large reactive scattering cross secttons, evidence of tertiary 

products should be easily detectable. Obs-rvation of reactions between 

products from different links of the combustion chain is much less probable. 

It is clear, of course, that the problems of beam deflection and the enphasis 

on secondary reactions lead to a loss of dynamical infor~atfon and tend to 

degrade the beam experiments to those normally carried out in low pressure 

flow tubes. 

E1ec:ronically excited products from the reactrr?? sequence could be 

detected by simple 1-ns-filter-photonultiplier systeas operated in pulse- 

counting mode, and vilrati~~allv escited species by 1R seniconductcr devices. 

Resonance fluorescence could be used for atomir and d i ~ t ~ m i c  ground-state 

products, and mass spectrometry possibly for polyatocic fragments. Uith 

as many as lo1' yeactive eventslsec occuring ix the collision volume, 

rather large losses due to small solid angle of acceptance and low efficiency 

factors could be tolerated while maintaining s high signal count rate. A 

variety of such detectors would probably he arranged in a circular or 

spherical array surrounding the scattering center. 

Candidate reactions may be briefly enuaerated. They fall into three 

classes. Class A inkolves F2 and F as oxidizers and N 2  o r  hydrocarbons as 

flvels. The well-studied Hz-F2 (better H2-F) system represents a link to 

dv7amicni single-collision studiers by crossed k..arns ( 5 )  and by infrared 

chem~luminesccnce ( 6 ) .  where it vould be intrr:*sting to increase be.im 

densities experimentally until the e f i e c t s  of secondary rei~itions become 

oSse; :able. 



Low pressure flame vork !.ith de i a i l ed  mass-spec t rometr ic  sampling is a l s o .  

ava i l ab l e  f c r  cwpar i sun  ' - . .  Fluorine atom-hydrocarbon reac t ions  a r e  knovn 

t o  give ruse  to  in f ra red  cIie,il luminescence ( E ) ,  rnd the  F -C H, as v e l l  a s  2 2 ,  

F -C H low pressure flames have a l s o  been exami ,d ( 7 ) .  
2 2 2  . , 

Class  B includes . z t a l - o x i d i z e r  r eac t ions  wb the  metals  range from 

the a l k a l i e s  t o  the  e a r t h  a l k a l i e s  and beyond, and the  ox id i ze r s  a r e  mainlv 

M02, N20, 03, NOCP, e t c .  Large chemfluminescent y i e i d s  have r ecen t ly  been 

reported9 f o r  same r eac t ions  of Ba and have exc i ted  i n t e r e s t  i n  the p o s s i b i l i t y  

of chemical l a s e r s  i n  t he  v i s i b l e .  The cross  s ec t i ons  of some of these  

r eac t ions  a r e  g r e a t e r  than 10A2 which should diminish the beam de f l ec t i on  

pr !em. The production of metal atom beams of  l a rge  s i z e  a-.d f l u x  Is 

l i k e l y  t o  be  a major obs tac le .  Poss ib ly ,  chemical energy i n  the  form of 

thl-mite-type r eac t ions  coulci be r:cilized. 

Class  C contains  more complex molecule-molecule systems such a s  

hydrazine-nitrogen cx ides ,  f o r  which less in fo rna t ion  is a v a i l a b l e  regarding 

sequences of elementary r eac t ions  and s p e c i f i c  e x c i t a t i o n  s t e p s  r e s u l t i n g  

i n  chemiluninescence. 

Another, q u i t e  d i f f e r e n t  c l a s s  of experiments nay a l s o  be taken under 

cons idera t ion ,  although i t  d c l s  not  involve crossed b e m s .  A s i n g l e ,  l a rge  

nozzle beam of a gaseous oxiclizer spec ies  may be made t o  impinge on a s o l i d  

f u e l ,  e.g. F2 and F p lus  g raph i t e  o r  coa l ,  i n  an e f f o r t  t o  shed some l i g h t  

on gas-solid combustion in r e r ac  t ions .  

Cnnc las ions:  - - 

Ordinary discharge-f low experiments can be  arranged t o  shov the onset  

m d  na ture  of secondary processes ,  s o  t h a t  the quest ion f i r s t  a r i s e s  

whether the proposed expe.-iaents can provide any new information on 

combustion k i n e t i c s .  Secondly, the molecular bec= system cannot I>e viewed 

as analogous t o  a na tu ra l  flame s i t u a t i n n .  s i n c e  the i n i t i a l  k i n e t i c  cnergv 



of collision is well-defined (not ?bxwellim) and the prima?.. bimolecular 

reaction, if very fast, is likelv to produce strongly polarized scattering 

of the primary products. Such conditions, vhilc of interest to cheeical 

dynamicists, do not lend themselves toward understanding the wchanisn of 

combustion initiation. Thirdrv, as noted above, use of hign densities nay 

lead to severe beam mixing pr, lems if the primarv process is too slow, 

i.e., If too much beam intensity is needed to produce sufficient >,~ildap 

of product concentrations. Thus, the numher of svstems conducive to 

study mav be quite snall. 

An answer to the first objection is not easilv given, sincc introduction 

of such high-density conditions in a beaa experiment obviates the usual 

w e  to which such experiments are put. It is possible, by elinination of 

vessel walls, that a beam experiment in space nay nore clearly delineate 

the most important chain propzgatiag reactions. By cocfining ocst rezctive 

evetits L3 a relativel!~ snall spatial re;icn, detection of prodl~cts becones 

relatively straight-forusrd. 

The second ohjecticn is not foi-biddiqg for very fast reactions, since 

these vill necessarilv havc little or n3 activaticn energy. The reaction 

crocs section will then not depend stro:~gly on energy, so that it makes 

little difference whether .I ?l=elli~n or nonochrozatic collision ecergy 

distribution prevails. rocg! y anis~tr.?~fc scat --ring of the primary 

products msy prcdu:e a spacial inhocogcnei t y  in the reaction volume , but 

this can prokably ke .anticipated in the design and location of : lecific 

detectors. Canventional laboratcry cbservztions ~f the  prinary reaction 

(if not already available) vzuld be needed. 

The lfmitation of the nucber and type of suitable reaction system is 

rerious, but must be accepti.d if 3n:i aivantages gained 5s l ~ s i n g  Se=s are 

Lo be realized. I t  is clear, zcre.?ver, that any investigatisn ~ ~ i c t i  does 



not require the special conditions of the space envlronaent, i.e. the 

unlimited pumping capacity in this case, is better carried out in an 

ordinary laboratory. Detailed calculations would also have to be carried 

out regarding :he forces exerted on the Space Shuttle by the operation of 

cuch b earns. 

It seems clear that the proposcd experinents fall into an awkward 

range where the advantages of bear. dynxaics are lost and one Fay not have 

much hope of realizing scientific goals which could not have been obtained 

more easily in low pressure flow tube experinents or flames. For the 

HZ-F2 system, for example, even if the initial H2 + F reaction were to 
i 

prodace suf;iciencly large amounts of dibrationally excited tiF', the latter, 

L 
upon reaction with F2 (along with the more energetic HF' from the H + F2 

reactioa) would only produce more F, and would not easily provide significan: 

information. It appears, then, that the conbillation of proper (earth-based) , 

single-encounter crossed bean work, plus flow tube, cheniluminescence, and 

flame studies are likely to pre-emp~ the present approrch. Ou conclusion 

is, therefore, that large chernic?; bean  co~bustion in space docs present soce 

possibilicy of producing new infornatiltn on combusti~n initiation for 

certatn systens, but that there are serious questions regarding feasibilit::, 

general applicabilitv and ultimate value of s ~ c h  experinents. 
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V . SOME COMBUSTION LABORATORY REQUI LEMEKTS 

Before entering into a discussion of laboratory hardware, the 

sense of the Study Croup concerning the operational modes of research 

should be given. Once an experimental Space Shuttle research program 

is decided upon, its implementation may be expected to differ strikingly 

from that which we indulge in earth-based experiments. Earth-based 

combustion experiments are co- ~cted by people who generally have an 

outstanding knowledge of "safety". Clearly this knowledge is less 

secure at reduced gravitational fields. Earth-based combust ion 

experimentation generally does not utilize fu!ly our ability to quickly 

and autoaatically measure, record, digitize, analyze and thereby 

continually guide the experimentation process. To the eytent possible, 

Space S!?lit*le experi~entation must avoid these deficiencies. In 

addition to the appropriate space-based hardware, then, we require the 

concurrent ability to analyze observations on the earth ana to provide 

continuing theoretical and experimental guidance from eartii. During 

Space ShuLtle Combustion experimentation. only part of the combustio? 

research :earn may be expected to be in orbit. 

The expcr imentnt ion proposed in Sect ioas IV. 1. -1V. 10. ia:plv a 

broad range of combt~stion instrumentation. Sonperturbing devices for 

1.lst respanse measurements of temperature, pressure (spt.ctr.il resolved) 

radiative flux density, and chemical composition are h i ,  ' l l v  developed. 



The application of appropriate modification of these devices to the 

measurement of the temperature, composition, and radiative structute 

of flames, the characteristic sizes of burning drops or particles, 

f lw field characteristics, etc. appear straightforward. However, 

the nonperturbing (ir situ) measurement of mass is not. 

A common capability of any scientific laboratory is that associated 

with the determination of mass. This determination may be made in pre- 

paration for experimentation (e.g. the mass cf , salcplc of a chmical 

reactant) or 2 & experimentation (e.g. measurement of the rate of 

mass loss for burning array of solid fuel elements during a combustion 

experiment (1). These determinations are generally accomplished through 

"weighing" experimeqts (1) involving the use of "balances", "load cells", 

and other dcvices whose perfornance depends upon the existence of a 

significantly nonzerc, constant gravitational field. 

In combustion (and other) experiments on Space Shuttle, the 

~f orement i nned class of mass measuring devices is inadequate (2) . 
The Studv Group recommends that NASA undertake the development of mass 

.~easuring instrumentation capable of meeting anticipated needs. 

1. Berlad, A .  L., ti,~thermel, R.C. and Franc.;en, W. "The Structure of 

Some Quasi-Steady Fire Spread Waves". XI11 Symposium (International) 

on Combustion. The Comb~stion Institute (1971). 

2. Berl.xd, A .  L. and Krishna, C. R. "Transport Mechanisms in Fire Spread 

and Ext:nctionW. Paper presented at the Clay Preston Butler Anniversary 

Meeting on Experimental Methods in Fire Research, Stanford Research 

Institute (May 1974). in press. 



VI. CONCLUS?ONS AND RECOWNDATIbNS 

The NASA-PSRL Study Group has addressed a basic set of 

questions. Namely, given the opportunity to engage in combustion 

experimentation which utilizes the space laboratory facilities 

of the Space Shutcle: 

(a) m a t  basic physical processes associated with the 

space env iroment may affect combust ion phenomena? 

What are these effects? 

(b) What fundarcental areas of combustion experimentation 

are expected to benhfit from beir: conducted in a 

space enl-ironment? How and why? 

(c) What priorities and recornendations can be provided 

to help guide the implementation of a program f )r such 

exper imentat i ~ n ?  

Previous sections of this re2ort have dealt, in depth, 

uitt. quest ions (a) and (b) and i .plicitly with (c). i t  is now 

necessary to address quest ion (c) mor 2 explicitly . 
Underlying cur previous discursicns are the dominant physical 

effects that derive from a space environment: 

(4) g=3, as well as programmed g-fields on the range 

O f g 6 1 arc available for relatively long times. 

(b) Within b o ~ h  gaseous and liquid states, free convection 

can be eliminated; also, free convection effects can 

be experimentally selected and cc :trolled via the 

select ion and control of (g) . 



( c )  prior to during combustion. homogeneous and/or 

invariant two-phase f u e ~  oxidant dtstributions 

can be crezted a m  maintain- at g-0 that are 

not experimentally possible a t  g=l. 

Virtually r~n l imi  ted "pumping capscity" .-s well as the upper - 

.- - 

atmosphere tecperur?lre. compositian, and radiative charac-eric. i ..i 

may also prove !*portant. But the implications for basir frr.r~tustion 

::tudies of effects (a) - (c) are profound. They mahe pirsalblt: 

j a broad range of combustion experimentation in a 

space environment that is :-:accessible on par th. 

(b)  c*~mbustion exper imen~s inlolviqg the selerteu 

coup1 ing (and decoupl ing) of free ,onvec tion to 

other rranspllr t prt>cesses. 

(c) identification of the spccif it experimental roles 

of free  ci)t. ,rrc.t ion Tr c bride rrnge o f  combustit~n 

phcnon.ena and. derivaLivrl y ,  the roles of other 

comLustion subprocesses. 

( d )  s. strmat ic experimzntarion to inportan' l y  determine 

?.he conbust ion zharacterist l c s  of :vo-p;.z. ie syctems. 

These inclu4. ind;\rldual particles and drops, 

clouds of particles and 4 .  bps, arrays of c i r . i  I ( '  fuel 

2'-ments. large sulid-gas and large : i * :u~t ;  , I S  

combustible systems. 

( e l  system~t ic expei 1menta:in~ to provide *he ohsvrv~t i o n i l l  



5sses for theoretical formalations where current 

theory is hadequate. 

( f )  selected experuents to provide spectf ic answers to 

key questions for which g-1 experimentation is inadequate. 

Detailed discussions of many experheats of substantial 

irportance appear in earlier sections of this report. Associated 

with each such proposed experimental prograr is a set of important 

theoretical questions that are currently unanswered. The theoretical 

modeling necessary to utilize the results of the proposed experimenta- 

tion is extensive. 

The review of combust ion experimentation (and modeling) 

which could b-efit from the availability of a space laboratory 

reveals one theme that appears to dominate all others. Extensive 

and systematic experimentation on the range 0 g 4 1 is viewed as 

essential to the developent of the understanding required in virtually 

all the major fundamental areas of combustion. Current theory has 

not been adequately guided by experiment. Current (drop tower) 

facilities for 0 f g I 1 experimentation have an important role to 

play in future studies. But these roles are necessarily limited. Only 

an orbital space la5cratory can provide the scales of rime and space 

necessary to exploit substantially the scientific goals of combustion 

experimentation in a space environment. These conclusions apply for: 

(a) Premixed Flame Propagat ion and Extinction Limits 

(b) Theory of Noncoherent Flame Propagation 

(c) Upper Pressure Limit Theory of Ignition and Flame Propagation 



Autoignition f o r  Large P r a i x e d  Gaseous S y s t m  

Cool Plarcs in  Large Premixed Gi:scous Systems 

Eurning a d  Extinction of Individual Drops o r  

Par t ic les ,  Over Very Large Ranges of Pressure 

Igni t ion  a d  Autoignition of Clouds of Drops and/or 

Pa r t i c l e s ,  Over Very Large Ranges of Preeeure. 

Tuo Pbase Carbustion Phenomena Involviwj Large Liquid- 

Gas o r  Solid-Gas Interfaces. 

Radiative Igni t ion  of Solids and Llquids 

Pool Burning and Flame Propagaclan Over L i q ~ i d s  

Flame Spread and Extinction r ~ e r  Solids 

Smoldering and Its Transttion "o Flaring (or Extinction) 

Laminar Gas Jet C a b t s  t ion  

Coupling (or Dec(~~pl1ng) of Convectively-Induced 

Turbulence Involved In  Various Com3ustion Phenomena 

Transient Responses of Flares To Time-Dependent 

(Effective) Gravitat ional  Fields. 

This is a p a r t i a l  l i s t i n g  of the many v a l w b l e  experimental 

acd theore t ica l  programs tha t  can be carr ied out with the  e s sen t i a l  

f a c i l i t i e s  provic!ed by a Space Environment. Several of these programs 

shov par t lcular ly  outstanding promise. I n  t h i s  l a t t e r  category must 

be included the areas of: 

(1) Extinction Limits i n  Premixed and Unpremixed Gases 

(2) 2 - e  hany Diverse Areas of Tuo Phase Combustion, 

Par t icular ly  the Combustion of Single Drops and Par t ic lea ,  - 



Arrays of Drops and Particles, Clouds of Drops and Particles, 

Arrays of Solid Fuel Elements, and Liquid Pools. 

The extent to which other noted (or uncited) combustion 

studies will revolutionize our understanding of the Fundamentals of 

Combustion depends largely on the ingtnuicy of experimenters and 

theorists who have yet to address the scientific opportunl~~es that 

space-based combustion experimentation call provide. 



-100- 1 .  APPENDIX A - "Specimen of 

Letter Used To S o l i c i t  

Technical V i e w s  of  the 

Combust ion Cormnunity" 

PUBLIC SYSTEME RESEARCH, ~i\lC. 
1320 Stony Brook R a d  Stonv Brook. New York 1 1790 

NASA-SPONSORED C M i T T E E  FOR THE 

STUDY OF COHBUSTION EXPERIHENTS 

I N  SPACE 

Dear Col league: 

You may be aware o f  the f ac t  tha t  the undersigned const i tu te  

a c m i t t e e  that  has been charged w i th  identifyir,g and evaluating 

a series o f  specif ic, basic combustion expei'iments that  would 

be desirable t o  corlduct i n  a space environment. The space 

laboratory f ac i  1 i t ies  envisioned are those associated w i th  the 

Space Shutt le Program. Our c m i t t e e  operates under j o i n t  a q i s  

o f  NASA and o f  Public Systems Research, Inc. (a no t - fo r -p ro f i t  

research i n s t i t u t e )  . 
He recognizt the fnportance o f  your work and tha t  o f  your 

laboratory i n  fundamental combustion research. Accordingly, we 

s o l i c i t  your help i n  fur ther ing the work of the committee. 

The NASA Space Shutt le w i l l  o f f e r  sc ient is ts  and engineers 

the opportunity t o  conduct a var ie ty  of experiments i n  a space 

envirorment. The condi t i  011s so provided (e-g. reduced grav i ta t iona l  

conditions, a convectionless enviroment, a unique rad ia t ive  f i e l d ,  

etc. ) a1 low experimental approaches t o  information that  cannot be 

obtained on Earth. 

The comnittee has i n i t i a l l y  i den t i f i ed  the following combustion 

research areas which may be expected t o  benefi t  substant ia l ly  from 

experimentation i n  a space environment: F i r e  Research, Two-Phase 

Combustion, Combustion Product modifications, Osci l latory Flames, 

I gn i t i on  and Autoigni t ion, Flamnabil i t y  and Ext inct ion Limits, 

Combustion w i th  Large Chemical Beams, I r ~ h i  b i  t i o n  o f  Flame 



Propagation, Gravitat ional Scal ing o f  Flame Systems. 

We seek your corisidered views regarding these (as we1 1 as 

other) fundawntal areas of combustion research which may benefit 

from Space Shutt le experimentation. 

Please keep i n  mind tha t  your response t o  t h i s  l e t t e r ,  and 

a l l  reports of the c m i t t e e  t o  NASA, are i n  the publ ic  Canain. 

Nevertheless, NASA anticipates that  there w i  11 be an opportuniry 

t o  submit proposals a t  a l a t e r  time and that  the best experiments 

w i l l  be considered f o r  NASA funding. 

Please fee l  free t o  contact any member of the comni t t ee  

regarding any aspect o f  t h i s  study. 

Your assistance i s  great ly  appreciated. 

Sincerely yours, 

A. L. Berl ad, Chai man 
Clayton Huggett 
Frederick Kaufman 
George H. Markstein 
Howard B. Palmer 
Ching H. Yang 

3 r  
enc . 



2.  APPENDIX B 

"Minutes of the Three Meetings of the Study Croup" 

PUBLIC SYSTEMS RESEARCH. INC. 
1320 Stony 6 r ~ o k  Road Slony Brook New York 11 790 

Minutes of the 30 March 1974 NASA-PSRI Meeting on 

COMBUSTION EXPERIMENTS I N  SPACE 

1. Attending: A.L. Berlad, T. Cochran (NASA), S. Harrison, 
C. Hiiggett, F. Kaufman, G .  Markstein, H. Palmer, 
J. Swartz, C.H. Yang 

2. Agenda: 
(a) Prel iminaries (PSRI) 
(b) Space Shutt le Background and Constraints (NASA) 
(c)  Time Frame f o r  SSG Ac t i v i t i e s  
( d l  Scheduling o f  futr lre SSG meetings 
(e) Working session 

3. -- Substantive understandings and plans of action: 

(a) Current schedule o f  fu ture  SSG meetings i n  Stony B r  ~k 

( i  ) Monday, June 3, 1974 
( i i )  Ssturdzy, Ju lv  27, 1974 

(b) Canbustion experiments and Areas o f  In terest  that  were 
discussed as candidates of possible im~urtance t o  space 
shut t le  experimental opportunit ies ( i n  crder of discussion) : 
Burning o f  a s ingle condensed phase pa r t i c l e  i n  a gaseous 
mediun; Burning o f  a cloud o f  pa r t i c les  i n  a gas phase 
medium; mine safety and a1 1 ied  explosive problems; Flamna- 
b i l i t y  and ext inc t ion l im i t s ;  autoigni t ion l im i t s ;  
osc i l l a to ry  flames; Point source ign i t ion;  Changing o f  
safety conditions i n  space environments; F i r e  extinguish- 
ment; Shock tube i gn i t i on  o f  two-phase systems; rad ia t i ve  
i gn i t i on  of solids; pol lut ion-related problems; soot forma- 
t i on  i n  unpremlxed flames; gravi ty - f  i e l d  scal ing i n  experi - 
meqtal systems; part iculates generated i n  forest  f i r es ;  
low vc loc i t y  c r i t i c a l i t y  i n  opposed-jet flame experiments; 
in teract ion of  [O]-atoms w i th  carbon; heat t ransfer  co- 
e f f  i c ien ts  from hot-wire experiments; radiative-convective 
coup1 i ~ g  i n  f i r e  propagation; smouldering i n  two-phase 
systems; extinguishment ro les  of Hz0 and other compounds; 
surface tension e f fec ts  on states of reactants; flame 
sustained Lasers; def lagration-detcnation t rans i t i on  
dynamics ; 1 arge beam combustion phenanena . 



( c j  The above items were broadly grouped (necessar i ly  
averlapping) and the indicated SSG members agreed 
t o  pursue the primdry tasks I, 11, I11  (of the NASA- 
PSRI agreement) dur ing the forthcoming p e r i ~ d .  The 
categories and associated responsi b i  1 i t i e s  are: 

( i )  -- F i r e  Research: Dr. Huggett*, Dr. Markstein 
( i i )  Two-Phase Combustion: D r .  Palrcer*, Dr. Berlad, 

D r .  Yang 
( i  i i ) - Combustion Product E f fec ts :  Dr. Palmer*, 

Dr. Kaufman 
( i v )  Osc i l l a to ry  Flames: D r .  Yang* 

(v!  Ign i t ion-Auto iqn i t ion :  Dr. Yang*. D r .  Berlad 
( v i )  - Flamnabi l i ty  L im i t s  -nd Ex t inc t ion :  Dr. Berlad*, 

Dr. Palmer, D r .  ~ a n g -  
( v i  i )  Large Beam ~ombust.ion: Dr. Kaufman* 

( v i i i )  - Fame I n h i b i t i o n  Ef fec ts :  Dr. Huggett*, 
D r .  Markstein. D r .  Palmer 

( i x )  Grav i ta t iona l  ~ c a l i n ~ :  Dr. Markstein* 

*(Lead responsi b i l  i t y )  

I h e  abcve categories cons t i t u te  an i n i t i a l  l i s t i n g  of 
combustion areas o f  study which promise t o  bene f i t  
subs tan t i a l l y  from experimentation i n  a space environment. 

4. Carmunications --- w i t h  the s c i e n t i f i c  c m u n i t y :  

Guidelines f o r  the attached ( spec iwn)  ::tter were gererated. 
These include: 

(a )  a need t o  i n v i t e  broad i n t e r e s t  and support f o r  
the SSG's a c t i v i t i e s .  

(b )  a need t o  discourage propr ie ta ry  inputs, though 
encouraging adequately de ta i l ed  suggestions frotr~ 
the s c i e r t t i f i c  comnuni ty .  

This l e t t e r  i s  being d i s t r i b u t e d  by each SSG member, i n  
the s p i r i t  o f  our discussions, t o  a broad l i s t  o f  ind iv idua ls  
and i n s t i t u t i o n s .  Indiv idual  SSG members are encouraged, on 
t h e i r  separate i n i t i a t i v e s ,  t o  broaden the base of these 
contacts both na t i ona l l y  and i n te rna t i ona l l y .  

D r .  Berlad i s  t o  be kept informed, on a cont inuing basis, 
o f  a l l  s igni- f icant contacts. P S R I  w i l l  maintain a compcsite 
record of these contacts. Add i t iona l ly ,  as r e p l i e s  are received 
by ind iv idua ls ,  copies o f  substant ive c m u n i c a t i o r , ~  should be 
provided to: 

( i )  D r .  Berlad, f o r  general information and arch iva l  purposes. 
( i i  ) SSG members most concerned w i t h  the inputs contained there in.  

A.L. Berlad 



PUBLIC SYSTEMS RESEARCH. INC. 
1320 Stony Brook Road Stony Brook New York 1 1790 

Minutes o f  the 3 June 1974 NASA-PSRI Meeting an 

COMBUSTION EXPERIMENTS I N  SPACE 

1. Attendinq: A. L. Berlad (SUNY a t  Stony Brook) 
T. H. Cochran (NASA) 
E. Conway (NASA) 
S. A. Harrison (PSRI) 
F. Kaufman (U. o f  Pi t t rhurgh) 
6. H. Markstein (Factory Mutual Research Corp. 1 
H. B. Palmer (Penn State Univers i ty)  
J. Suartz (PSRI) 
R. A. Strehlow (University o f  I l l i n o j s )  
C. H. Yang (SUNY a t  Stonybrook) 

2. Agenda: 
l a )  Prel in inar ies  - - -  

(bj ~ p a c e  Shutt le Planning (NASA) 
(c)  Interact ion wi th  the s c i e n t i f i c  comnunity 
(d) Current views of the most pramising research 
(e) Specif ic exper im~nts and t h e i r  ant ic ipated 

worth 
( f )  SSG planning f o r  the forthcoming period 

3 .  Substantive understandings and discussion highl ights:  
(a) The next SSG meeting i s  scheduled for Saturday, July 27, 1974, 

a t  Stony Brook. 

(b) Where fur ther  in terac t ion wi th  specif ic indiv iduals i n  the 
sc ien t i f i c  c m u n i  t y  i s  warranted, personal contact a t  the 
ea r l i e s t  time i s  recomnended. 

(c )  Fami l iar izat ion o f  the sc i en t i f i c  comnunity w i th  t h i s  program's 
sc i en t i f i c  goals and the attendant opportsnit ies f o r  uniqde 
research i s  best achieved through technical presentation and 
discussions a t  the various research forums which are centra l  
t o  the combustion c m n i t y ' s  ac t i v i t i e s .  

(d) The nine combustion research areas noted i n  3-c o f  the 30 March 
1974 minutes were discussed and the current ly  most p r a i s i n g  
experiments iden t i f i ed .  



(e )  Technical support and laboratory instrumentat ion, camonal i t y  
o f  experimenters' needs and s u i t a b i l i t y  o f  e x i c t i n g  equipment 
were examined. 

4 .  Preparation f o r  the 27 Ju lymeet ing:  

( a )  A t  an ea r l y  date, NASA and P S R I  w i l l  provide ten ta t i ve  ou t l i ne  
t o  accmoda te  a f i n a l  report.. 

(b)  Each member o f  the SSG w i l l  be asked t o  deal wi:h on: o r  more 
speci f ic  por t ions o f  the repor t .  i n  i t s  f i n a l  form, each 
such po r t i on  w i l l  appear beneath the author 's  riame. 

( c )  Introductory, connective, and sumnary portion, o f  the repor t  
w i l l  be prepared by A. L.  Berlad, i n  behalf  o f  the Cami t tee .  

(d )  Information regardinq these e f f o r t s  w i l l  be d i s t r i b u t e d  sho r t l y  
t o  each of us t o  b r i ng  "working - -- d r a f t s "  t o  our 27 Jd l y  meeting, 
f ~ r  discussion. 

5. The primary emphasis o f  SSG e f f o r t s  dur ing the forthcoming period 
s h i f t s  from Tasks (11  and ( 1 1 )  t o  Tasks (111) and ( I V ) ,  as spel led 
out i n  the NASA-PSRI agreement. 

A .  L. Berlad 



Minutes of t h e  27 J u l y  1974 LASA-PSRI Meeting on 

COHBUSTION EXPERIMENTS I N  SPACE 

1. Attending: A.L. Berlad (SUNY a t  Stony Brook) 
T.H. Cochran (NASA) 
C. Huggett (NBS) 
L . M .  Kanury (Stanford  Research I n s t i t u t e )  
F. Kaufman (U.  of Pittsburgh) 
G.H. Markstein (Factory  Mutual Research Corp.) 
P.S- Myers (a. of Wisconsin) 
E.E. O'Brien (SUNY a t  Stony Brook) 
H.B. Palmer (Penn. S t a t e  Univers i ty )  
J .  Swartz (PSRI) 
C.H. Yang (SUNY a t  Stony Brzok) 

PueLlc SYSTEMS RESEARCH, INC. 
1320 Stony Brook Road Srony Brook New York 1 1790 P 

2.  Agenda: 

(a) P r e l i m i n a r i e s  and rev.  :w 

I 

(b) Deta i l ed  d i s c u s s i e n  of t h e  most promi , ing  
r e s e a r c h  a r e a s  and leading experiments.  

(c)  Elements of our f i n a l  recommendations 

(d) Proposed F i n a l  Report. Contents,  assignments,  
and d e l i v e r y  schedules .  

3 .  Subs tan t ive  unders tandings  and meeting h i g h l i g h t s  

( a )  Pre l iminary  d r a f t s  of Min i repor t s  were exchanged f o r  
purposes of i n t e r n a l  r ?view and comment. Members of 
t h e  SSG a r e  asked t o  ~ r v v i d e  i n d i v i d u a l  au thors  wi th  
comments by Fr iday ,  p.ugust 2 ,  1974. F i n a l  v e r s i o n s  of the  
Mlc i repor t s  a r e  t o  be received by b..L. Berlad by Atlgust 9. 

(b) Contents of i n d i v i d u a l  m i n i r e p o r t s  w i l l  r e f l e c t  l e v e l s  
of importance and promise of t h e  s p e c i f i c  asenues of 
r e sea rch  deemed t o  be s i g n i t  i c a n t  and worthy. 

(c)  Inpu t s  t o  a11 elements of t h e  F i n a l  Report (due very  s h o r t l y )  
a r e  s o l i c i t e d .  P l e a s e  w r i t e  andlor  c a l l  t h e  undersigned.  

(d) The c u r r e n t  o u t l i n e  of t h e  proposed f i n a l  r e p o r t  remains 
e s s e n t i a l l y  unchanged from t h a t  d i s t r i b u t e d  cn 19 June.  
The s t r u c t u r e  of Sec t ion  V I  may d i f f e r  from t h a t  which was 
p rev iour ly  considered.  
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